organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-3-[(Anilino)(naphthalen-2-yl)­methyl]thian-4-one

aFachbereich Chemie, Philipps Universität Marburg, Hans Meerwein Strasse, Marburg, D-35032, Germany, and bDepartment of Organic Chemistry, Chemistry and Chemical Engineering Research Center of Iran, PO Box 14335-186, Tehran, Iran
*Correspondence e-mail: harms@chemie.uni-marburg.de

(Received 17 January 2012; accepted 10 February 2012; online 17 February 2012)

In the title compound, C22H21NOS, the thio­pyran­one ring adopts a chair-like conformation with the substituent in the axial position. The relative configuration of the racemic compound is 3R,7S according to the numbering scheme used in this publication. In the crystal packing, centrosymmetric dimers are built up via N—H⋯O hydrogen bonds, with graph set R22(8).

Related literature

For the preparation and spectroscopic characterization of the title compound and a series of related compounds, see: Abaee et al. (2012[Abaee, M. S., Motjahedi, M. M., Akbari, A., Mehraki, E., Mesbah, A. W. & Harms, K. (2012). J. Heterocycl. Chem. 49. In the press.]). For the crystal structure of rac-3-[(3-chloro­anilino)(4-chlorophenyl)methyl]thian-4-one, see: Harms et al. (2012[Harms, K., Abaee, M. S., Mojtahedi, M. M. & Mesbah, A. W. (2012). Acta Cryst. E68, o646.]). For the crystal structures of related compounds, see: Guo et al. (2007[Guo, Q.-X., Liu, H., Guo, Ch., Luo, S.-W., Gu, Y. & Gong, L.-Z. (2007). J. Am. Chem. Soc. 129, 3790-3791.]); Fun et al. (2009[Fun, H.-K., Chantrapromma, S., Rai, S., Shetty, P. & Isloor, A. M. (2009). Acta Cryst. E65, o539-o540.]). For patterns in hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C22H21NOS

  • Mr = 347.46

  • Monoclinic, P 21 /n

  • a = 10.8049 (10) Å

  • b = 10.5497 (15) Å

  • c = 16.4936 (16) Å

  • β = 97.141 (8)°

  • V = 1865.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 193 K

  • 0.45 × 0.45 × 0.36 mm

Data collection
  • Stoe IPDS I diffractometer

  • Absorption correction: integration [X-AREA and X-RED32 (Stoe & Cie, 2006[Stoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])] Tmin = 0.942, Tmax = 0.960

  • 13547 measured reflections

  • 3244 independent reflections

  • 1939 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.074

  • S = 0.79

  • 3244 reflections

  • 230 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O1i 0.926 (15) 2.121 (16) 3.0450 (18) 175.4 (13)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: EXPOSE (Stoe & Cie, 1994[Stoe & Cie (1994). IPDS User Manual. Stoe & Cie, Darmstadt, Germany.]); cell refinement: CELL (Stoe & Cie, 1994[Stoe & Cie (1994). IPDS User Manual. Stoe & Cie, Darmstadt, Germany.]); data reduction: X-RED32 (Stoe & Cie, 2006[Stoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Related literature top

For the preparation and spectroscopic characterization of the title compound and a series of related compounds, see: Abaee et al. (2012). For the crystal structure of (4-chlorophenyl)(3-chlorophenylamino)methyl)dihydro-2H-thiopyran-4(3H)-one [Please check and match brackets], see: Harms et al. (2012). For the crystal structures of related compounds, see: Guo et al. (2007); Fun et al. (2009). For patterns in hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

The title compound is an example of a series of products of an anti-selective three-component Mannich reaction in the thiopyran-4-one system; see Abaee et al. (2012) for details. Colourless crystals suitable for crystal structure determination were grown from ethyl acetate.

Refinement top

Data have been merged using the program X-RED32 (Stoe & Cie, 2006). Three beamstop affected reflections (1 1 0, -1 1 1, 0 1 1) have been excluded from the data during the refinement. All C bonded H atoms were placed in geometrical positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å. The Uiso values were constrained to be 1.2Ueq of the parent C atom. The position of the N bonded H atom has been refined freely with an isotropic displacement factor. The N—H bond length is 0.926 (15) Å.

