metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ2-4,7-di­methyl-4,7-di­aza­decane-1,10-di­thiolato)trinickel(II) bis­(perchlorate)

aGraduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan, and bDepartment of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700-8530, Japan
*Correspondence e-mail: mhiro@sci.osaka-cu.ac.jp

(Received 16 January 2012; accepted 10 February 2012; online 17 February 2012)

In the title compound, [Ni3(C10H22N2S2)2](ClO4)2, the complex cation consists of a nickel(II) ion and two [Ni(C10H22N2S2)] units with an N2S2 tetra­dentate ligand, 3,3′-[1,2-ethane­diylbis(methyl­imino)]bis­(1-propane­thiol­ate). The central NiII ion is located on a crystallographic inversion centre and is bound to the four S atoms of the two [Ni(C10H22N2S2)] units to form a linear sulfur-bridged trimetallic moiety. The dihedral angle between the central NiS4 plane and the terminal NiN2S2 plane is 145.71 (5)°. In the [Ni(C10H22N2S2)] unit, the two methyl groups on the chelating N atoms are cis to each other, and the two six-membered N,S-chelate rings adopt a chair conformation. The Ni—S bond lengths and the S—Ni—S bite angles in the central NiS4 group are similar to those in the [Ni(C10H22N2S2)] unit.

Related literature

For general background, see: Konno et al. (2000[Konno, T., Chikamoto, Y., Okamoto, K., Yamaguchi, T., Ito, T. & Hirotsu, M. (2000). Angew. Chem. Int. Ed. 39, 4098-4101.]); Konno (2004[Konno, T. (2004). Bull. Chem. Soc. Jpn, 77, 627-649.]); Igashira-Kamiyama & Konno (2011[Igashira-Kamiyama, A. & Konno, T. (2011). Dalton Trans. 40, 7249-7263.]). For related structures, see: Grapperhaus et al. (2007[Grapperhaus, C. A., O'Toole, M. G. & Mashuta, M. S. (2007). Acta Cryst. E63, m2281.]); Turner et al. (1990[Turner, M. A., Driessen, W. L. & Reedijk, J. (1990). Inorg. Chem. 29, 3331-3335.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni3(C10H22N2S2)2](ClO4)2

  • Mr = 843.83

  • Monoclinic, P 21 /c

  • a = 8.0253 (19) Å

  • b = 16.208 (4) Å

  • c = 12.807 (3) Å

  • β = 105.033 (6)°

  • V = 1608.8 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.21 mm−1

  • T = 123 K

  • 0.24 × 0.24 × 0.17 mm

Data collection
  • Rigaku AFC7 (Mercury CCD) diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson 1998[Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.619, Tmax = 0.705

  • 15030 measured reflections

  • 3626 independent reflections

  • 3391 reflections with F2 > 2.0σ(F2)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.082

  • S = 1.04

  • 3626 reflections

  • 235 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.71 e Å−3

  • Δρmin = −0.70 e Å−3

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiolate ligands have a high propensity to bridge transition metal ions and form sulfur-bridged polynuclear metal complexes. Metal complexes of polydentate ligands with thiolato-S atoms were used to construct supramolecular compounds (Konno et al., 2000; Konno, 2004; Igashira-Kamiyama & Konno, 2011). Nickel(II) complexes containing diamine dithiolate ligands act as a bidentate-S,S metalloligand. The title compound [Ni{Ni(C10H22N2S2)}2](ClO4)2, (I), was synthesized by the reaction of 3,3'-[1,2-ethanediylbis(methylimino)]bis(1-propanethiol) with nickel(II) acetate tetrahydrate. The corresponding mononuclear nickel(II) complex [Ni(C10H22N2S2)], (II), which has a five-membered N,N- and two six-membered N,S-chelate rings, was synthesized and structurally characterized (Grapperhaus et al., 2007). On the other hand, a mononuclear nickel(II) complex of 2,2'-[1,2-ethanediylbis(methylimino)]bis(ethanethiolate) (L), [Ni(L)], reacts with nickel(II) chloride to afford a sulfur-bridged trinuclear complex, [Ni{Ni(L)}2]Cl2, (III), in which the S,N,N,S-tetradentate ligand L forms five-membered N,N- and N,S-chelate rings (Turner et al., 1990). The trinuclear complex (III) has a chair structure consisting of a central NiS4 and two terminal NiN2S2 planes, where the dihedral angle between the NiS4 and NiN2S2 planes is 107.84 (7)°. In this report, we discuss the structure of the new S-bridged NiII3 complex (I), in which the size of the N,S-chelate rings is larger than that of (III).

The title compound (I) is composed of a complex cation, [Ni{Ni(C10H22N2S2)}2]2+, containing two N2S2 tetradentate ligands, 3,3'-[1,2-ethanediylbis(methylimino)]bis(1-propanethiolate), and two perchlorate anions (Fig. 1). The complex cation consists of a nickel(II) ion and two mononuclear [Ni(C10H22N2S2)] complex units, and the overall structure is similar to that of (III). The central Ni atom is located on a crystallographic inversion center and is surrounded by four S atoms of the two planar [Ni(C10H22N2S2)] units. The NiS4 structure is also planar. The structural parameters of the [Ni(C10H22N2S2)] unit in (I) are quite similar to those of the mononuclear complex (II). However, two methyl groups on the chelating N atoms of (I) are in a cis position to each other, while those of (II) are in a trans position. The dihedral angle between the NiS4 and NiN2S2 planes is 145.71 (5)°, which is significantly larger than that of (III) with five-membered N,S-chelate rings. Furthermore, the Ni—S—Ni angles (92.46 (3)°, 92.32 (2)°) and the Ni···Ni distance (3.1518 (6) Å) in (I) are larger than those in (III) (77.71 (4)°, 78.10 (4)°, 2.748 (1) Å). These results suggest that the chelate ring size of polydentate thiolate ligands largely affects the structure of S-bridged polynuclear metal complexes.

Related literature top

For general background, see: Konno et al. (2000); Konno (2004); Igashira-Kamiyama & Konno (2011). For related structures, see: Grapperhaus et al. (2007); Turner et al. (1990).

Experimental top

For the preparation of 3,3'-[1,2-ethanediylbis(methylimino)]bis(1-propanol), a solution of 3-bromo-1-propanol (11.66 g, 84 mmol) in CH2Cl2 (30 ml) was added dropwise to a solution of N,N'-dimethylethylenediamine (3.53 g, 40 mmol) and N,N-diisopropylethylamine (10.83 g, 84 mmol) in CH2Cl2 (20 ml). The solution was stirred for 31 h at room temperature. An aqueous solution of NaOH (4 mol dm-3, 50 ml) was added. The product was extracted with CH2Cl2 (300 ml). After removing the solvent, distillation under reduced pressure gave a colorless oil of 3,3'-[1,2-ethanediylbis(methylimino)]bis(1-propanol) (2.85 g, 35%). 1H NMR (270 MHz, CDCl3) δ 1.58–1.68 (m, 4H), 2.18 (s, 6H, CH3), 2.43 (s, 4H, NCH2CH2N), 2.49 (t, J = 6.3 Hz, 4H), 3.67 (t, J = 5.4 Hz, 4H), 5.20 (s, br, 2H).

For the preparation of 3,3'-[1,2-ethanediylbis(methylimino)]bis(1-propanethiol), a mixture of 3,3'-[1,2-ethanediylbis(methylimino)]bis(1-propanol) (0.82 g, 4.0 mmol), 47% HBr aq. (11 ml, 103 mmol), and thiourea (0.76 g, 10 mmol) was refluxed for 24 h. An aqueous solution of NaOH (2.5 mol dm-3, 52 ml) was added under N2, and the suspension was refluxed for 5 h under N2. The produced oil was extracted with diethyl ether (100 ml). The solution was adjusted to pH 8–9 with an aqueous HCl solution (2 mol dm-3), and the product was extracted with diethyl ether (200 ml). The combined extracts were dried over Na2SO4, and the solvent was removed by evaporation to afford a pale yellow oil (0.77 g, 81%). 1H NMR (270 MHz, CDCl3) δ 1.70–1.82 (m, 4H), 2.21 (s, 6H, CH3), 2.45 (s, 4H, NCH2CH2N), 2.39–2.58 (m, 8H).

For the synthesis of the title compound (I), a solution of 3,3'-[1,2-ethanediylbis(methylimino)]bis(1-propanethiol) (0.71 g, 3.0 mmol) in methanol (10 ml) was added to a suspension of nickel(II) acetate tetrahydrate (1.50 g, 6.0 mmol) in methanol (20 ml). The resulting dark brown suspension was stirred for 5 min, and then sodium perchlorate monohydrate (0.85 g, 6.0 mmol) was added. After stirring for 30 min, brown precipitate was filtered and washed with MeOH, H2O, and then MeOH. The brown solid of (I) was dried under reduced pressure over P4O10 (0.44 g, 35%). Red crystals suitable for X-ray analysis were obtained by heating a solution of (I) in N,N-dimethylformamide (DMF). Anal. Calcd for C20H44Cl2N4Ni3O8S4: C, 28.47; H, 5.26; N, 6.64%. Found: C, 28.63; H, 5.03; N, 6.68%. 1H NMR (300 MHz, dimethylsulfoxide-d6): δ 1.41–1.70 (m, br, 8H), 1.87–2.03 (m, br, 4H), 2.07–2.29 (m, br, 4H), 2.36–2.48 (m, br, 4H), 2.46 (s, 12H, CH3), 2.59–2.86 (m, br, 8H), 3.47–3.66 (m, br, 4H). 13C NMR (75.5 MHz, dimethylsulfoxide-d6): δ 24.0, 26.0, 45.3, 58.7, 60.1. UV-Vis (DMF): λ/nm (ε/dm3 mol-1 cm-1), 334 (14800), 397 (8730), 480 (1900, sh). Cyclic voltammogram (solvent, DMF; concentration, 5.0 × 10 -4 mol dm-3; supporting electrolyte, 0.1 mol dm-3 Bu4NPF6; working electrode, 0.02 cm2 Pt disk electrode; scan rate, 100 mV/s): E/V (versus ferrocenium/ferrocene); Epc, -1.95 (ipc = 1.7 µA); E1/2, -1.59 (ΔEp = 69 mV, ipa/ipc = 0.59, ipc = 1.6 µA).

Refinement top

All non-H atoms were refined anisotropically. H atoms on the N,S-chelate rings were located in a difference Fourier map and were refined isotropically. All other H atoms were located on calculated positions with C—H(methylene) = 0.99 Å and C—H(methyl) = 0.98 Å, and were refined using a riding model with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Bis(µ2-4,7-dimethyl-4,7-diazadecane-1,10-dithiolato)trinickel(II) bis(perchlorate) top
Crystal data top
[Ni3(C10H22N2S2)2](ClO4)2F(000) = 876.00
Mr = 843.83Dx = 1.742 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 7222 reflections
a = 8.0253 (19) Åθ = 4.1–27.5°
b = 16.208 (4) ŵ = 2.21 mm1
c = 12.807 (3) ÅT = 123 K
β = 105.033 (6)°Prism, red
V = 1608.8 (7) Å30.24 × 0.24 × 0.17 mm
Z = 2
Data collection top
Rigaku AFC7 (Mercury CCD)
diffractometer
3626 independent reflections
Radiation source: rotating anode X-ray tube3391 reflections with F2 > 2.0σ(F2)
Graphite monochromatorRint = 0.027
Detector resolution: 7.31 pixels mm-1θmax = 27.5°, θmin = 4.1°
ω scansh = 1010
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 2120
Tmin = 0.619, Tmax = 0.705l = 1316
15030 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0319P)2 + 3.9221P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max = 0.002
S = 1.04Δρmax = 1.71 e Å3
3626 reflectionsΔρmin = 0.70 e Å3
235 parameters
Crystal data top
[Ni3(C10H22N2S2)2](ClO4)2V = 1608.8 (7) Å3
Mr = 843.83Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.0253 (19) ŵ = 2.21 mm1
b = 16.208 (4) ÅT = 123 K
c = 12.807 (3) Å0.24 × 0.24 × 0.17 mm
β = 105.033 (6)°
Data collection top
Rigaku AFC7 (Mercury CCD)
diffractometer
3626 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3391 reflections with F2 > 2.0σ(F2)
Tmin = 0.619, Tmax = 0.705Rint = 0.027
15030 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.71 e Å3
3626 reflectionsΔρmin = 0.70 e Å3
235 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.04531 (4)0.626726 (19)0.82272 (2)0.01439 (10)
Ni20.00000.50001.00000.01306 (11)
Cl10.28814 (8)0.39140 (4)0.71998 (5)0.02463 (15)
S10.16594 (8)0.55517 (4)0.85310 (5)0.01655 (13)
S20.14612 (8)0.61385 (4)0.99699 (5)0.01539 (13)
O10.2236 (4)0.4191 (2)0.8082 (2)0.0720 (11)
O20.4299 (3)0.33683 (14)0.76150 (19)0.0357 (5)
O30.1505 (3)0.35038 (17)0.64509 (18)0.0431 (6)
O40.3425 (4)0.46058 (19)0.6684 (3)0.0680 (10)
N10.0478 (3)0.63136 (14)0.66462 (17)0.0224 (5)
N20.2398 (3)0.69848 (15)0.80846 (18)0.0228 (5)
C10.2110 (4)0.47418 (18)0.7507 (2)0.0241 (6)
C20.2552 (4)0.5093 (2)0.6370 (2)0.0286 (6)
C30.1047 (4)0.55199 (17)0.6077 (2)0.0222 (5)
C40.3641 (3)0.57575 (18)1.0035 (2)0.0212 (5)
C50.4731 (4)0.63872 (18)0.9633 (2)0.0225 (5)
C60.4124 (3)0.65719 (17)0.8436 (2)0.0202 (5)
C70.1093 (5)0.6568 (3)0.6256 (3)0.0433 (9)
C80.2043 (5)0.7223 (3)0.6932 (3)0.0433 (9)
C90.1854 (6)0.6932 (2)0.6355 (3)0.0478 (10)
C100.2471 (4)0.77787 (18)0.8711 (3)0.0356 (7)
H1A0.308 (5)0.443 (2)0.762 (3)0.030 (9)*
H1B0.117 (5)0.443 (2)0.759 (3)0.028 (9)*
H2A0.353 (4)0.549 (2)0.629 (3)0.023 (8)*
H2B0.284 (5)0.464 (2)0.587 (3)0.038 (10)*
H3A0.127 (5)0.562 (2)0.530 (3)0.033 (9)*
H3B0.005 (4)0.514 (2)0.624 (3)0.024 (8)*
H4A0.413 (4)0.562 (2)1.076 (3)0.027 (8)*
H4B0.353 (4)0.526 (2)0.960 (3)0.022 (8)*
H5A0.477 (4)0.688 (2)1.004 (2)0.017 (7)*
H5B0.589 (5)0.617 (2)0.974 (3)0.027 (9)*
H6A0.498 (4)0.6915 (19)0.822 (2)0.020 (7)*
H6B0.403 (4)0.6070 (19)0.800 (2)0.017 (7)*
H7A0.18580.60860.62780.052*
H7B0.07110.67620.54970.052*
H8A0.13590.77390.68060.052*
H8B0.31430.73250.67400.052*
H9A0.14600.74490.67350.072*
H9B0.28760.67320.65620.072*
H9C0.21460.70280.55730.072*
H10A0.27030.76550.94850.053*
H10B0.13640.80670.84720.053*
H10C0.33930.81300.85840.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01653 (17)0.01475 (17)0.01300 (16)0.00004 (11)0.00584 (12)0.00248 (11)
Ni20.0134 (2)0.0146 (2)0.0115 (2)0.00204 (16)0.00396 (15)0.00100 (15)
Cl10.0182 (3)0.0289 (3)0.0237 (3)0.0002 (2)0.0003 (2)0.0014 (3)
S10.0151 (3)0.0209 (3)0.0145 (3)0.0007 (2)0.0053 (2)0.0034 (2)
S20.0182 (3)0.0161 (3)0.0133 (3)0.0033 (2)0.0064 (2)0.0009 (2)
O10.0498 (17)0.120 (3)0.0414 (15)0.0461 (19)0.0037 (13)0.0256 (17)
O20.0267 (11)0.0350 (12)0.0436 (13)0.0125 (9)0.0061 (9)0.0016 (10)
O30.0362 (13)0.0549 (15)0.0302 (12)0.0205 (12)0.0056 (10)0.0011 (11)
O40.0394 (15)0.0534 (17)0.098 (2)0.0159 (13)0.0057 (15)0.0363 (17)
N10.0326 (13)0.0209 (11)0.0140 (10)0.0057 (9)0.0066 (9)0.0031 (8)
N20.0195 (11)0.0279 (12)0.0220 (11)0.0008 (9)0.0071 (9)0.0125 (9)
C10.0269 (15)0.0270 (14)0.0168 (12)0.0116 (12)0.0028 (10)0.0000 (11)
C20.0315 (16)0.0348 (16)0.0161 (12)0.0104 (13)0.0001 (11)0.0015 (12)
C30.0282 (14)0.0242 (14)0.0146 (11)0.0002 (11)0.0065 (10)0.0005 (10)
C40.0160 (12)0.0272 (14)0.0194 (12)0.0016 (10)0.0028 (10)0.0074 (11)
C50.0178 (13)0.0273 (14)0.0221 (13)0.0043 (11)0.0045 (10)0.0030 (11)
C60.0194 (13)0.0225 (13)0.0210 (12)0.0005 (10)0.0095 (10)0.0016 (10)
C70.052 (2)0.055 (2)0.0265 (15)0.0176 (18)0.0173 (15)0.0042 (15)
C80.0329 (17)0.068 (2)0.0264 (15)0.0106 (17)0.0029 (13)0.0233 (16)
C90.076 (3)0.0329 (18)0.0271 (16)0.0233 (18)0.0007 (16)0.0034 (14)
C100.0289 (16)0.0184 (14)0.064 (2)0.0007 (12)0.0207 (15)0.0058 (14)
Geometric parameters (Å, º) top
Ni1—N11.969 (2)C4—H4B0.98 (3)
Ni1—N21.993 (2)C5—C61.513 (4)
Ni1—S12.1709 (8)C5—H5A0.95 (3)
Ni1—S22.1777 (8)C5—H5B0.97 (4)
Ni2—S12.1938 (7)C6—N21.498 (3)
Ni2—S22.1921 (7)C6—H6A0.98 (3)
Cl1—O11.432 (3)C6—H6B0.98 (3)
Cl1—O21.430 (2)C7—C81.454 (5)
Cl1—O31.425 (2)C7—N11.529 (4)
Cl1—O41.426 (3)C7—H7A0.9900
C1—C21.518 (4)C7—H7B0.9900
C1—S11.824 (3)C8—N21.481 (4)
C1—H1A0.97 (4)C8—H8A0.9900
C1—H1B0.89 (4)C8—H8B0.9900
C2—C31.520 (4)C9—N11.466 (4)
C2—H2A1.00 (3)C9—H9A0.9800
C2—H2B0.97 (4)C9—H9B0.9800
C3—N11.491 (3)C9—H9C0.9800
C3—H3A0.98 (4)C10—N21.510 (4)
C3—H3B0.99 (3)C10—H10A0.9800
C4—C51.519 (4)C10—H10B0.9800
C4—S21.836 (3)C10—H10C0.9800
C4—H4A0.94 (3)Ni1—Ni23.1518 (6)
N1—Ni1—N288.90 (9)C3—C2—H2A109.8 (19)
N1—Ni1—S195.68 (7)C1—C2—H2B108 (2)
N2—Ni1—S1174.27 (7)C3—C2—H2B105 (2)
N1—Ni1—S2176.66 (7)H2A—C2—H2B112 (3)
N2—Ni1—S293.34 (7)N1—C3—H3A108 (2)
S1—Ni1—S282.24 (3)C2—C3—H3A112 (2)
S1—Ni2—S281.39 (3)N1—C3—H3B107.9 (19)
S1—Ni2—S2i98.61 (3)C2—C3—H3B108.7 (19)
Ni1—S1—C1105.91 (10)H3A—C3—H3B104 (3)
Ni2—S1—C1106.63 (10)C5—C4—H4A112 (2)
Ni1—S2—C4100.09 (9)S2—C4—H4A106 (2)
Ni2—S2—C4102.93 (9)C5—C4—H4B110.2 (19)
Ni1—S1—Ni292.46 (3)S2—C4—H4B107.8 (19)
Ni1—S2—Ni292.32 (2)H4A—C4—H4B109 (3)
O3—Cl1—O4109.37 (17)C6—C5—H5A110.1 (18)
O3—Cl1—O2111.38 (16)C4—C5—H5A108.8 (18)
O4—Cl1—O2110.42 (16)C6—C5—H5B105 (2)
O3—Cl1—O1107.56 (19)C4—C5—H5B109 (2)
O4—Cl1—O1109.6 (2)H5A—C5—H5B110 (3)
O2—Cl1—O1108.46 (16)N2—C6—H6A108.8 (18)
C2—C1—S1111.9 (2)C5—C6—H6A109.7 (18)
C1—C2—C3113.9 (2)N2—C6—H6B106.0 (18)
N1—C3—C2115.7 (2)C5—C6—H6B111.5 (18)
C5—C4—S2112.6 (2)H6A—C6—H6B105 (2)
C6—C5—C4114.5 (2)C8—C7—H7A109.5
N2—C6—C5115.0 (2)N1—C7—H7A109.5
C8—C7—N1110.6 (3)C8—C7—H7B109.5
C7—C8—N2109.8 (3)N1—C7—H7B109.5
C9—N1—C3110.5 (2)H7A—C7—H7B108.1
C9—N1—C7111.3 (3)C7—C8—H8A109.7
C3—N1—C7104.3 (2)N2—C8—H8A109.7
C9—N1—Ni1110.34 (19)C7—C8—H8B109.7
C3—N1—Ni1117.14 (16)N2—C8—H8B109.7
C7—N1—Ni1102.81 (18)H8A—C8—H8B108.2
C8—N2—C6109.9 (2)N1—C9—H9A109.5
C8—N2—C10106.2 (3)N1—C9—H9B109.5
C6—N2—C10108.4 (2)H9A—C9—H9B109.5
C8—N2—Ni1106.90 (19)N1—C9—H9C109.5
C6—N2—Ni1113.38 (16)H9A—C9—H9C109.5
C10—N2—Ni1111.83 (17)H9B—C9—H9C109.5
C2—C1—H1A110 (2)N2—C10—H10A109.5
S1—C1—H1A106 (2)N2—C10—H10B109.5
C2—C1—H1B108 (2)H10A—C10—H10B109.5
S1—C1—H1B109 (2)N2—C10—H10C109.5
H1A—C1—H1B112 (3)H10A—C10—H10C109.5
C1—C2—H2A108.7 (18)H10B—C10—H10C109.5
S1—C1—C2—C367.6 (3)S1—Ni1—Ni2—S2i37.83 (4)
C1—C2—C3—N169.6 (3)S2—Ni1—Ni2—S2i180.0
S2—C4—C5—C667.3 (3)N1—Ni1—Ni2—S2177.99 (10)
C4—C5—C6—N265.5 (3)N2—Ni1—Ni2—S230.68 (10)
N1—C7—C8—N251.0 (4)S1—Ni1—Ni2—S2142.17 (4)
C2—C3—N1—C963.8 (3)N1—Ni1—Ni2—S1i140.16 (10)
C2—C3—N1—C7176.5 (3)N2—Ni1—Ni2—S1i7.16 (10)
C2—C3—N1—Ni163.7 (3)S1—Ni1—Ni2—S1i180.0
C8—C7—N1—C974.6 (4)S2—Ni1—Ni2—S1i37.83 (4)
C8—C7—N1—C3166.2 (3)N1—Ni1—Ni2—S139.84 (10)
C8—C7—N1—Ni143.5 (3)N2—Ni1—Ni2—S1172.84 (10)
C7—C8—N2—C692.5 (3)S2—Ni1—Ni2—S1142.17 (4)
C7—C8—N2—C10150.5 (3)C2—C1—S1—Ni157.8 (2)
C7—C8—N2—Ni131.0 (4)C2—C1—S1—Ni2155.3 (2)
C5—C6—N2—C8173.2 (3)N1—Ni1—S1—C143.83 (13)
C5—C6—N2—C1057.6 (3)S2—Ni1—S1—C1133.54 (11)
C5—C6—N2—Ni167.2 (3)Ni2—Ni1—S1—C1108.06 (11)
C9—N1—Ni1—N298.6 (2)N1—Ni1—S1—Ni2151.89 (7)
C3—N1—Ni1—N2133.8 (2)S2—Ni1—S1—Ni225.48 (2)
C7—N1—Ni1—N220.1 (2)S2i—Ni2—S1—C147.23 (10)
C9—N1—Ni1—S177.9 (2)S2—Ni2—S1—C1132.77 (10)
C3—N1—Ni1—S149.7 (2)Ni1—Ni2—S1—C1107.41 (10)
C7—N1—Ni1—S1163.34 (19)S2i—Ni2—S1—Ni1154.64 (2)
C9—N1—Ni1—Ni2104.5 (2)S2—Ni2—S1—Ni125.36 (2)
C3—N1—Ni1—Ni223.1 (2)C5—C4—S2—Ni164.9 (2)
C7—N1—Ni1—Ni2136.74 (18)C5—C4—S2—Ni2159.63 (18)
C8—N2—Ni1—N14.8 (2)N2—Ni1—S2—C454.60 (12)
C6—N2—Ni1—N1116.41 (18)S1—Ni1—S2—C4129.07 (10)
C10—N2—Ni1—N1120.7 (2)Ni2—Ni1—S2—C4103.57 (10)
C8—N2—Ni1—S2177.6 (2)N2—Ni1—S2—Ni2158.17 (7)
C6—N2—Ni1—S261.11 (17)S1—Ni1—S2—Ni225.50 (2)
C10—N2—Ni1—S261.82 (19)S1i—Ni2—S2—C453.82 (9)
C8—N2—Ni1—Ni2161.56 (19)S1—Ni2—S2—C4126.18 (9)
C6—N2—Ni1—Ni240.3 (2)Ni1—Ni2—S2—C4100.91 (9)
C10—N2—Ni1—Ni282.6 (2)S1i—Ni2—S2—Ni1154.73 (2)
N1—Ni1—Ni2—S2i2.01 (10)S1—Ni2—S2—Ni125.27 (2)
N2—Ni1—Ni2—S2i149.32 (10)
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Ni3(C10H22N2S2)2](ClO4)2
Mr843.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)8.0253 (19), 16.208 (4), 12.807 (3)
β (°) 105.033 (6)
V3)1608.8 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.21
Crystal size (mm)0.24 × 0.24 × 0.17
Data collection
DiffractometerRigaku AFC7 (Mercury CCD)
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.619, 0.705
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections
15030, 3626, 3391
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.082, 1.04
No. of reflections3626
No. of parameters235
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.71, 0.70

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

 

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGrapperhaus, C. A., O'Toole, M. G. & Mashuta, M. S. (2007). Acta Cryst. E63, m2281.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIgashira-Kamiyama, A. & Konno, T. (2011). Dalton Trans. 40, 7249–7263.  Web of Science CAS PubMed Google Scholar
First citationJacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKonno, T. (2004). Bull. Chem. Soc. Jpn, 77, 627–649.  Web of Science CrossRef CAS Google Scholar
First citationKonno, T., Chikamoto, Y., Okamoto, K., Yamaguchi, T., Ito, T. & Hirotsu, M. (2000). Angew. Chem. Int. Ed. 39, 4098–4101.  CrossRef CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. A., Driessen, W. L. & Reedijk, J. (1990). Inorg. Chem. 29, 3331–3335.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds