metal-organic compounds
Bis(μ2-4,7-dimethyl-4,7-diazadecane-1,10-dithiolato)trinickel(II) bis(perchlorate)
aGraduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan, and bDepartment of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700-8530, Japan
*Correspondence e-mail: mhiro@sci.osaka-cu.ac.jp
In the title compound, [Ni3(C10H22N2S2)2](ClO4)2, the complex cation consists of a nickel(II) ion and two [Ni(C10H22N2S2)] units with an N2S2 tetradentate ligand, 3,3′-[1,2-ethanediylbis(methylimino)]bis(1-propanethiolate). The central NiII ion is located on a crystallographic inversion centre and is bound to the four S atoms of the two [Ni(C10H22N2S2)] units to form a linear sulfur-bridged trimetallic moiety. The dihedral angle between the central NiS4 plane and the terminal NiN2S2 plane is 145.71 (5)°. In the [Ni(C10H22N2S2)] unit, the two methyl groups on the chelating N atoms are cis to each other, and the two six-membered N,S-chelate rings adopt a chair conformation. The Ni—S bond lengths and the S—Ni—S bite angles in the central NiS4 group are similar to those in the [Ni(C10H22N2S2)] unit.
Related literature
For general background, see: Konno et al. (2000); Konno (2004); Igashira-Kamiyama & Konno (2011). For related structures, see: Grapperhaus et al. (2007); Turner et al. (1990).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2007); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812006034/fj2508sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812006034/fj2508Isup2.hkl
For the preparation of 3,3'-[1,2-ethanediylbis(methylimino)]bis(1-propanol), a solution of 3-bromo-1-propanol (11.66 g, 84 mmol) in CH2Cl2 (30 ml) was added dropwise to a solution of N,N'-dimethylethylenediamine (3.53 g, 40 mmol) and N,N-diisopropylethylamine (10.83 g, 84 mmol) in CH2Cl2 (20 ml). The solution was stirred for 31 h at room temperature. An aqueous solution of NaOH (4 mol dm-3, 50 ml) was added. The product was extracted with CH2Cl2 (300 ml). After removing the solvent, distillation under reduced pressure gave a colorless oil of 3,3'-[1,2-ethanediylbis(methylimino)]bis(1-propanol) (2.85 g, 35%). 1H NMR (270 MHz, CDCl3) δ 1.58–1.68 (m, 4H), 2.18 (s, 6H, CH3), 2.43 (s, 4H, NCH2CH2N), 2.49 (t, J = 6.3 Hz, 4H), 3.67 (t, J = 5.4 Hz, 4H), 5.20 (s, br, 2H).
For the preparation of 3,3'-[1,2-ethanediylbis(methylimino)]bis(1-propanethiol), a mixture of 3,3'-[1,2-ethanediylbis(methylimino)]bis(1-propanol) (0.82 g, 4.0 mmol), 47% HBr aq. (11 ml, 103 mmol), and thiourea (0.76 g, 10 mmol) was refluxed for 24 h. An aqueous solution of NaOH (2.5 mol dm-3, 52 ml) was added under N2, and the suspension was refluxed for 5 h under N2. The produced oil was extracted with diethyl ether (100 ml). The solution was adjusted to pH 8–9 with an aqueous HCl solution (2 mol dm-3), and the product was extracted with diethyl ether (200 ml). The combined extracts were dried over Na2SO4, and the solvent was removed by evaporation to afford a pale yellow oil (0.77 g, 81%). 1H NMR (270 MHz, CDCl3) δ 1.70–1.82 (m, 4H), 2.21 (s, 6H, CH3), 2.45 (s, 4H, NCH2CH2N), 2.39–2.58 (m, 8H).
For the synthesis of the title compound (I), a solution of 3,3'-[1,2-ethanediylbis(methylimino)]bis(1-propanethiol) (0.71 g, 3.0 mmol) in methanol (10 ml) was added to a suspension of nickel(II) acetate tetrahydrate (1.50 g, 6.0 mmol) in methanol (20 ml). The resulting dark brown suspension was stirred for 5 min, and then sodium perchlorate monohydrate (0.85 g, 6.0 mmol) was added. After stirring for 30 min, brown precipitate was filtered and washed with MeOH, H2O, and then MeOH. The brown solid of (I) was dried under reduced pressure over P4O10 (0.44 g, 35%). Red crystals suitable for X-ray analysis were obtained by heating a solution of (I) in N,N-dimethylformamide (DMF). Anal. Calcd for C20H44Cl2N4Ni3O8S4: C, 28.47; H, 5.26; N, 6.64%. Found: C, 28.63; H, 5.03; N, 6.68%. 1H NMR (300 MHz, dimethylsulfoxide-d6): δ 1.41–1.70 (m, br, 8H), 1.87–2.03 (m, br, 4H), 2.07–2.29 (m, br, 4H), 2.36–2.48 (m, br, 4H), 2.46 (s, 12H, CH3), 2.59–2.86 (m, br, 8H), 3.47–3.66 (m, br, 4H). 13C NMR (75.5 MHz, dimethylsulfoxide-d6): δ 24.0, 26.0, 45.3, 58.7, 60.1. UV-Vis (DMF): λ/nm (ε/dm3 mol-1 cm-1), 334 (14800), 397 (8730), 480 (1900, sh). Cyclic voltammogram (solvent, DMF; concentration, 5.0 × 10 -4 mol dm-3; 0.1 mol dm-3 Bu4NPF6; 0.02 cm2 Pt disk electrode; scan rate, 100 mV/s): E/V (versus ferrocenium/ferrocene); Epc, -1.95 (ipc = 1.7 µA); E1/2, -1.59 (ΔEp = 69 mV, ipa/ipc = 0.59, ipc = 1.6 µA).
All non-H atoms were refined anisotropically. H atoms on the N,S-chelate rings were located in a difference Fourier map and were refined isotropically. All other H atoms were located on calculated positions with C—H(methylene) = 0.99 Å and C—H(methyl) = 0.98 Å, and were refined using a riding model with Uiso(H) = 1.2Ueq(C).
Data collection: CrystalClear (Rigaku, 2007); cell
CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).Fig. 1. The molecular structure of (I) with numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. |
[Ni3(C10H22N2S2)2](ClO4)2 | F(000) = 876.00 |
Mr = 843.83 | Dx = 1.742 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
Hall symbol: -P 2ybc | Cell parameters from 7222 reflections |
a = 8.0253 (19) Å | θ = 4.1–27.5° |
b = 16.208 (4) Å | µ = 2.21 mm−1 |
c = 12.807 (3) Å | T = 123 K |
β = 105.033 (6)° | Prism, red |
V = 1608.8 (7) Å3 | 0.24 × 0.24 × 0.17 mm |
Z = 2 |
Rigaku AFC7 (Mercury CCD) diffractometer | 3626 independent reflections |
Radiation source: rotating anode X-ray tube | 3391 reflections with F2 > 2.0σ(F2) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 7.31 pixels mm-1 | θmax = 27.5°, θmin = 4.1° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | k = −21→20 |
Tmin = 0.619, Tmax = 0.705 | l = −13→16 |
15030 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.035 | w = 1/[σ2(Fo2) + (0.0319P)2 + 3.9221P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.082 | (Δ/σ)max = 0.002 |
S = 1.04 | Δρmax = 1.71 e Å−3 |
3626 reflections | Δρmin = −0.70 e Å−3 |
235 parameters |
[Ni3(C10H22N2S2)2](ClO4)2 | V = 1608.8 (7) Å3 |
Mr = 843.83 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.0253 (19) Å | µ = 2.21 mm−1 |
b = 16.208 (4) Å | T = 123 K |
c = 12.807 (3) Å | 0.24 × 0.24 × 0.17 mm |
β = 105.033 (6)° |
Rigaku AFC7 (Mercury CCD) diffractometer | 3626 independent reflections |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | 3391 reflections with F2 > 2.0σ(F2) |
Tmin = 0.619, Tmax = 0.705 | Rint = 0.027 |
15030 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 1.71 e Å−3 |
3626 reflections | Δρmin = −0.70 e Å−3 |
235 parameters |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.04531 (4) | 0.626726 (19) | 0.82272 (2) | 0.01439 (10) | |
Ni2 | 0.0000 | 0.5000 | 1.0000 | 0.01306 (11) | |
Cl1 | 0.28814 (8) | 0.39140 (4) | 0.71998 (5) | 0.02463 (15) | |
S1 | −0.16594 (8) | 0.55517 (4) | 0.85310 (5) | 0.01655 (13) | |
S2 | 0.14612 (8) | 0.61385 (4) | 0.99699 (5) | 0.01539 (13) | |
O1 | 0.2236 (4) | 0.4191 (2) | 0.8082 (2) | 0.0720 (11) | |
O2 | 0.4299 (3) | 0.33683 (14) | 0.76150 (19) | 0.0357 (5) | |
O3 | 0.1505 (3) | 0.35038 (17) | 0.64509 (18) | 0.0431 (6) | |
O4 | 0.3425 (4) | 0.46058 (19) | 0.6684 (3) | 0.0680 (10) | |
N1 | −0.0478 (3) | 0.63136 (14) | 0.66462 (17) | 0.0224 (5) | |
N2 | 0.2398 (3) | 0.69848 (15) | 0.80846 (18) | 0.0228 (5) | |
C1 | −0.2110 (4) | 0.47418 (18) | 0.7507 (2) | 0.0241 (6) | |
C2 | −0.2552 (4) | 0.5093 (2) | 0.6370 (2) | 0.0286 (6) | |
C3 | −0.1047 (4) | 0.55199 (17) | 0.6077 (2) | 0.0222 (5) | |
C4 | 0.3641 (3) | 0.57575 (18) | 1.0035 (2) | 0.0212 (5) | |
C5 | 0.4731 (4) | 0.63872 (18) | 0.9633 (2) | 0.0225 (5) | |
C6 | 0.4124 (3) | 0.65719 (17) | 0.8436 (2) | 0.0202 (5) | |
C7 | 0.1093 (5) | 0.6568 (3) | 0.6256 (3) | 0.0433 (9) | |
C8 | 0.2043 (5) | 0.7223 (3) | 0.6932 (3) | 0.0433 (9) | |
C9 | −0.1854 (6) | 0.6932 (2) | 0.6355 (3) | 0.0478 (10) | |
C10 | 0.2471 (4) | 0.77787 (18) | 0.8711 (3) | 0.0356 (7) | |
H1A | −0.308 (5) | 0.443 (2) | 0.762 (3) | 0.030 (9)* | |
H1B | −0.117 (5) | 0.443 (2) | 0.759 (3) | 0.028 (9)* | |
H2A | −0.353 (4) | 0.549 (2) | 0.629 (3) | 0.023 (8)* | |
H2B | −0.284 (5) | 0.464 (2) | 0.587 (3) | 0.038 (10)* | |
H3A | −0.127 (5) | 0.562 (2) | 0.530 (3) | 0.033 (9)* | |
H3B | −0.005 (4) | 0.514 (2) | 0.624 (3) | 0.024 (8)* | |
H4A | 0.413 (4) | 0.562 (2) | 1.076 (3) | 0.027 (8)* | |
H4B | 0.353 (4) | 0.526 (2) | 0.960 (3) | 0.022 (8)* | |
H5A | 0.477 (4) | 0.688 (2) | 1.004 (2) | 0.017 (7)* | |
H5B | 0.589 (5) | 0.617 (2) | 0.974 (3) | 0.027 (9)* | |
H6A | 0.498 (4) | 0.6915 (19) | 0.822 (2) | 0.020 (7)* | |
H6B | 0.403 (4) | 0.6070 (19) | 0.800 (2) | 0.017 (7)* | |
H7A | 0.1858 | 0.6086 | 0.6278 | 0.052* | |
H7B | 0.0711 | 0.6762 | 0.5497 | 0.052* | |
H8A | 0.1359 | 0.7739 | 0.6806 | 0.052* | |
H8B | 0.3143 | 0.7325 | 0.6740 | 0.052* | |
H9A | −0.1460 | 0.7449 | 0.6735 | 0.072* | |
H9B | −0.2876 | 0.6732 | 0.6562 | 0.072* | |
H9C | −0.2146 | 0.7028 | 0.5573 | 0.072* | |
H10A | 0.2703 | 0.7655 | 0.9485 | 0.053* | |
H10B | 0.1364 | 0.8067 | 0.8472 | 0.053* | |
H10C | 0.3393 | 0.8130 | 0.8584 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01653 (17) | 0.01475 (17) | 0.01300 (16) | 0.00004 (11) | 0.00584 (12) | 0.00248 (11) |
Ni2 | 0.0134 (2) | 0.0146 (2) | 0.0115 (2) | −0.00204 (16) | 0.00396 (15) | 0.00100 (15) |
Cl1 | 0.0182 (3) | 0.0289 (3) | 0.0237 (3) | 0.0002 (2) | −0.0003 (2) | −0.0014 (3) |
S1 | 0.0151 (3) | 0.0209 (3) | 0.0145 (3) | 0.0007 (2) | 0.0053 (2) | 0.0034 (2) |
S2 | 0.0182 (3) | 0.0161 (3) | 0.0133 (3) | −0.0033 (2) | 0.0064 (2) | −0.0009 (2) |
O1 | 0.0498 (17) | 0.120 (3) | 0.0414 (15) | 0.0461 (19) | 0.0037 (13) | −0.0256 (17) |
O2 | 0.0267 (11) | 0.0350 (12) | 0.0436 (13) | 0.0125 (9) | 0.0061 (9) | −0.0016 (10) |
O3 | 0.0362 (13) | 0.0549 (15) | 0.0302 (12) | −0.0205 (12) | −0.0056 (10) | 0.0011 (11) |
O4 | 0.0394 (15) | 0.0534 (17) | 0.098 (2) | −0.0159 (13) | −0.0057 (15) | 0.0363 (17) |
N1 | 0.0326 (13) | 0.0209 (11) | 0.0140 (10) | −0.0057 (9) | 0.0066 (9) | 0.0031 (8) |
N2 | 0.0195 (11) | 0.0279 (12) | 0.0220 (11) | 0.0008 (9) | 0.0071 (9) | 0.0125 (9) |
C1 | 0.0269 (15) | 0.0270 (14) | 0.0168 (12) | −0.0116 (12) | 0.0028 (10) | 0.0000 (11) |
C2 | 0.0315 (16) | 0.0348 (16) | 0.0161 (12) | −0.0104 (13) | 0.0001 (11) | 0.0015 (12) |
C3 | 0.0282 (14) | 0.0242 (14) | 0.0146 (11) | 0.0002 (11) | 0.0065 (10) | 0.0005 (10) |
C4 | 0.0160 (12) | 0.0272 (14) | 0.0194 (12) | −0.0016 (10) | 0.0028 (10) | 0.0074 (11) |
C5 | 0.0178 (13) | 0.0273 (14) | 0.0221 (13) | −0.0043 (11) | 0.0045 (10) | 0.0030 (11) |
C6 | 0.0194 (13) | 0.0225 (13) | 0.0210 (12) | −0.0005 (10) | 0.0095 (10) | 0.0016 (10) |
C7 | 0.052 (2) | 0.055 (2) | 0.0265 (15) | −0.0176 (18) | 0.0173 (15) | 0.0042 (15) |
C8 | 0.0329 (17) | 0.068 (2) | 0.0264 (15) | −0.0106 (17) | 0.0029 (13) | 0.0233 (16) |
C9 | 0.076 (3) | 0.0329 (18) | 0.0271 (16) | 0.0233 (18) | −0.0007 (16) | 0.0034 (14) |
C10 | 0.0289 (16) | 0.0184 (14) | 0.064 (2) | −0.0007 (12) | 0.0207 (15) | 0.0058 (14) |
Ni1—N1 | 1.969 (2) | C4—H4B | 0.98 (3) |
Ni1—N2 | 1.993 (2) | C5—C6 | 1.513 (4) |
Ni1—S1 | 2.1709 (8) | C5—H5A | 0.95 (3) |
Ni1—S2 | 2.1777 (8) | C5—H5B | 0.97 (4) |
Ni2—S1 | 2.1938 (7) | C6—N2 | 1.498 (3) |
Ni2—S2 | 2.1921 (7) | C6—H6A | 0.98 (3) |
Cl1—O1 | 1.432 (3) | C6—H6B | 0.98 (3) |
Cl1—O2 | 1.430 (2) | C7—C8 | 1.454 (5) |
Cl1—O3 | 1.425 (2) | C7—N1 | 1.529 (4) |
Cl1—O4 | 1.426 (3) | C7—H7A | 0.9900 |
C1—C2 | 1.518 (4) | C7—H7B | 0.9900 |
C1—S1 | 1.824 (3) | C8—N2 | 1.481 (4) |
C1—H1A | 0.97 (4) | C8—H8A | 0.9900 |
C1—H1B | 0.89 (4) | C8—H8B | 0.9900 |
C2—C3 | 1.520 (4) | C9—N1 | 1.466 (4) |
C2—H2A | 1.00 (3) | C9—H9A | 0.9800 |
C2—H2B | 0.97 (4) | C9—H9B | 0.9800 |
C3—N1 | 1.491 (3) | C9—H9C | 0.9800 |
C3—H3A | 0.98 (4) | C10—N2 | 1.510 (4) |
C3—H3B | 0.99 (3) | C10—H10A | 0.9800 |
C4—C5 | 1.519 (4) | C10—H10B | 0.9800 |
C4—S2 | 1.836 (3) | C10—H10C | 0.9800 |
C4—H4A | 0.94 (3) | Ni1—Ni2 | 3.1518 (6) |
N1—Ni1—N2 | 88.90 (9) | C3—C2—H2A | 109.8 (19) |
N1—Ni1—S1 | 95.68 (7) | C1—C2—H2B | 108 (2) |
N2—Ni1—S1 | 174.27 (7) | C3—C2—H2B | 105 (2) |
N1—Ni1—S2 | 176.66 (7) | H2A—C2—H2B | 112 (3) |
N2—Ni1—S2 | 93.34 (7) | N1—C3—H3A | 108 (2) |
S1—Ni1—S2 | 82.24 (3) | C2—C3—H3A | 112 (2) |
S1—Ni2—S2 | 81.39 (3) | N1—C3—H3B | 107.9 (19) |
S1—Ni2—S2i | 98.61 (3) | C2—C3—H3B | 108.7 (19) |
Ni1—S1—C1 | 105.91 (10) | H3A—C3—H3B | 104 (3) |
Ni2—S1—C1 | 106.63 (10) | C5—C4—H4A | 112 (2) |
Ni1—S2—C4 | 100.09 (9) | S2—C4—H4A | 106 (2) |
Ni2—S2—C4 | 102.93 (9) | C5—C4—H4B | 110.2 (19) |
Ni1—S1—Ni2 | 92.46 (3) | S2—C4—H4B | 107.8 (19) |
Ni1—S2—Ni2 | 92.32 (2) | H4A—C4—H4B | 109 (3) |
O3—Cl1—O4 | 109.37 (17) | C6—C5—H5A | 110.1 (18) |
O3—Cl1—O2 | 111.38 (16) | C4—C5—H5A | 108.8 (18) |
O4—Cl1—O2 | 110.42 (16) | C6—C5—H5B | 105 (2) |
O3—Cl1—O1 | 107.56 (19) | C4—C5—H5B | 109 (2) |
O4—Cl1—O1 | 109.6 (2) | H5A—C5—H5B | 110 (3) |
O2—Cl1—O1 | 108.46 (16) | N2—C6—H6A | 108.8 (18) |
C2—C1—S1 | 111.9 (2) | C5—C6—H6A | 109.7 (18) |
C1—C2—C3 | 113.9 (2) | N2—C6—H6B | 106.0 (18) |
N1—C3—C2 | 115.7 (2) | C5—C6—H6B | 111.5 (18) |
C5—C4—S2 | 112.6 (2) | H6A—C6—H6B | 105 (2) |
C6—C5—C4 | 114.5 (2) | C8—C7—H7A | 109.5 |
N2—C6—C5 | 115.0 (2) | N1—C7—H7A | 109.5 |
C8—C7—N1 | 110.6 (3) | C8—C7—H7B | 109.5 |
C7—C8—N2 | 109.8 (3) | N1—C7—H7B | 109.5 |
C9—N1—C3 | 110.5 (2) | H7A—C7—H7B | 108.1 |
C9—N1—C7 | 111.3 (3) | C7—C8—H8A | 109.7 |
C3—N1—C7 | 104.3 (2) | N2—C8—H8A | 109.7 |
C9—N1—Ni1 | 110.34 (19) | C7—C8—H8B | 109.7 |
C3—N1—Ni1 | 117.14 (16) | N2—C8—H8B | 109.7 |
C7—N1—Ni1 | 102.81 (18) | H8A—C8—H8B | 108.2 |
C8—N2—C6 | 109.9 (2) | N1—C9—H9A | 109.5 |
C8—N2—C10 | 106.2 (3) | N1—C9—H9B | 109.5 |
C6—N2—C10 | 108.4 (2) | H9A—C9—H9B | 109.5 |
C8—N2—Ni1 | 106.90 (19) | N1—C9—H9C | 109.5 |
C6—N2—Ni1 | 113.38 (16) | H9A—C9—H9C | 109.5 |
C10—N2—Ni1 | 111.83 (17) | H9B—C9—H9C | 109.5 |
C2—C1—H1A | 110 (2) | N2—C10—H10A | 109.5 |
S1—C1—H1A | 106 (2) | N2—C10—H10B | 109.5 |
C2—C1—H1B | 108 (2) | H10A—C10—H10B | 109.5 |
S1—C1—H1B | 109 (2) | N2—C10—H10C | 109.5 |
H1A—C1—H1B | 112 (3) | H10A—C10—H10C | 109.5 |
C1—C2—H2A | 108.7 (18) | H10B—C10—H10C | 109.5 |
S1—C1—C2—C3 | 67.6 (3) | S1—Ni1—Ni2—S2i | 37.83 (4) |
C1—C2—C3—N1 | −69.6 (3) | S2—Ni1—Ni2—S2i | 180.0 |
S2—C4—C5—C6 | −67.3 (3) | N1—Ni1—Ni2—S2 | 177.99 (10) |
C4—C5—C6—N2 | 65.5 (3) | N2—Ni1—Ni2—S2 | 30.68 (10) |
N1—C7—C8—N2 | 51.0 (4) | S1—Ni1—Ni2—S2 | −142.17 (4) |
C2—C3—N1—C9 | −63.8 (3) | N1—Ni1—Ni2—S1i | 140.16 (10) |
C2—C3—N1—C7 | 176.5 (3) | N2—Ni1—Ni2—S1i | −7.16 (10) |
C2—C3—N1—Ni1 | 63.7 (3) | S1—Ni1—Ni2—S1i | 180.0 |
C8—C7—N1—C9 | 74.6 (4) | S2—Ni1—Ni2—S1i | −37.83 (4) |
C8—C7—N1—C3 | −166.2 (3) | N1—Ni1—Ni2—S1 | −39.84 (10) |
C8—C7—N1—Ni1 | −43.5 (3) | N2—Ni1—Ni2—S1 | 172.84 (10) |
C7—C8—N2—C6 | 92.5 (3) | S2—Ni1—Ni2—S1 | 142.17 (4) |
C7—C8—N2—C10 | −150.5 (3) | C2—C1—S1—Ni1 | −57.8 (2) |
C7—C8—N2—Ni1 | −31.0 (4) | C2—C1—S1—Ni2 | −155.3 (2) |
C5—C6—N2—C8 | 173.2 (3) | N1—Ni1—S1—C1 | 43.83 (13) |
C5—C6—N2—C10 | 57.6 (3) | S2—Ni1—S1—C1 | −133.54 (11) |
C5—C6—N2—Ni1 | −67.2 (3) | Ni2—Ni1—S1—C1 | −108.06 (11) |
C9—N1—Ni1—N2 | −98.6 (2) | N1—Ni1—S1—Ni2 | 151.89 (7) |
C3—N1—Ni1—N2 | 133.8 (2) | S2—Ni1—S1—Ni2 | −25.48 (2) |
C7—N1—Ni1—N2 | 20.1 (2) | S2i—Ni2—S1—C1 | −47.23 (10) |
C9—N1—Ni1—S1 | 77.9 (2) | S2—Ni2—S1—C1 | 132.77 (10) |
C3—N1—Ni1—S1 | −49.7 (2) | Ni1—Ni2—S1—C1 | 107.41 (10) |
C7—N1—Ni1—S1 | −163.34 (19) | S2i—Ni2—S1—Ni1 | −154.64 (2) |
C9—N1—Ni1—Ni2 | 104.5 (2) | S2—Ni2—S1—Ni1 | 25.36 (2) |
C3—N1—Ni1—Ni2 | −23.1 (2) | C5—C4—S2—Ni1 | 64.9 (2) |
C7—N1—Ni1—Ni2 | −136.74 (18) | C5—C4—S2—Ni2 | 159.63 (18) |
C8—N2—Ni1—N1 | 4.8 (2) | N2—Ni1—S2—C4 | −54.60 (12) |
C6—N2—Ni1—N1 | −116.41 (18) | S1—Ni1—S2—C4 | 129.07 (10) |
C10—N2—Ni1—N1 | 120.7 (2) | Ni2—Ni1—S2—C4 | 103.57 (10) |
C8—N2—Ni1—S2 | −177.6 (2) | N2—Ni1—S2—Ni2 | −158.17 (7) |
C6—N2—Ni1—S2 | 61.11 (17) | S1—Ni1—S2—Ni2 | 25.50 (2) |
C10—N2—Ni1—S2 | −61.82 (19) | S1i—Ni2—S2—C4 | 53.82 (9) |
C8—N2—Ni1—Ni2 | 161.56 (19) | S1—Ni2—S2—C4 | −126.18 (9) |
C6—N2—Ni1—Ni2 | 40.3 (2) | Ni1—Ni2—S2—C4 | −100.91 (9) |
C10—N2—Ni1—Ni2 | −82.6 (2) | S1i—Ni2—S2—Ni1 | 154.73 (2) |
N1—Ni1—Ni2—S2i | −2.01 (10) | S1—Ni2—S2—Ni1 | −25.27 (2) |
N2—Ni1—Ni2—S2i | −149.32 (10) |
Symmetry code: (i) −x, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Ni3(C10H22N2S2)2](ClO4)2 |
Mr | 843.83 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 123 |
a, b, c (Å) | 8.0253 (19), 16.208 (4), 12.807 (3) |
β (°) | 105.033 (6) |
V (Å3) | 1608.8 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.21 |
Crystal size (mm) | 0.24 × 0.24 × 0.17 |
Data collection | |
Diffractometer | Rigaku AFC7 (Mercury CCD) diffractometer |
Absorption correction | Multi-scan (REQAB; Jacobson, 1998) |
Tmin, Tmax | 0.619, 0.705 |
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections | 15030, 3626, 3391 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.082, 1.04 |
No. of reflections | 3626 |
No. of parameters | 235 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.71, −0.70 |
Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Grapperhaus, C. A., O'Toole, M. G. & Mashuta, M. S. (2007). Acta Cryst. E63, m2281. Web of Science CSD CrossRef IUCr Journals Google Scholar
Igashira-Kamiyama, A. & Konno, T. (2011). Dalton Trans. 40, 7249–7263. Web of Science CAS PubMed Google Scholar
Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan. Google Scholar
Konno, T. (2004). Bull. Chem. Soc. Jpn, 77, 627–649. Web of Science CrossRef CAS Google Scholar
Konno, T., Chikamoto, Y., Okamoto, K., Yamaguchi, T., Ito, T. & Hirotsu, M. (2000). Angew. Chem. Int. Ed. 39, 4098–4101. CrossRef CAS Google Scholar
Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turner, M. A., Driessen, W. L. & Reedijk, J. (1990). Inorg. Chem. 29, 3331–3335. CSD CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiolate ligands have a high propensity to bridge transition metal ions and form sulfur-bridged polynuclear metal complexes. Metal complexes of polydentate ligands with thiolato-S atoms were used to construct supramolecular compounds (Konno et al., 2000; Konno, 2004; Igashira-Kamiyama & Konno, 2011). Nickel(II) complexes containing diamine dithiolate ligands act as a bidentate-S,S metalloligand. The title compound [Ni{Ni(C10H22N2S2)}2](ClO4)2, (I), was synthesized by the reaction of 3,3'-[1,2-ethanediylbis(methylimino)]bis(1-propanethiol) with nickel(II) acetate tetrahydrate. The corresponding mononuclear nickel(II) complex [Ni(C10H22N2S2)], (II), which has a five-membered N,N- and two six-membered N,S-chelate rings, was synthesized and structurally characterized (Grapperhaus et al., 2007). On the other hand, a mononuclear nickel(II) complex of 2,2'-[1,2-ethanediylbis(methylimino)]bis(ethanethiolate) (L), [Ni(L)], reacts with nickel(II) chloride to afford a sulfur-bridged trinuclear complex, [Ni{Ni(L)}2]Cl2, (III), in which the S,N,N,S-tetradentate ligand L forms five-membered N,N- and N,S-chelate rings (Turner et al., 1990). The trinuclear complex (III) has a chair structure consisting of a central NiS4 and two terminal NiN2S2 planes, where the dihedral angle between the NiS4 and NiN2S2 planes is 107.84 (7)°. In this report, we discuss the structure of the new S-bridged NiII3 complex (I), in which the size of the N,S-chelate rings is larger than that of (III).
The title compound (I) is composed of a complex cation, [Ni{Ni(C10H22N2S2)}2]2+, containing two N2S2 tetradentate ligands, 3,3'-[1,2-ethanediylbis(methylimino)]bis(1-propanethiolate), and two perchlorate anions (Fig. 1). The complex cation consists of a nickel(II) ion and two mononuclear [Ni(C10H22N2S2)] complex units, and the overall structure is similar to that of (III). The central Ni atom is located on a crystallographic inversion center and is surrounded by four S atoms of the two planar [Ni(C10H22N2S2)] units. The NiS4 structure is also planar. The structural parameters of the [Ni(C10H22N2S2)] unit in (I) are quite similar to those of the mononuclear complex (II). However, two methyl groups on the chelating N atoms of (I) are in a cis position to each other, while those of (II) are in a trans position. The dihedral angle between the NiS4 and NiN2S2 planes is 145.71 (5)°, which is significantly larger than that of (III) with five-membered N,S-chelate rings. Furthermore, the Ni—S—Ni angles (92.46 (3)°, 92.32 (2)°) and the Ni···Ni distance (3.1518 (6) Å) in (I) are larger than those in (III) (77.71 (4)°, 78.10 (4)°, 2.748 (1) Å). These results suggest that the chelate ring size of polydentate thiolate ligands largely affects the structure of S-bridged polynuclear metal complexes.