Computing details top

Data collection: EXPOSE (Stoe & Cie, 1994); cell refinement: CELL (Stoe & Cie, 1994); data reduction: X-RED32 (Stoe & Cie, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: publCIF (Westrip, 2010), PLATON (Spek, 2009), and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as small spheres of arbitrary radius. Dotted lines indicate hydrogen bonds to the neighbouring molecule generated by crystallographic inversion symmetry. For symmetry code (i), see Table 1.
rac-3-[(Anilino)(naphthalen-2-yl)methyl]thian-4-one top
Crystal data top
C22H21NOSF(000) = 736
Mr = 347.46Dx = 1.237 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7999 reflections
a = 10.8049 (10) Åθ = 2.3–26.0°
b = 10.5497 (15) ŵ = 0.18 mm1
c = 16.4936 (16) ÅT = 193 K
β = 97.141 (8)°Nugget, colourless
V = 1865.5 (4) Å30.45 × 0.45 × 0.36 mm
Z = 4
Data collection top
Stoe IPDS I
diffractometer
3244 independent reflections
Radiation source: fine-focus sealed tube1939 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 6.67 pixels mm-1θmax = 25.4°, θmin = 2.1°
rotation method scansh = 1312
Absorption correction: integration
[X-AREA and X-RED32 (Stoe & Cie, 2006)]
k = 1212
Tmin = 0.942, Tmax = 0.960l = 1919
13547 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 0.79 w = 1/[σ2(Fo2) + (0.0399P)2]
where P = (Fo2 + 2Fc2)/3
3244 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C22H21NOSV = 1865.5 (4) Å3
Mr = 347.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8049 (10) ŵ = 0.18 mm1
b = 10.5497 (15) ÅT = 193 K
c = 16.4936 (16) Å0.45 × 0.45 × 0.36 mm
β = 97.141 (8)°
Data collection top
Stoe IPDS I
diffractometer
3244 independent reflections
Absorption correction: integration
[X-AREA and X-RED32 (Stoe & Cie, 2006)]
1939 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.960Rint = 0.044
13547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 0.79Δρmax = 0.23 e Å3
3244 reflectionsΔρmin = 0.37 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.06564 (5)0.68462 (6)0.53056 (4)0.0733 (2)
O10.38884 (11)0.55992 (11)0.42256 (7)0.0481 (3)
N80.48932 (11)0.69693 (12)0.59618 (8)0.0318 (3)
H80.5282 (14)0.6206 (15)0.5880 (10)0.033 (4)*
C20.16654 (16)0.55096 (17)0.55576 (14)0.0568 (6)
H2A0.15840.52370.61230.068*
H2B0.13860.47980.51880.068*
C30.30417 (14)0.57832 (15)0.54910 (11)0.0359 (4)
H30.35170.49770.56110.043*
C40.32089 (15)0.61845 (15)0.46296 (11)0.0381 (4)
C50.24585 (19)0.72936 (18)0.42754 (13)0.0579 (6)
H5A0.26180.74240.37030.070*
H5B0.27280.80670.45880.070*
C60.1050 (2)0.7089 (2)0.42969 (16)0.0808 (8)
H6A0.07760.63440.39560.097*
H6B0.05910.78380.40550.097*
C70.36003 (13)0.67883 (14)0.61120 (10)0.0301 (4)
H70.31410.76030.59910.036*
C90.56671 (14)0.78247 (14)0.64329 (10)0.0306 (4)
C100.52229 (16)0.89433 (15)0.67309 (11)0.0414 (4)
H100.43540.91180.66560.050*
C110.60450 (18)0.98055 (17)0.71379 (12)0.0519 (5)
H110.57311.05740.73330.062*
C120.73045 (18)0.95712 (18)0.72650 (13)0.0542 (5)
H120.78601.01720.75410.065*
C130.77470 (17)0.84535 (18)0.69860 (12)0.0494 (5)
H130.86150.82750.70780.059*
C140.69458 (15)0.75867 (16)0.65734 (11)0.0396 (4)
H140.72680.68190.63830.047*
C150.34684 (14)0.64065 (13)0.69838 (10)0.0309 (4)
C160.25886 (15)0.69614 (14)0.74005 (11)0.0362 (4)
H160.20720.76090.71410.043*
C170.24295 (15)0.65944 (15)0.82070 (11)0.0358 (4)
C180.14989 (17)0.71312 (17)0.86377 (12)0.0484 (5)
H180.09650.77720.83860.058*
C190.1364 (2)0.67372 (18)0.94068 (12)0.0561 (6)
H190.07300.70990.96850.067*
C200.21464 (19)0.58064 (17)0.97926 (12)0.0551 (6)
H200.20390.55381.03290.066*
C210.30610 (18)0.52812 (16)0.94044 (11)0.0457 (5)
H210.35970.46600.96770.055*
C220.32231 (15)0.56508 (14)0.85973 (11)0.0353 (4)
C230.41391 (15)0.51076 (15)0.81611 (11)0.0385 (4)
H230.46860.44810.84170.046*
C240.42500 (14)0.54655 (14)0.73845 (11)0.0354 (4)
H240.48660.50760.71040.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0349 (2)0.0790 (4)0.1041 (6)0.0052 (3)0.0016 (3)0.0435 (4)
O10.0546 (7)0.0537 (7)0.0350 (8)0.0127 (6)0.0011 (7)0.0116 (6)
N80.0310 (7)0.0330 (7)0.0325 (9)0.0052 (6)0.0084 (6)0.0056 (6)
C20.0460 (11)0.0515 (11)0.0727 (16)0.0199 (9)0.0067 (11)0.0201 (10)
C30.0378 (9)0.0311 (8)0.0383 (12)0.0046 (7)0.0032 (8)0.0072 (7)
C40.0410 (9)0.0359 (9)0.0348 (12)0.0004 (8)0.0054 (9)0.0129 (8)
C50.0824 (14)0.0510 (11)0.0378 (13)0.0241 (10)0.0030 (11)0.0043 (9)
C60.0664 (14)0.0796 (16)0.085 (2)0.0312 (12)0.0363 (13)0.0339 (14)
C70.0305 (8)0.0311 (8)0.0293 (10)0.0030 (7)0.0062 (7)0.0028 (7)
C90.0353 (8)0.0343 (8)0.0222 (10)0.0076 (7)0.0031 (8)0.0042 (7)
C100.0392 (9)0.0390 (9)0.0449 (13)0.0053 (8)0.0005 (9)0.0058 (8)
C110.0577 (12)0.0432 (10)0.0518 (15)0.0085 (9)0.0048 (11)0.0117 (9)
C120.0549 (12)0.0532 (12)0.0490 (15)0.0191 (10)0.0154 (10)0.0005 (10)
C130.0380 (9)0.0556 (12)0.0508 (14)0.0110 (9)0.0100 (9)0.0116 (10)
C140.0399 (9)0.0402 (9)0.0379 (12)0.0031 (8)0.0022 (9)0.0073 (8)
C150.0303 (8)0.0294 (8)0.0337 (11)0.0061 (7)0.0067 (8)0.0040 (7)
C160.0391 (8)0.0338 (9)0.0364 (12)0.0022 (7)0.0077 (8)0.0008 (8)
C170.0424 (9)0.0331 (9)0.0336 (11)0.0021 (7)0.0118 (9)0.0048 (7)
C180.0591 (11)0.0453 (10)0.0440 (13)0.0128 (9)0.0188 (10)0.0016 (9)
C190.0763 (14)0.0537 (11)0.0440 (14)0.0113 (11)0.0299 (12)0.0060 (10)
C200.0856 (15)0.0481 (11)0.0354 (12)0.0026 (11)0.0228 (12)0.0021 (9)
C210.0627 (12)0.0381 (9)0.0371 (12)0.0003 (9)0.0097 (10)0.0001 (8)
C220.0419 (9)0.0314 (8)0.0336 (11)0.0044 (7)0.0082 (8)0.0027 (7)
C230.0382 (9)0.0347 (9)0.0432 (13)0.0030 (7)0.0078 (9)0.0023 (8)
C240.0325 (8)0.0356 (9)0.0398 (12)0.0012 (7)0.0114 (8)0.0000 (8)
Geometric parameters (Å, º) top
S1—C61.786 (3)C11—H110.9500
S1—C21.799 (2)C12—C131.373 (3)
O1—C41.2190 (18)C12—H120.9500
N8—C91.398 (2)C13—C141.379 (2)
N8—C71.4614 (18)C13—H130.9500
N8—H80.926 (15)C14—H140.9500
C2—C31.532 (2)C15—C161.372 (2)
C2—H2A0.9900C15—C241.413 (2)
C2—H2B0.9900C16—C171.416 (2)
C3—C41.515 (2)C16—H160.9500
C3—C71.544 (2)C17—C221.415 (2)
C3—H31.0000C17—C181.419 (2)
C4—C51.500 (2)C18—C191.360 (3)
C5—C61.542 (3)C18—H180.9500
C5—H5A0.9900C19—C201.397 (3)
C5—H5B0.9900C19—H190.9500
C6—H6A0.9900C20—C211.361 (2)
C6—H6B0.9900C20—H200.9500
C7—C151.517 (2)C21—C221.419 (2)
C7—H71.0000C21—H210.9500
C9—C101.387 (2)C22—C231.415 (2)
C9—C141.395 (2)C23—C241.355 (2)
C10—C111.385 (2)C23—H230.9500
C10—H100.9500C24—H240.9500
C11—C121.373 (3)
C6—S1—C296.89 (10)C12—C11—C10121.29 (18)
C9—N8—C7120.55 (12)C12—C11—H11119.4
C9—N8—H8113.1 (10)C10—C11—H11119.4
C7—N8—H8111.8 (9)C13—C12—C11118.89 (17)
C3—C2—S1113.67 (13)C13—C12—H12120.6
C3—C2—H2A108.8C11—C12—H12120.6
S1—C2—H2A108.8C12—C13—C14120.76 (17)
C3—C2—H2B108.8C12—C13—H13119.6
S1—C2—H2B108.8C14—C13—H13119.6
H2A—C2—H2B107.7C13—C14—C9120.70 (16)
C4—C3—C2110.49 (16)C13—C14—H14119.7
C4—C3—C7110.36 (12)C9—C14—H14119.7
C2—C3—C7112.62 (13)C16—C15—C24118.46 (15)
C4—C3—H3107.7C16—C15—C7120.95 (14)
C2—C3—H3107.7C24—C15—C7120.59 (13)
C7—C3—H3107.7C15—C16—C17121.78 (15)
O1—C4—C5121.02 (17)C15—C16—H16119.1
O1—C4—C3121.42 (15)C17—C16—H16119.1
C5—C4—C3117.49 (15)C22—C17—C16118.82 (14)
C4—C5—C6111.66 (17)C22—C17—C18118.67 (16)
C4—C5—H5A109.3C16—C17—C18122.51 (16)
C6—C5—H5A109.3C19—C18—C17120.67 (17)
C4—C5—H5B109.3C19—C18—H18119.7
C6—C5—H5B109.3C17—C18—H18119.7
H5A—C5—H5B107.9C18—C19—C20120.71 (17)
C5—C6—S1113.05 (16)C18—C19—H19119.6
C5—C6—H6A109.0C20—C19—H19119.6
S1—C6—H6A109.0C21—C20—C19120.40 (18)
C5—C6—H6B109.0C21—C20—H20119.8
S1—C6—H6B109.0C19—C20—H20119.8
H6A—C6—H6B107.8C20—C21—C22120.76 (18)
N8—C7—C15113.57 (13)C20—C21—H21119.6
N8—C7—C3106.28 (12)C22—C21—H21119.6
C15—C7—C3111.80 (12)C23—C22—C17118.42 (15)
N8—C7—H7108.3C23—C22—C21122.78 (16)
C15—C7—H7108.3C17—C22—C21118.79 (15)
C3—C7—H7108.3C24—C23—C22121.16 (15)
C10—C9—C14118.27 (15)C24—C23—H23119.4
C10—C9—N8122.46 (14)C22—C23—H23119.4
C14—C9—N8119.17 (14)C23—C24—C15121.34 (14)
C11—C10—C9120.08 (16)C23—C24—H24119.3
C11—C10—H10120.0C15—C24—H24119.3
C9—C10—H10120.0
C6—S1—C2—C357.57 (16)N8—C9—C14—C13175.40 (15)
S1—C2—C3—C459.40 (17)N8—C7—C15—C16135.46 (15)
S1—C2—C3—C764.52 (19)C3—C7—C15—C16104.28 (16)
C2—C3—C4—O1121.46 (17)N8—C7—C15—C2444.72 (19)
C7—C3—C4—O1113.33 (16)C3—C7—C15—C2475.54 (18)
C2—C3—C4—C555.62 (19)C24—C15—C16—C171.5 (2)
C7—C3—C4—C569.58 (19)C7—C15—C16—C17178.33 (14)
O1—C4—C5—C6121.38 (19)C15—C16—C17—C221.6 (2)
C3—C4—C5—C655.7 (2)C15—C16—C17—C18178.03 (16)
C4—C5—C6—S159.1 (2)C22—C17—C18—C190.7 (3)
C2—S1—C6—C556.56 (16)C16—C17—C18—C19178.91 (18)
C9—N8—C7—C1556.27 (19)C17—C18—C19—C200.7 (3)
C9—N8—C7—C3179.60 (14)C18—C19—C20—C210.2 (3)
C4—C3—C7—N854.62 (17)C19—C20—C21—C221.1 (3)
C2—C3—C7—N8178.61 (15)C16—C17—C22—C230.4 (2)
C4—C3—C7—C15179.05 (13)C18—C17—C22—C23179.22 (15)
C2—C3—C7—C1556.96 (19)C16—C17—C22—C21179.83 (15)
C7—N8—C9—C1034.1 (2)C18—C17—C22—C210.2 (2)
C7—N8—C9—C14149.59 (15)C20—C21—C22—C23178.28 (17)
C14—C9—C10—C111.6 (2)C20—C21—C22—C171.1 (3)
N8—C9—C10—C11174.77 (16)C17—C22—C23—C240.8 (2)
C9—C10—C11—C120.8 (3)C21—C22—C23—C24178.61 (17)
C10—C11—C12—C130.5 (3)C22—C23—C24—C150.9 (2)
C11—C12—C13—C141.0 (3)C16—C15—C24—C230.3 (2)
C12—C13—C14—C90.2 (3)C7—C15—C24—C23179.57 (15)
C10—C9—C14—C131.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O1i0.926 (15)2.121 (16)3.0450 (18)175.4 (13)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H21NOS
Mr347.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)10.8049 (10), 10.5497 (15), 16.4936 (16)
β (°) 97.141 (8)
V3)1865.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.45 × 0.45 × 0.36
Data collection
DiffractometerStoe IPDS I
diffractometer
Absorption correctionIntegration
[X-AREA and X-RED32 (Stoe & Cie, 2006)]
Tmin, Tmax0.942, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
13547, 3244, 1939
Rint0.044
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.074, 0.79
No. of reflections3244
No. of parameters230
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.37

Computer programs: EXPOSE (Stoe & Cie, 1994), CELL (Stoe & Cie, 1994), X-RED32 (Stoe & Cie, 2006), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2007), publCIF (Westrip, 2010), PLATON (Spek, 2009), and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O1i0.926 (15)2.121 (16)3.0450 (18)175.4 (13)
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationAbaee, M. S., Motjahedi, M. M., Akbari, A., Mehraki, E., Mesbah, A. W. & Harms, K. (2012). J. Heterocycl. Chem. 49. In the press.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Rai, S., Shetty, P. & Isloor, A. M. (2009). Acta Cryst. E65, o539–o540.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuo, Q.-X., Liu, H., Guo, Ch., Luo, S.-W., Gu, Y. & Gong, L.-Z. (2007). J. Am. Chem. Soc. 129, 3790–3791.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHarms, K., Abaee, M. S., Mojtahedi, M. M. & Mesbah, A. W. (2012). Acta Cryst. E68, o646.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1994). IPDS User Manual. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds