organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(4-Amino­phen­yl)sulfon­yl]aniline–3,5-di­nitro­benzoic acid (1/1)

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 17 January 2012; accepted 3 February 2012; online 10 February 2012)

The title compound, C7H4N2O6·C12H12N2O2S, is a 1:1 cocrystal of the drug dapsone with 3,5-dinitro­benzoic acid. The dihedral angle between the two aromatic rings of the dapsone mol­ecule is 75.4 (2)°, and the dihedral angles between these rings and that of the 3,5-dinitro­benzoic acid are 64.5 (2) and 68.4 (2)°. A strong inter­molecular carb­oxy­lic acid O—H⋯Namine hydrogen bond is found, together with inter­molecular amine N—H⋯O hydrogen-bonding associations with carboxyl, nitro and sulfone O-atom acceptors. In addition, weak ππ inter­actions between one of the dapsone benzene rings and the 3,5-dinitro­benzoic acid ring [ring centroid separation = 3.774 (2) Å] results in a two-dimensional network structure.

Related literature

For drug applications of dapsone, see: Wilson et al. (1991[Wilson, J. D., Braunwald, E., Isselbacher, K. J., Petersdorf, R. G., Martin, J. B., Fauci, A. S. & Root, R. K. (1991). Harrison's Principles of Internal Medicine, 12th ed., pp. 320, 647-648, 787. New York: McGraw-Hill.]). For the structures of dapsone and its salts and adducts, see: Dickenson et al. (1970[Dickenson, C., Stewart, J. M. & Ammon, H. L. (1970). J. Chem. Soc. Chem. Commun. pp. 920-921.]); Kus'mina et al. (1981[Kus'mina, L. G., Struchkov, Yu. T., Novozhilova, N. V. & Tudorovskaya, G. L. (1981). Kristallografiya, 26, 690-694.]); Smith & Wermuth (2012a[Smith, G. & Wermuth, U. D. (2012a). Acta Cryst. E68, o494.],b[Smith, G. & Wermuth, U. D. (2012b). In preparation.]). For adducts of 3,5-dinitro­benzoic acid, see: Etter & Frankenbach (1989[Etter, M. C. & Frankenbach, G. M. (1989). Chem. Mater. 1, 10-12.]).

[Scheme 1]

Experimental

Crystal data
  • C7H4N2O6·C12H12N2O2S

  • Mr = 460.43

  • Monoclinic, P 21

  • a = 5.8222 (4) Å

  • b = 15.5982 (10) Å

  • c = 10.7299 (9) Å

  • β = 97.693 (6)°

  • V = 965.68 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 200 K

  • 0.30 × 0.25 × 0.05 mm

Data collection
  • Oxfod Diffraction Gemini-S CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.832, Tmax = 0.990

  • 6257 measured reflections

  • 3774 independent reflections

  • 2643 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.102

  • S = 0.93

  • 3774 reflections

  • 289 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.43 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1803 Friedel pairs

  • Flack parameter: 0.07 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12A—H12A⋯N41 0.93 1.73 2.653 (5) 173
N4—H412⋯O31Ai 0.95 2.49 3.150 (5) 126
N41—H413⋯O11Aii 0.89 2.50 3.367 (5) 165
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) x-1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Dapsone [4-(4-aminophenylsulfonyl)aniline] is a very weak Lewis base which finds use as an anti-leprotic, anti-malarial and leprostatic drug (Wilson et al., 1991). The structure of the Dapsone 0.33hydrate is known (Kus'mina et al., 1981) but salts or adducts of this compound are not common. We have reported the 1:2 co-crystalline adduct with 1,3,5-trinitrobenzene (Smith & Wermuth, 2012a). Reported here is the structure of the 1:1 cocrystalline adduct of Dapsone with 3,5-dinitrobenzoic acid, C12H12N2O2S. C7H4N4O6 (Fig. 1). This acid has been found to be very useful for the formation of co-crystalline adducts (Etter & Frankenbach, 1989).

A primary intermolecular OH···Oamine hydrogen bond (Table 1) links the two molecules while N—H···O hydrogen-bond associations with carboxyl, nitro and sulfone O-atom acceptors give a two-dimensional structure (Fig. 2). A weak ππ interaction is also found between one of the Dapsone aromatic ring moieties (C1–C6) and that of the acid molecule (C1A–C6A [minimum ring centroid separation 3.774 (2) Å]. In the Dapsone molecule the inter-ring dihedral angle is 75.4 (2)° which compare with 77.3° in the anhydrous parent Dapsone molecule (Dickenson et al., 1970), 88.1, 75.8 and 74.7° for the three independent Dapsone molecules in the 0.33hydrate structure (Kus'mina et al., 1981) and 77.5° in the 5-nitroisophthalic acid adduct (Smith & Wermuth, 2012b. The 3,5-dinitrobenzoic acid molecule is essentially planar [torsion angles C2A—C1A—C11A—O11A, -171.3 (4)°; C2A—C3A—N31A—O32A, -174.4 (4)°; C4A—C5A—N51A—O52A, -172.2 (4)°].

Related literature top

For drug applications of dapsone, see: Wilson et al. (1991). For the structures of dapsone and its salts and adducts see: Dickenson et al. (1970); Kus'mina et al. (1981); Smith & Wermuth (2012a,b). For adducts of 3,5-dinitrobenzoic acid, see: Etter & Frankenbach (1989).

Experimental top

The title compound was prepared by the intereaction of 4-(4-aminophenylsulfonyl)aniline (Dapsone) with 3,5-dinitrobenzoic acid by heating together for 15 min under reflux, 1 mmol quantities of the two reagents in 50 ml of 50% ethanol–water. Minor poorly-formed yellow crystal aggregates of the title co-crystal formed after partial room-temperature evaporation of the solvent.

Refinement top

All H atoms potentially involved in hydrogen-bonding associations were located in a difference-Fourier analysis but were subsequently constrained, with Uiso(H) = 1.2Ueq(N, O). Other H-atoms were included at calculated positions [C—H = 0.93 Å] and also treated as riding, with Uiso(H) = 1.2Ueq(C). No reasonable acceptor atom could be found for one of the amine H-atoms on N4 (H411).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular conformation and atom-numbering scheme for the Dapsone and 3,5-dinitrobenzoic acid molecules in the title co-crystal. Non-H atoms are shown as 50% probability displacement ellipsoids and the inter-species hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The hydrogen-bonding in the title adduct, viewed down the a axial direction of the unit cell. Hydrogen bonds are shown as dashed lines. For symmetry codes see Table 1.
4-[(4-Aminophenyl)sulfonyl]aniline–3,5-dinitrobenzoic acid (1/1) top
Crystal data top
C7H4N2O6·C12H12N2O2SF(000) = 476
Mr = 460.43Dx = 1.584 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2802 reflections
a = 5.8222 (4) Åθ = 3.2–28.7°
b = 15.5982 (10) ŵ = 0.23 mm1
c = 10.7299 (9) ÅT = 200 K
β = 97.693 (6)°Plate, yellow
V = 965.68 (12) Å30.30 × 0.25 × 0.05 mm
Z = 2
Data collection top
Oxfod Diffraction Gemini-S CCD detector
diffractometer
3774 independent reflections
Radiation source: Enhance (Mo) X-ray source2643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1919
Tmin = 0.832, Tmax = 0.990l = 1310
6257 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0468P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.001
3774 reflectionsΔρmax = 0.50 e Å3
289 parametersΔρmin = 0.43 e Å3
1 restraintAbsolute structure: Flack (1983), 1803 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (11)
Crystal data top
C7H4N2O6·C12H12N2O2SV = 965.68 (12) Å3
Mr = 460.43Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.8222 (4) ŵ = 0.23 mm1
b = 15.5982 (10) ÅT = 200 K
c = 10.7299 (9) Å0.30 × 0.25 × 0.05 mm
β = 97.693 (6)°
Data collection top
Oxfod Diffraction Gemini-S CCD detector
diffractometer
3774 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2643 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.990Rint = 0.049
6257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.102Δρmax = 0.50 e Å3
S = 0.93Δρmin = 0.43 e Å3
3774 reflectionsAbsolute structure: Flack (1983), 1803 Friedel pairs
289 parametersAbsolute structure parameter: 0.07 (11)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.93142 (16)0.26625 (7)0.65868 (10)0.0211 (3)
O11.1787 (4)0.25679 (19)0.6593 (2)0.0277 (9)
O110.7823 (5)0.19588 (17)0.6150 (3)0.0281 (10)
N40.8049 (6)0.3557 (2)1.1801 (3)0.0372 (14)
N410.6306 (6)0.5772 (2)0.3593 (3)0.0297 (12)
C10.8876 (6)0.2919 (2)0.8133 (4)0.0198 (12)
C21.0600 (7)0.3366 (2)0.8888 (4)0.0214 (14)
C31.0320 (7)0.3575 (3)1.0091 (4)0.0234 (14)
C40.8282 (7)0.3357 (3)1.0594 (4)0.0244 (14)
C50.6570 (6)0.2913 (2)0.9813 (4)0.0250 (16)
C60.6843 (6)0.2705 (3)0.8600 (4)0.0232 (14)
C110.8420 (6)0.3568 (2)0.5669 (4)0.0179 (12)
C210.9984 (6)0.4232 (2)0.5568 (4)0.0216 (14)
C310.9285 (7)0.4947 (3)0.4881 (4)0.0239 (16)
C410.6997 (7)0.5020 (3)0.4281 (4)0.0223 (14)
C510.5478 (6)0.4342 (3)0.4358 (4)0.0222 (16)
C610.6189 (6)0.3623 (3)0.5057 (4)0.0202 (14)
O11A1.1135 (5)0.52662 (18)0.1963 (3)0.0307 (11)
O12A0.7721 (5)0.59140 (19)0.1352 (3)0.0338 (11)
O31A0.6393 (5)0.7561 (2)0.2381 (3)0.0411 (11)
O32A0.8367 (5)0.7329 (2)0.3913 (3)0.0568 (14)
O51A1.5248 (5)0.5584 (2)0.3210 (3)0.0452 (11)
O52A1.5821 (5)0.4790 (2)0.1557 (4)0.0518 (14)
N31A0.7989 (6)0.7217 (2)0.2837 (4)0.0304 (12)
N51A1.4771 (6)0.5348 (2)0.2196 (4)0.0302 (14)
C1A1.0392 (6)0.5909 (2)0.0076 (4)0.0202 (14)
C2A0.8998 (7)0.6454 (3)0.0849 (4)0.0227 (14)
C3A0.9516 (6)0.6645 (3)0.2025 (4)0.0228 (14)
C4A1.1434 (7)0.6304 (3)0.2487 (4)0.0237 (14)
C5A1.2790 (6)0.5752 (3)0.1701 (4)0.0205 (14)
C6A1.2350 (6)0.5561 (3)0.0500 (4)0.0234 (14)
C11A0.9811 (7)0.5666 (3)0.1197 (4)0.0267 (17)
H21.195000.352300.857100.0260*
H31.149700.386701.059000.0280*
H50.521500.275401.012400.0300*
H60.566600.242000.809100.0280*
H211.150000.418900.596600.0260*
H311.033300.538900.481100.0290*
H510.397600.437200.393800.0270*
H610.515700.317400.511400.0240*
H4110.920500.366701.234500.0450*
H4120.653400.366501.200200.0450*
H4130.483700.572100.324500.0360*
H4140.644200.622200.410900.0360*
H2A0.769600.669500.057200.0280*
H4A1.178500.644000.328400.0280*
H6A1.334600.520700.001900.0270*
H12A0.730000.582500.214500.0510*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0254 (5)0.0146 (5)0.0240 (6)0.0027 (5)0.0059 (4)0.0007 (5)
O10.0231 (14)0.0290 (17)0.0322 (17)0.0077 (14)0.0084 (11)0.0032 (15)
O110.0409 (17)0.0127 (15)0.0319 (18)0.0020 (13)0.0091 (13)0.0017 (13)
N40.043 (2)0.045 (3)0.027 (2)0.0099 (19)0.0168 (18)0.005 (2)
N410.027 (2)0.035 (2)0.030 (2)0.0116 (16)0.0147 (16)0.0147 (18)
C10.024 (2)0.015 (2)0.021 (2)0.0046 (16)0.0057 (17)0.0073 (17)
C20.019 (2)0.018 (2)0.028 (3)0.0006 (17)0.0062 (18)0.0050 (19)
C30.024 (2)0.021 (2)0.026 (3)0.0070 (18)0.0063 (18)0.002 (2)
C40.031 (2)0.014 (2)0.029 (3)0.0027 (19)0.0075 (19)0.005 (2)
C50.019 (2)0.028 (3)0.029 (3)0.0011 (17)0.0065 (18)0.006 (2)
C60.020 (2)0.022 (2)0.027 (3)0.001 (2)0.0008 (16)0.002 (2)
C110.020 (2)0.017 (2)0.018 (2)0.0024 (17)0.0071 (17)0.0014 (18)
C210.019 (2)0.019 (2)0.027 (3)0.0022 (18)0.0036 (17)0.002 (2)
C310.027 (3)0.015 (2)0.032 (3)0.0054 (18)0.0119 (19)0.002 (2)
C410.028 (2)0.022 (2)0.020 (3)0.0052 (19)0.0144 (18)0.0014 (19)
C510.013 (2)0.034 (3)0.020 (3)0.0010 (19)0.0037 (16)0.001 (2)
C610.018 (2)0.016 (2)0.027 (3)0.0033 (17)0.0043 (17)0.0019 (19)
O11A0.0358 (18)0.032 (2)0.0237 (19)0.0036 (15)0.0015 (14)0.0046 (15)
O12A0.0348 (18)0.043 (2)0.0270 (19)0.0126 (15)0.0162 (14)0.0109 (16)
O31A0.0382 (17)0.051 (2)0.036 (2)0.0219 (18)0.0123 (14)0.0015 (19)
O32A0.050 (2)0.094 (3)0.029 (2)0.0285 (19)0.0145 (16)0.023 (2)
O51A0.0420 (19)0.058 (2)0.040 (2)0.0061 (16)0.0217 (16)0.0068 (17)
O52A0.040 (2)0.038 (2)0.081 (3)0.0210 (18)0.0219 (18)0.011 (2)
N31A0.032 (2)0.035 (2)0.025 (2)0.0044 (17)0.0070 (18)0.0080 (19)
N51A0.023 (2)0.025 (2)0.044 (3)0.0027 (17)0.0102 (18)0.011 (2)
C1A0.026 (2)0.007 (2)0.028 (3)0.0041 (17)0.0047 (18)0.0044 (19)
C2A0.020 (2)0.016 (2)0.031 (3)0.0019 (17)0.0003 (18)0.0017 (19)
C3A0.019 (2)0.020 (2)0.030 (3)0.0012 (17)0.0058 (18)0.006 (2)
C4A0.028 (2)0.023 (2)0.021 (3)0.0062 (19)0.0071 (19)0.0041 (19)
C5A0.022 (2)0.018 (2)0.022 (3)0.0016 (17)0.0050 (17)0.0022 (19)
C6A0.024 (2)0.016 (2)0.031 (3)0.0009 (19)0.0068 (19)0.002 (2)
C11A0.033 (3)0.020 (3)0.027 (3)0.004 (2)0.004 (2)0.002 (2)
Geometric parameters (Å, º) top
S1—O11.446 (3)C11—C611.378 (5)
S1—O111.439 (3)C11—C211.393 (5)
S1—C11.758 (4)C21—C311.368 (6)
S1—C111.760 (4)C31—C411.404 (6)
O11A—C11A1.220 (5)C41—C511.388 (6)
O12A—C11A1.309 (5)C51—C611.382 (6)
O31A—N31A1.230 (5)C2—H20.9300
O32A—N31A1.217 (5)C3—H30.9300
O51A—N51A1.215 (5)C5—H50.9300
O52A—N51A1.220 (5)C6—H60.9300
O12A—H12A0.9300C21—H210.9300
N4—C41.357 (5)C31—H310.9300
N41—C411.415 (6)C51—H510.9300
N4—H4120.9500C61—H610.9300
N4—H4110.8500C1A—C6A1.393 (5)
N41—H4130.8900C1A—C11A1.499 (6)
N41—H4140.8900C1A—C2A1.374 (6)
N31A—C3A1.462 (6)C2A—C3A1.369 (6)
N51A—C5A1.474 (5)C3A—C4A1.387 (6)
C1—C21.390 (5)C4A—C5A1.378 (6)
C1—C61.387 (5)C5A—C6A1.380 (6)
C2—C31.362 (6)C2A—H2A0.9300
C3—C41.409 (6)C4A—H4A0.9300
C4—C51.397 (6)C6A—H6A0.9300
C5—C61.371 (6)
O1—S1—O11118.73 (18)C11—C61—C51120.3 (4)
O1—S1—C1106.80 (16)C1—C2—H2120.00
O1—S1—C11107.70 (17)C3—C2—H2120.00
O11—S1—C1108.88 (18)C4—C3—H3119.00
O11—S1—C11108.03 (18)C2—C3—H3119.00
C1—S1—C11106.02 (18)C4—C5—H5119.00
C11A—O12A—H12A116.00C6—C5—H5119.00
H411—N4—H412119.00C1—C6—H6120.00
C4—N4—H411122.00C5—C6—H6120.00
C4—N4—H412118.00C11—C21—H21120.00
C41—N41—H413110.00C31—C21—H21120.00
C41—N41—H414109.00C21—C31—H31120.00
H413—N41—H414109.00C41—C31—H31120.00
O31A—N31A—O32A123.9 (4)C41—C51—H51120.00
O31A—N31A—C3A117.4 (4)C61—C51—H51120.00
O32A—N31A—C3A118.7 (3)C11—C61—H61120.00
O52A—N51A—C5A117.4 (4)C51—C61—H61120.00
O51A—N51A—O52A124.2 (4)C2A—C1A—C11A121.3 (3)
O51A—N51A—C5A118.5 (3)C6A—C1A—C11A119.6 (3)
S1—C1—C2118.7 (3)C2A—C1A—C6A119.1 (4)
C2—C1—C6119.7 (4)C1A—C2A—C3A120.4 (4)
S1—C1—C6121.7 (3)N31A—C3A—C2A119.4 (4)
C1—C2—C3120.2 (4)C2A—C3A—C4A122.2 (4)
C2—C3—C4121.3 (4)N31A—C3A—C4A118.4 (4)
N4—C4—C5122.2 (4)C3A—C4A—C5A116.3 (4)
C3—C4—C5117.4 (4)N51A—C5A—C6A119.8 (4)
N4—C4—C3120.5 (4)C4A—C5A—C6A123.0 (4)
C4—C5—C6121.5 (4)N51A—C5A—C4A117.3 (4)
C1—C6—C5119.9 (4)C1A—C6A—C5A118.9 (4)
C21—C11—C61120.1 (4)O11A—C11A—C1A122.9 (4)
S1—C11—C21119.5 (3)O12A—C11A—C1A111.6 (4)
S1—C11—C61120.4 (3)O11A—C11A—O12A125.4 (4)
C11—C21—C31119.8 (4)C1A—C2A—H2A120.00
C21—C31—C41120.6 (4)C3A—C2A—H2A120.00
N41—C41—C51121.6 (4)C3A—C4A—H4A122.00
C31—C41—C51118.9 (4)C5A—C4A—H4A122.00
N41—C41—C31119.5 (4)C1A—C6A—H6A121.00
C41—C51—C61120.3 (4)C5A—C6A—H6A121.00
O1—S1—C1—C229.6 (3)C3—C4—C5—C60.7 (6)
O1—S1—C1—C6152.0 (3)C4—C5—C6—C11.5 (6)
O11—S1—C1—C2158.9 (3)S1—C11—C21—C31178.4 (3)
O11—S1—C1—C622.7 (4)C61—C11—C21—C311.4 (6)
C11—S1—C1—C285.1 (3)C21—C11—C61—C511.1 (6)
C11—S1—C1—C693.3 (3)S1—C11—C61—C51178.7 (3)
O1—S1—C11—C2127.7 (4)C11—C21—C31—C410.4 (6)
O1—S1—C11—C61152.6 (3)C21—C31—C41—N41179.0 (4)
O11—S1—C11—C21157.0 (3)C21—C31—C41—C512.3 (6)
O11—S1—C11—C6123.2 (4)C31—C41—C51—C612.6 (6)
C1—S1—C11—C2186.4 (3)N41—C41—C51—C61178.7 (4)
C1—S1—C11—C6193.4 (4)C41—C51—C61—C110.9 (6)
O32A—N31A—C3A—C2A174.4 (4)C6A—C1A—C2A—C3A0.7 (6)
O32A—N31A—C3A—C4A4.7 (6)C11A—C1A—C2A—C3A177.8 (4)
O31A—N31A—C3A—C2A6.0 (6)C2A—C1A—C6A—C5A2.1 (6)
O31A—N31A—C3A—C4A175.0 (4)C11A—C1A—C6A—C5A176.3 (4)
O52A—N51A—C5A—C4A172.2 (4)C2A—C1A—C11A—O11A171.3 (4)
O51A—N51A—C5A—C4A7.3 (6)C2A—C1A—C11A—O12A10.5 (6)
O51A—N51A—C5A—C6A173.5 (4)C6A—C1A—C11A—O11A10.3 (6)
O52A—N51A—C5A—C6A7.0 (6)C6A—C1A—C11A—O12A167.9 (4)
S1—C1—C2—C3180.0 (3)C1A—C2A—C3A—N31A179.2 (4)
C6—C1—C2—C31.6 (6)C1A—C2A—C3A—C4A0.1 (7)
C2—C1—C6—C51.9 (6)N31A—C3A—C4A—C5A178.4 (4)
S1—C1—C6—C5179.7 (3)C2A—C3A—C4A—C5A0.6 (7)
C1—C2—C3—C40.9 (6)C3A—C4A—C5A—N51A177.0 (4)
C2—C3—C4—N4178.9 (4)C3A—C4A—C5A—C6A2.2 (7)
C2—C3—C4—C50.5 (6)N51A—C5A—C6A—C1A176.2 (4)
N4—C4—C5—C6179.1 (4)C4A—C5A—C6A—C1A3.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12A—H12A···N410.931.732.653 (5)173
N4—H412···O31Ai0.952.493.150 (5)126
N41—H413···O11Aii0.892.503.367 (5)165
N41—H414···O1iii0.892.503.030 (4)119
C2—H2···O10.932.582.924 (5)102
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x1, y, z; (iii) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC7H4N2O6·C12H12N2O2S
Mr460.43
Crystal system, space groupMonoclinic, P21
Temperature (K)200
a, b, c (Å)5.8222 (4), 15.5982 (10), 10.7299 (9)
β (°) 97.693 (6)
V3)965.68 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.30 × 0.25 × 0.05
Data collection
DiffractometerOxfod Diffraction Gemini-S CCD detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.832, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
6257, 3774, 2643
Rint0.049
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.102, 0.93
No. of reflections3774
No. of parameters289
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.43
Absolute structureFlack (1983), 1803 Friedel pairs
Absolute structure parameter0.07 (11)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12A—H12A···N410.931.732.653 (5)173
N4—H412···O31Ai0.952.493.150 (5)126
N41—H413···O11Aii0.892.503.367 (5)165
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x1, y, z.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Committee, the University Library and the Science and Engineering Faculty, Queensland University of Technology.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDickenson, C., Stewart, J. M. & Ammon, H. L. (1970). J. Chem. Soc. Chem. Commun. pp. 920–921.  Google Scholar
First citationEtter, M. C. & Frankenbach, G. M. (1989). Chem. Mater. 1, 10–12.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKus'mina, L. G., Struchkov, Yu. T., Novozhilova, N. V. & Tudorovskaya, G. L. (1981). Kristallografiya, 26, 690–694.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2012a). Acta Cryst. E68, o494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2012b). In preparation.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilson, J. D., Braunwald, E., Isselbacher, K. J., Petersdorf, R. G., Martin, J. B., Fauci, A. S. & Root, R. K. (1991). Harrison's Principles of Internal Medicine, 12th ed., pp. 320, 647–648, 787. New York: McGraw-Hill.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds