metal-organic compounds
Bis{μ-2-[bis(pyridin-2-yl)methylidene]hydrazinecarbothioamidato}bis[bromidocopper(II)] methanol disolvate
aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: eesans@yahoo.com
In the centrosymmetric binuclear title compound, [Cu2Br2(C12H10N5S)2]·2CH3OH, the CuII ion adopts a slightly distorted square-pyramidal coordination geometry. The hydrazine carbothioamide moiety and one of the pyridyl rings together adopt an almost planar arrangement, with a maximum deviation of 0.052 (4) Å for the C atom of the thiourea moiety. There are two molecules of methanol solvent per complex in the The nonconventional intramolecular C—H⋯Br hydrogen bonds make the molecule more rigid, whereas the conventional N—H⋯N and O—H⋯Br intermolecular hydrogen-bonding interactions, supported with N—H⋯π interactions, establish a supramolecular linkage among the molecules in the crystal. An intermolecular C—H⋯O interaction is also present.
Related literature
For the biological applications of multinuclear copper complexes of hydrazinecarbothioamide, see: Moubaraki et al. (1998); Khan et al. (1985). For the synthesis of the title compound, see: Philip et al. (2006). For related structures of dimeric copper complexes of hydrazinecarbothioamide, see: Ainscough et al. (1991); Philip et al. (2005). For related literature, see: Duan et al. (1996).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell APEX2/SAINT (Bruker, 2004); data reduction: SAINT/XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812005934/fj2511sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812005934/fj2511Isup2.hkl
The title complex was prepared by adapting a reported procedure (Philip et al., 2006) by refluxing a mixture of methanolic solutions of 2-[di(pyridin-2-yl)methylidene]hydrazinecarbothioamide (2.573 g, 10 mmol) and CuBr2 (2.230 g, 10 mmol) for four hours. Black colored crystals were collected, washed with few drops of methanol and dried over P4O10 in vacuo. Single crystals of the title complex suitable for X-ray analysis were obtained by slow evaporation from its methanolic solution.
All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances 0.93–0.96 Å. H atoms were assigned as Uiso=1.2 Ueq (1.5 for Me). N5—H5A and N5—H5B H atoms were located from difference maps and restrained using DFIX instructions. The O1—H1A (0.82 Å) hydrogen of the methanol solvent is also placed in calculated position guided by difference maps.
Data collection: APEX2 (Bruker, 2004); cell
APEX2/SAINT (Bruker, 2004); data reduction: SAINT/XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).Fig. 1. ORTEP view of the unique part of the Cu complex, drawn with 50% probability displacement ellipsoids for the non-H atoms. | |
Fig. 2. A view of the dimeric unit generated by the association of one of the pyridyl N of the ligand with the Cu atom of an adjacent molecule. The weak metal-axial ligand interaction is represented by dashed lines. Non-H atoms are drawn with 50% probability ellipsoids. The H atoms in the complex are omitted for clarity. | |
Fig. 3. Hydrogen-bonding interactions showing an infinite chain in the crystal structure of [Cu2Br2(C12 H10 N5 S)2].2(C H3 OH). |
[Cu2Br2(C12H10N5S)2]·2CH4O | Z = 1 |
Mr = 863.62 | F(000) = 430.0 |
Triclinic, P1 | Dx = 1.859 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.3052 (7) Å | Cell parameters from 7050 reflections |
b = 9.2120 (7) Å | θ = 2.4–28.3° |
c = 11.0500 (9) Å | µ = 4.15 mm−1 |
α = 68.341 (2)° | T = 296 K |
β = 79.127 (3)° | Block, black |
γ = 84.913 (2)° | 0.30 × 0.25 × 0.25 mm |
V = 771.45 (11) Å3 |
Bruker AXS Kappa APEXII CCD diffractometer | 2688 independent reflections |
Radiation source: fine-focus sealed tube | 2374 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.065 |
Detector resolution: 8.33 pixels mm-1 | θmax = 25.0°, θmin = 2.4° |
ω and ϕ scan | h = −9→9 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | k = −9→10 |
Tmin = 0.300, Tmax = 0.354 | l = −13→13 |
11266 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0351P)2 + 0.9038P] where P = (Fo2 + 2Fc2)/3 |
2688 reflections | (Δ/σ)max = 0.001 |
209 parameters | Δρmax = 0.46 e Å−3 |
2 restraints | Δρmin = −0.48 e Å−3 |
[Cu2Br2(C12H10N5S)2]·2CH4O | γ = 84.913 (2)° |
Mr = 863.62 | V = 771.45 (11) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.3052 (7) Å | Mo Kα radiation |
b = 9.2120 (7) Å | µ = 4.15 mm−1 |
c = 11.0500 (9) Å | T = 296 K |
α = 68.341 (2)° | 0.30 × 0.25 × 0.25 mm |
β = 79.127 (3)° |
Bruker AXS Kappa APEXII CCD diffractometer | 2688 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2374 reflections with I > 2σ(I) |
Tmin = 0.300, Tmax = 0.354 | Rint = 0.065 |
11266 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 2 restraints |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.46 e Å−3 |
2688 reflections | Δρmin = −0.48 e Å−3 |
209 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.58511 (5) | −0.08863 (4) | 0.69095 (4) | 0.04060 (15) | |
Cu1 | 0.47922 (5) | 0.17346 (5) | 0.59664 (4) | 0.03332 (15) | |
S1 | 0.22214 (12) | 0.12075 (11) | 0.70508 (10) | 0.0434 (3) | |
O1 | 0.7785 (5) | 0.7271 (5) | 0.9538 (4) | 0.0823 (12) | |
H1A | 0.7308 | 0.7735 | 0.8912 | 0.123* | |
N1 | 0.6759 (3) | 0.2576 (3) | 0.4581 (3) | 0.0299 (6) | |
N2 | 0.4272 (3) | 0.7176 (3) | 0.2495 (3) | 0.0302 (6) | |
N3 | 0.3754 (3) | 0.3618 (3) | 0.4794 (3) | 0.0238 (6) | |
N4 | 0.2129 (3) | 0.3997 (3) | 0.5030 (3) | 0.0294 (6) | |
N5 | −0.0218 (4) | 0.3210 (4) | 0.6483 (3) | 0.0417 (8) | |
C1 | 0.8282 (4) | 0.2004 (5) | 0.4516 (4) | 0.0379 (9) | |
H1 | 0.8526 | 0.1102 | 0.5197 | 0.045* | |
C2 | 0.9519 (5) | 0.2690 (5) | 0.3480 (4) | 0.0465 (10) | |
H2 | 1.0579 | 0.2269 | 0.3470 | 0.056* | |
C3 | 0.9154 (5) | 0.3999 (5) | 0.2473 (4) | 0.0445 (10) | |
H3 | 0.9964 | 0.4475 | 0.1758 | 0.053* | |
C4 | 0.7571 (5) | 0.4617 (5) | 0.2518 (4) | 0.0360 (8) | |
H4 | 0.7305 | 0.5510 | 0.1838 | 0.043* | |
C5 | 0.6401 (4) | 0.3882 (4) | 0.3587 (3) | 0.0268 (7) | |
C6 | 0.4688 (4) | 0.4423 (4) | 0.3730 (3) | 0.0248 (7) | |
C7 | 0.4119 (4) | 0.5710 (4) | 0.2597 (3) | 0.0248 (7) | |
C8 | 0.3584 (5) | 0.5319 (4) | 0.1652 (4) | 0.0384 (9) | |
H8 | 0.3479 | 0.4276 | 0.1771 | 0.046* | |
C9 | 0.3207 (5) | 0.6484 (5) | 0.0535 (4) | 0.0433 (10) | |
H9 | 0.2855 | 0.6248 | −0.0122 | 0.052* | |
C10 | 0.3360 (5) | 0.7995 (4) | 0.0412 (4) | 0.0377 (9) | |
H10 | 0.3116 | 0.8812 | −0.0334 | 0.045* | |
C11 | 0.3880 (5) | 0.8296 (4) | 0.1402 (4) | 0.0372 (9) | |
H11 | 0.3965 | 0.9332 | 0.1310 | 0.045* | |
C12 | 0.1364 (4) | 0.2936 (4) | 0.6108 (3) | 0.0288 (7) | |
C13 | 0.8997 (8) | 0.8191 (8) | 0.9536 (7) | 0.0809 (17) | |
H13A | 0.8666 | 0.8600 | 1.0230 | 0.121* | |
H13B | 0.9186 | 0.9039 | 0.8700 | 0.121* | |
H13C | 0.9988 | 0.7578 | 0.9675 | 0.121* | |
H5A | −0.074 (5) | 0.401 (4) | 0.608 (4) | 0.058 (14)* | |
H5B | −0.078 (5) | 0.261 (4) | 0.718 (3) | 0.053 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0512 (3) | 0.0267 (2) | 0.0425 (3) | 0.01050 (16) | −0.01669 (19) | −0.00917 (17) |
Cu1 | 0.0283 (3) | 0.0284 (3) | 0.0318 (3) | 0.00663 (18) | −0.00458 (19) | 0.00051 (19) |
S1 | 0.0334 (5) | 0.0364 (5) | 0.0404 (6) | 0.0031 (4) | −0.0012 (4) | 0.0062 (4) |
O1 | 0.070 (3) | 0.089 (3) | 0.072 (3) | −0.014 (2) | −0.023 (2) | −0.002 (2) |
N1 | 0.0262 (15) | 0.0315 (16) | 0.0310 (16) | 0.0048 (12) | −0.0072 (12) | −0.0103 (13) |
N2 | 0.0306 (16) | 0.0280 (16) | 0.0283 (16) | 0.0002 (12) | −0.0047 (13) | −0.0061 (12) |
N3 | 0.0202 (14) | 0.0251 (14) | 0.0256 (14) | 0.0027 (11) | −0.0054 (11) | −0.0084 (11) |
N4 | 0.0260 (15) | 0.0281 (15) | 0.0283 (15) | 0.0045 (12) | −0.0048 (12) | −0.0045 (12) |
N5 | 0.0282 (17) | 0.042 (2) | 0.0375 (19) | 0.0030 (15) | 0.0036 (15) | 0.0003 (16) |
C1 | 0.0269 (19) | 0.040 (2) | 0.042 (2) | 0.0102 (16) | −0.0082 (17) | −0.0107 (17) |
C2 | 0.028 (2) | 0.052 (3) | 0.055 (3) | 0.0104 (18) | −0.0033 (19) | −0.018 (2) |
C3 | 0.029 (2) | 0.053 (3) | 0.047 (2) | −0.0023 (17) | 0.0049 (18) | −0.018 (2) |
C4 | 0.034 (2) | 0.037 (2) | 0.033 (2) | −0.0006 (16) | −0.0025 (16) | −0.0095 (16) |
C5 | 0.0275 (18) | 0.0287 (17) | 0.0272 (18) | 0.0022 (13) | −0.0070 (14) | −0.0128 (14) |
C6 | 0.0267 (18) | 0.0222 (16) | 0.0251 (17) | 0.0011 (13) | −0.0067 (14) | −0.0074 (14) |
C7 | 0.0202 (16) | 0.0259 (17) | 0.0229 (16) | 0.0010 (13) | −0.0013 (13) | −0.0042 (13) |
C8 | 0.049 (2) | 0.0285 (19) | 0.040 (2) | 0.0026 (16) | −0.0159 (18) | −0.0121 (16) |
C9 | 0.050 (2) | 0.049 (2) | 0.034 (2) | 0.0027 (19) | −0.0166 (18) | −0.0155 (18) |
C10 | 0.042 (2) | 0.037 (2) | 0.0258 (19) | 0.0055 (16) | −0.0116 (16) | −0.0002 (15) |
C11 | 0.047 (2) | 0.0259 (18) | 0.033 (2) | 0.0012 (16) | −0.0087 (17) | −0.0031 (15) |
C12 | 0.0238 (17) | 0.0317 (18) | 0.0287 (18) | 0.0032 (14) | −0.0054 (14) | −0.0087 (15) |
C13 | 0.077 (4) | 0.087 (4) | 0.092 (4) | 0.006 (3) | −0.024 (3) | −0.045 (4) |
Br1—Cu1 | 2.4084 (5) | C2—C3 | 1.363 (6) |
Cu1—N3 | 1.982 (3) | C2—H2 | 0.9300 |
Cu1—N1 | 2.005 (3) | C3—C4 | 1.385 (5) |
Cu1—S1 | 2.2404 (11) | C3—H3 | 0.9300 |
S1—C12 | 1.727 (3) | C4—C5 | 1.376 (5) |
O1—C13 | 1.371 (7) | C4—H4 | 0.9300 |
O1—H1A | 0.8200 | C5—C6 | 1.464 (5) |
N1—C1 | 1.326 (4) | C6—C7 | 1.492 (4) |
N1—C5 | 1.351 (4) | C7—C8 | 1.378 (5) |
N2—C7 | 1.329 (4) | C8—C9 | 1.372 (5) |
N2—C11 | 1.341 (5) | C8—H8 | 0.9300 |
N3—C6 | 1.284 (4) | C9—C10 | 1.363 (6) |
N3—N4 | 1.365 (4) | C9—H9 | 0.9300 |
N4—C12 | 1.320 (4) | C10—C11 | 1.373 (5) |
N5—C12 | 1.333 (5) | C10—H10 | 0.9300 |
N5—H5A | 0.837 (19) | C11—H11 | 0.9300 |
N5—H5B | 0.843 (19) | C13—H13A | 0.9600 |
C1—C2 | 1.379 (6) | C13—H13B | 0.9600 |
C1—H1 | 0.9300 | C13—H13C | 0.9600 |
N3—Cu1—N1 | 81.17 (11) | N1—C5—C4 | 121.6 (3) |
N3—Cu1—S1 | 83.78 (8) | N1—C5—C6 | 115.1 (3) |
N1—Cu1—S1 | 163.80 (9) | C4—C5—C6 | 123.3 (3) |
N3—Cu1—Br1 | 162.00 (8) | N3—C6—C5 | 115.6 (3) |
N1—Cu1—Br1 | 97.02 (8) | N3—C6—C7 | 125.0 (3) |
S1—Cu1—Br1 | 95.45 (3) | C5—C6—C7 | 118.9 (3) |
C12—S1—Cu1 | 95.59 (12) | N2—C7—C8 | 123.3 (3) |
C13—O1—H1A | 109.5 | N2—C7—C6 | 118.5 (3) |
C1—N1—C5 | 118.6 (3) | C8—C7—C6 | 118.1 (3) |
C1—N1—Cu1 | 128.9 (3) | C9—C8—C7 | 119.3 (3) |
C5—N1—Cu1 | 112.5 (2) | C9—C8—H8 | 120.3 |
C7—N2—C11 | 116.4 (3) | C7—C8—H8 | 120.3 |
C6—N3—N4 | 121.0 (3) | C10—C9—C8 | 118.2 (4) |
C6—N3—Cu1 | 115.6 (2) | C10—C9—H9 | 120.9 |
N4—N3—Cu1 | 123.3 (2) | C8—C9—H9 | 120.9 |
C12—N4—N3 | 111.1 (3) | C9—C10—C11 | 119.2 (3) |
C12—N5—H5A | 124 (3) | C9—C10—H10 | 120.4 |
C12—N5—H5B | 123 (3) | C11—C10—H10 | 120.4 |
H5A—N5—H5B | 113 (4) | N2—C11—C10 | 123.5 (4) |
N1—C1—C2 | 122.8 (4) | N2—C11—H11 | 118.2 |
N1—C1—H1 | 118.6 | C10—C11—H11 | 118.2 |
C2—C1—H1 | 118.6 | N4—C12—N5 | 117.0 (3) |
C3—C2—C1 | 118.6 (4) | N4—C12—S1 | 125.8 (3) |
C3—C2—H2 | 120.7 | N5—C12—S1 | 117.2 (3) |
C1—C2—H2 | 120.7 | O1—C13—H13A | 109.5 |
C2—C3—C4 | 119.7 (4) | O1—C13—H13B | 109.5 |
C2—C3—H3 | 120.2 | H13A—C13—H13B | 109.5 |
C4—C3—H3 | 120.2 | O1—C13—H13C | 109.5 |
C5—C4—C3 | 118.7 (4) | H13A—C13—H13C | 109.5 |
C5—C4—H4 | 120.7 | H13B—C13—H13C | 109.5 |
C3—C4—H4 | 120.7 | ||
N3—Cu1—S1—C12 | −4.96 (14) | C3—C4—C5—N1 | −0.5 (5) |
N1—Cu1—S1—C12 | −26.6 (3) | C3—C4—C5—C6 | −179.3 (3) |
Br1—Cu1—S1—C12 | −166.89 (12) | N4—N3—C6—C5 | −179.2 (3) |
N3—Cu1—N1—C1 | 179.6 (3) | Cu1—N3—C6—C5 | −3.8 (4) |
S1—Cu1—N1—C1 | −158.5 (3) | N4—N3—C6—C7 | −6.7 (5) |
Br1—Cu1—N1—C1 | −18.4 (3) | Cu1—N3—C6—C7 | 168.7 (2) |
N3—Cu1—N1—C5 | −2.2 (2) | N1—C5—C6—N3 | 1.9 (4) |
S1—Cu1—N1—C5 | 19.7 (5) | C4—C5—C6—N3 | −179.3 (3) |
Br1—Cu1—N1—C5 | 159.8 (2) | N1—C5—C6—C7 | −171.0 (3) |
N1—Cu1—N3—C6 | 3.3 (2) | C4—C5—C6—C7 | 7.8 (5) |
S1—Cu1—N3—C6 | −170.7 (2) | C11—N2—C7—C8 | −0.3 (5) |
Br1—Cu1—N3—C6 | −82.2 (3) | C11—N2—C7—C6 | 174.3 (3) |
N1—Cu1—N3—N4 | 178.6 (3) | N3—C6—C7—N2 | 99.6 (4) |
S1—Cu1—N3—N4 | 4.6 (2) | C5—C6—C7—N2 | −88.2 (4) |
Br1—Cu1—N3—N4 | 93.1 (3) | N3—C6—C7—C8 | −85.5 (4) |
C6—N3—N4—C12 | 173.7 (3) | C5—C6—C7—C8 | 86.7 (4) |
Cu1—N3—N4—C12 | −1.3 (4) | N2—C7—C8—C9 | 1.0 (6) |
C5—N1—C1—C2 | 0.3 (6) | C6—C7—C8—C9 | −173.6 (3) |
Cu1—N1—C1—C2 | 178.4 (3) | C7—C8—C9—C10 | −0.8 (6) |
N1—C1—C2—C3 | −1.0 (6) | C8—C9—C10—C11 | −0.1 (6) |
C1—C2—C3—C4 | 0.8 (6) | C7—N2—C11—C10 | −0.7 (5) |
C2—C3—C4—C5 | −0.1 (6) | C9—C10—C11—N2 | 0.9 (6) |
C1—N1—C5—C4 | 0.4 (5) | N3—N4—C12—N5 | 176.8 (3) |
Cu1—N1—C5—C4 | −178.0 (3) | N3—N4—C12—S1 | −4.8 (4) |
C1—N1—C5—C6 | 179.3 (3) | Cu1—S1—C12—N4 | 7.2 (3) |
Cu1—N1—C5—C6 | 0.9 (3) | Cu1—S1—C12—N5 | −174.4 (3) |
Cg4 is the centroid of the N2/C7–C11 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Br1i | 0.82 | 2.58 | 3.396 (4) | 178 |
N5—H5A···N4ii | 0.84 (2) | 2.17 (2) | 3.006 (4) | 177 (5) |
C4—H4···O1iii | 0.93 | 2.44 | 3.281 (5) | 151 |
C11—H11···Br1iv | 0.93 | 2.86 | 3.573 (4) | 135 |
C1—H1···Br1 | 0.93 | 2.91 | 3.450 (4) | 119 |
N5—H5B···Cg4ii | 0.84 (2) | 2.71 (4) | 3.310 (4) | 129 (3) |
Symmetry codes: (i) x, y+1, z; (ii) −x, −y+1, −z+1; (iii) x, y, z−1; (iv) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu2Br2(C12H10N5S)2]·2CH4O |
Mr | 863.62 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 8.3052 (7), 9.2120 (7), 11.0500 (9) |
α, β, γ (°) | 68.341 (2), 79.127 (3), 84.913 (2) |
V (Å3) | 771.45 (11) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 4.15 |
Crystal size (mm) | 0.30 × 0.25 × 0.25 |
Data collection | |
Diffractometer | Bruker AXS Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.300, 0.354 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11266, 2688, 2374 |
Rint | 0.065 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.094, 1.08 |
No. of reflections | 2688 |
No. of parameters | 209 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.46, −0.48 |
Computer programs: APEX2 (Bruker, 2004), APEX2/SAINT (Bruker, 2004), SAINT/XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2010), SHELXL97 and publCIF (Westrip, 2010).
Cg4 is the centroid of the N2/C7–C11 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Br1i | 0.82 | 2.58 | 3.396 (4) | 178 |
N5—H5A···N4ii | 0.837 (19) | 2.17 (2) | 3.006 (4) | 177 (5) |
C4—H4···O1iii | 0.93 | 2.44 | 3.281 (5) | 151 |
C11—H11···Br1iv | 0.93 | 2.86 | 3.573 (4) | 135 |
C1—H1···Br1 | 0.93 | 2.91 | 3.450 (4) | 119 |
N5—H5B···Cg4ii | 0.843 (19) | 2.71 (4) | 3.310 (4) | 129 (3) |
Symmetry codes: (i) x, y+1, z; (ii) −x, −y+1, −z+1; (iii) x, y, z−1; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
RJK is grateful to University Grants Commision, New Delhi, India, for the award of a Senior Research Fellowship. AN and AAA are grateful to the Council of Scientific and Industrial Research, New Delhi, India, for financial support in the form of Junior Research Fellowships. The authors are grateful to the Sophisticated Analytical Instument Facility, Cochin University of Science and Technology, Kochi-22, for providing single-crystal X-ray diffraction data.
References
Ainscough, E. W., Brodie, A. M., Ranford, J. D. & Waters, J. M. (1991). J. Chem. Soc. Dalton Trans. pp. 1737–1742. CSD CrossRef Web of Science Google Scholar
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Duan, C.-Y., Wu, B.-M. & Mak, T. C. W. (1996). J. Chem. Soc. Dalton Trans. pp. 3485–3490. CSD CrossRef Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Khan, O. (1985). Angew. Chem. Int. Ed. Engl. 24, 834–850. Google Scholar
Moubaraki, B., Murray, K. S., Ranford, J. D., Wang, X. & Xu, Y. (1998). Chem. Commun. pp. 353–354. Web of Science CSD CrossRef Google Scholar
Philip, V., Suni, V., Kurup, M. R. P. & Nethaji, M. (2005). Polyhedron, 24, 1133–1142. Web of Science CSD CrossRef CAS Google Scholar
Philip, V., Suni, V., Kurup, M. R. P. & Nethaji, M. (2006). Polyhedron, 25, 1931–1938. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrazinecarbothioamides have been reported to have a great variety of biological activity. In most cases, the metal complexes show more activity compared to their metal free ligands (Moubaraki et al., 1998). Coupled systems of transition metal complexes are of special interest in various fields of science. The main reason probably is due to the phenomenon of interaction between metal centers lying at the crossover point of two widely separated areas, namely the physics of the magnetic materials and the role of polynuclear reaction sites in biological processes (Khan et al., 1985).
The title complex [Cu2Br2(C12H10N5S)2].2(CH3OH) has a dimeric structure. The coordination geometry around each copper(II) ion is square pyramidal with a slight distortion (τ = 0.03). The S1 atom of the hydrazinecarbothioamide moiety, the imino N3 atom, pyridine N1 atom and the Br1 atom comprise the basal plane while the apical position is occupied by the N2A atom of the symmetry related half of the dimer with a longest bond length to the metal atom of 2.529 (3) Å. The hydrazinecarbothioamide moiety of the free ligand shows E configuration about the both C12–N4 and C6–N3 (Ainscough et al., 1991; Philip et al., 2005) whereas in the CuII complex the coordinated hydrazinecarbothioamide moiety has E configuration with respect to C6–N3 and Z configuration about C12–N4. The atoms coordinated to metal centre found to exist in E configuration having N3 and N1 atoms cis to each other with respect to C5—C6 bond. A unique part of the CuII complex and the dimeric unit generated by the association of the free pyridyl nitrogen with the Cu atom are shown along with the atom-labeling in Fig. 1 and 2 respectively. The two aromatic rings are twisted with a dihedral angle of 88.1 (2)° between the rings. The hydrazinecarbothioamide moiety and one of the pyridine ring comprising atoms C1—C6 and N1 are almost planar with maximum deviation of 0.052 (4) Å for the atom C12 of the ring. C12–S1 bond distance (1.727 (4) Å) is very close to the single bond (Duan et al., 1996) which suggests that the ligand is coordinated in the thiolate form. This phenomenon could also be further confirmed by the coplanar nature of the NH2 group of the coordinated ligand with sp2 character wich facilitates an extended conjugation of the hydrazinecarbothioamide moiety with the aromatic rings.
The intramolecular non-classical hydrogen bonding interactions (C1–H1···Br1 and C11–H11···Br1), Table 1, makes the complex more rigid. The intermolecular hydrogen bonding interactions (classical and non-classical) establish a supramolecular 1-D network by linking the adjacent molecules through the methanol present in the lattice and N—H···N in parallel fashion as shown in Fig. 3. Packing of the molecules also involves many very weak π..π interactions with centroid-centroid distances in the range 3.707 (2)–5.778 (2). However, there is an N—H···π interaction between the hydrogen attached at N5 atom and one of the pyridyl ring comprising atoms from C7—C11 and N2 of another molecule and also a lone-pair···π interaction between the Br1 atom and two different chelate rings comprising atoms Cu1, S1, C12, N3, N4 and Cu1, N1, N3, C5, C6.