organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(3-Bromo­phen­yl)-3-(3,4-dimeth­­oxy­phen­yl)prop-2-en-1-one

aDepartamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile, and bDepartment of Chemistry, Durham University, Durham DH1 3LE, England
*Correspondence e-mail: cescobar@unab.cl

(Received 1 February 2012; accepted 15 February 2012; online 29 February 2012)

The mol­ecular structure of the title compound, C17H15BrO3, consists of a bromo­phenyl and a 3,4-dimeth­oxy­phenyl group linked through a prop-2-en-1-one spacer. The C=C double bond displays an E conformation, while the carbonyl group shows an S-cis conformation relative to the double bond.

Related literature

For the Suzuki reaction, see: Miyaura & Suzuki (1995[Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.]); Bringmann et al. (2005[Bringmann, G., Price Mortimer, A. J., Keller, P. A., Gresser, M. J., Garner, J. & Breuning, M. (2005). Angew. Chem. Int. Ed. 44, 5384-5427.]). For bichalcone derivatives, see: Shetonde et al. (2010[Shetonde, O. M., Wendimagegn, M., Merhatibeb, B., Kerstin, A.-M. & Berhanu, M. A. (2010). Bioorg. Med. Chem. 18, 2464-2473.]). For related structures, see: Escobar et al. (2008[Escobar, C. A., Vega, A., Sicker, D. & Ibañez, A. (2008). Acta Cryst. E64, o1834.]); Valdebenito et al. (2010[Valdebenito, C., Garland, M. T., Fuentealba, M. & Escobar, C. A. (2010). Acta Cryst. E66, m838.]); Chu et al. (2004[Chu, H.-W., Wu, H.-T. & Lee, Y.-J. (2004). Tetrahedron, 60, 2647-2655.]); Radha Krishna et al. (2005[Radha Krishna, J., Jagadeesh Kumar, N., Krishnaiah, M., Venkata Rao, C., Koteswara Rao, Y. & Puranik, V. G. (2005). Acta Cryst. E61, o1323-o1325.]); Wu et al. (2005[Wu, H., Xu, Z. & Liang, Y.-M. (2005). Acta Cryst. E61, o1434-o1435.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15BrO3

  • Mr = 347.20

  • Monoclinic, P 21 /c

  • a = 12.7946 (5) Å

  • b = 3.9373 (1) Å

  • c = 29.8209 (10) Å

  • β = 109.219 (3)°

  • V = 1418.54 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 120 K

  • 0.2 × 0.12 × 0.08 mm

Data collection
  • Agilent Xcalibur Sapphire3 Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.802, Tmax = 1.000

  • 12861 measured reflections

  • 3429 independent reflections

  • 2895 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.074

  • S = 1.10

  • 3429 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

From the synthetic point of view, bromochalcones are the choice precursors to accomplish the C—C bond formation, through the Suzuki reaction, one of the most popular and powerful methods for coupling aryl–aryl moieties (Miyaura & Suzuki, 1995; Bringmann et al., 2005), to produce symmetric or asymmetric biphenyls, this being the entry to bichalcones (Shetonde et al., 2010).

The molecular structure of the title compound displays two phenyl rings connected through the organic prop-2-en-1-one spacer. As shown in Fig. 1, one phenyl ring is substituted at positions 3 and 4 with methoxy groups, while the other is substituted at position 3' with one Br atom.

The dihedral angle between the two aromatic rings joined by the conjugated spacer is 26.59 (9)°. On the other hand, the spacer formed by C10—C9—C8—C7—O1—C1 can be considered as a plane with a RMSD of 0.029 Å. This feature is also observed in other chalcones (Escobar et al. 2008; Valdebenito et al., 2010; Chu et al. 2004; Radha Krishna et al. 2005; Wu et al. 2005).

Finally, both inter- and intramolecular hydrogen bonds are not observed in the crystalline packing of title compound.

Related literature top

For the Suzuki reaction, see: Miyaura & Suzuki (1995); Bringmann et al. (2005). For bichalcone derivatives, see: Shetonde et al. (2010). For related structures, see: Escobar et al. (2008); Valdebenito et al. (2010); Chu et al. (2004); Radha Krishna et al. (2005); Wu et al. (2005).

Experimental top

A mixture of 3-bromoacetophenone (0.5 g, 2,5 mmol) and 3,4-dimethoxibenzaldehyde (0.41 g, 2,5 mmol), were dissolved in Methanol (50 ml), and were treated with KOH (2 g, dissolved in 20 ml methanol). After 20 min 30 ml of water were added, and the title compound precipitated as a yellow solid. Then, it was filtered and recrystallized in ethanol to yield 1.27 g (73%) of a yellow solid. m.p.117–120°C. IR (KBr): ν = 1657 (CO), cm-1. 1H-NMR (400 MHz, CDCl3): d = 3.94 (3H, s, OCH3), 3.96 (3H, s, OCH3), 6.90 (1H, d, J = 8.3 Hz, H5), 7.16 (1H, m, H2), 7.24 (1H, d, J = 7.2 Hz., H6), 7.32 (1H, d, J = 15.6 Hz., Ha), 7.38 (1H, t, J = 7.8 Hz., H5), 7.70 (1H, d, J = 7.9 Hz., H4), 7.77 (1H, d, J = 15.6 Hz., Hb), 7.93 (1H, d, J = 7.7 Hz., H6), 8.13 (1H, m, H2). 13C-NMR (400 MHz, CDCl3): d = 56.1, 110.2, 111.2, 119.4, 122.9, 123.5, 127.0, 127.6, 130.2, 131.4, 135.4, 140.4, 146.0, 149.3, 151.8, 189.1. HRMS calc. for C17H15BrO3 346.02046; Found 346.019994.

Refinement top

The H atoms positions were calculated after each cycle of refinement using a riding model with C—H distances in the range 0.95—0.98 Å and Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with full atom numbering scheme. Displacement ellipsoids are presented at 30% probability level and H atoms are shown as spheres.
(E)-1-(3-Bromophenyl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C17H15BrO3F(000) = 704
Mr = 347.20Dx = 1.626 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
a = 12.7946 (5) ÅCell parameters from 3587 reflections
b = 3.9373 (1) Åθ = 2.6–29.0°
c = 29.8209 (10) ŵ = 2.91 mm1
β = 109.219 (3)°T = 120 K
V = 1418.54 (8) Å3Prism, colourless
Z = 40.2 × 0.12 × 0.08 mm
Data collection top
Agilent Xcalibur Sapphire3 Gemini ultra
diffractometer
3429 independent reflections
Radiation source: Enhance (Mo) X-ray source2895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 16.1511 pixels mm-1θmax = 29.0°, θmin = 2.6°
ω scansh = 1716
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 55
Tmin = 0.802, Tmax = 1.000l = 4040
12861 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.019P)2 + 1.5139P]
where P = (Fo2 + 2Fc2)/3
3429 reflections(Δ/σ)max = 0.002
192 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C17H15BrO3V = 1418.54 (8) Å3
Mr = 347.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7946 (5) ŵ = 2.91 mm1
b = 3.9373 (1) ÅT = 120 K
c = 29.8209 (10) Å0.2 × 0.12 × 0.08 mm
β = 109.219 (3)°
Data collection top
Agilent Xcalibur Sapphire3 Gemini ultra
diffractometer
3429 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2895 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 1.000Rint = 0.047
12861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.10Δρmax = 0.63 e Å3
3429 reflectionsΔρmin = 0.41 e Å3
192 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.11568 (2)0.90741 (7)0.528213 (9)0.01853 (9)
O10.25274 (14)0.3062 (5)0.31571 (6)0.0198 (4)
O20.40922 (14)0.3072 (5)0.32327 (6)0.0173 (4)
O30.37580 (14)0.5457 (5)0.39741 (6)0.0190 (4)
C160.4322 (2)0.1612 (7)0.28340 (10)0.0205 (6)
H16A0.38730.27510.25420.031*
H16B0.41410.08140.28130.031*
H16C0.51090.19020.28740.031*
C90.0247 (2)0.2800 (7)0.32953 (9)0.0143 (5)
H90.07590.15070.30520.017*
C110.1119 (2)0.1273 (6)0.29162 (9)0.0143 (5)
H110.05350.01840.26760.017*
C120.2171 (2)0.1330 (6)0.28749 (9)0.0148 (5)
H120.22980.03570.26060.018*
C140.2834 (2)0.4212 (7)0.36346 (9)0.0143 (5)
C10.2297 (2)0.6078 (7)0.38681 (9)0.0140 (5)
C150.1780 (2)0.4234 (7)0.36627 (9)0.0144 (5)
H150.16490.52430.39280.017*
C50.3827 (2)0.8723 (7)0.40364 (10)0.0201 (6)
H50.45790.94290.39320.024*
C100.0897 (2)0.2760 (6)0.32972 (9)0.0130 (5)
C30.2072 (2)0.8273 (6)0.46427 (9)0.0142 (5)
C40.3163 (2)0.9344 (7)0.45004 (10)0.0178 (6)
H40.34501.04790.47160.021*
C80.0668 (2)0.4429 (7)0.35928 (9)0.0149 (5)
H80.01870.56190.38580.018*
C20.1622 (2)0.6663 (6)0.43363 (9)0.0135 (5)
H20.08690.59680.44420.016*
C130.3031 (2)0.2829 (6)0.32325 (9)0.0138 (5)
C70.1871 (2)0.4390 (7)0.35127 (9)0.0143 (5)
C170.3612 (2)0.6874 (7)0.43882 (9)0.0212 (6)
H17A0.30960.87900.42980.032*
H17B0.43270.76670.46040.032*
H17C0.33130.51400.45480.032*
C60.3401 (2)0.7083 (7)0.37247 (10)0.0175 (6)
H60.38660.66380.34090.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02037 (14)0.02143 (14)0.01387 (14)0.00093 (12)0.00574 (10)0.00270 (12)
O10.0164 (9)0.0267 (11)0.0153 (10)0.0041 (8)0.0037 (8)0.0030 (8)
O20.0138 (9)0.0241 (10)0.0154 (10)0.0002 (8)0.0068 (7)0.0033 (8)
O30.0141 (9)0.0302 (11)0.0126 (10)0.0035 (8)0.0042 (7)0.0081 (9)
C160.0222 (14)0.0244 (15)0.0198 (15)0.0009 (12)0.0138 (12)0.0032 (12)
C90.0151 (13)0.0143 (12)0.0115 (13)0.0014 (11)0.0017 (10)0.0032 (11)
C110.0151 (12)0.0144 (13)0.0115 (13)0.0002 (10)0.0018 (10)0.0005 (11)
C120.0198 (13)0.0146 (13)0.0115 (13)0.0031 (11)0.0073 (10)0.0011 (11)
C140.0173 (12)0.0132 (12)0.0113 (13)0.0004 (11)0.0030 (10)0.0002 (11)
C10.0150 (12)0.0128 (12)0.0148 (13)0.0034 (11)0.0058 (10)0.0026 (11)
C150.0190 (13)0.0143 (12)0.0111 (13)0.0019 (11)0.0065 (10)0.0001 (11)
C50.0137 (13)0.0235 (15)0.0237 (15)0.0011 (11)0.0071 (11)0.0050 (13)
C100.0150 (12)0.0115 (12)0.0126 (13)0.0025 (10)0.0048 (10)0.0031 (10)
C30.0156 (12)0.0133 (13)0.0131 (14)0.0031 (10)0.0039 (10)0.0019 (10)
C40.0168 (13)0.0176 (13)0.0217 (15)0.0010 (11)0.0102 (11)0.0001 (12)
C80.0146 (12)0.0164 (13)0.0128 (13)0.0009 (11)0.0033 (10)0.0017 (11)
C20.0104 (12)0.0140 (13)0.0174 (14)0.0024 (10)0.0064 (10)0.0030 (11)
C130.0141 (12)0.0135 (12)0.0141 (13)0.0016 (10)0.0052 (10)0.0031 (11)
C70.0155 (12)0.0124 (12)0.0141 (13)0.0005 (11)0.0036 (10)0.0036 (11)
C170.0201 (14)0.0285 (16)0.0147 (14)0.0036 (12)0.0054 (11)0.0065 (12)
C60.0159 (13)0.0203 (14)0.0141 (14)0.0026 (11)0.0019 (10)0.0025 (11)
Geometric parameters (Å, º) top
Br1—C31.907 (3)C1—C21.398 (3)
O1—C71.232 (3)C1—C71.498 (4)
O2—C161.436 (3)C1—C61.391 (4)
O2—C131.361 (3)C15—H150.9500
O3—C141.369 (3)C15—C101.411 (3)
O3—C171.422 (3)C5—H50.9500
C16—H16A0.9800C5—C41.387 (4)
C16—H16B0.9800C5—C61.383 (4)
C16—H16C0.9800C3—C41.384 (4)
C9—H90.9500C3—C21.384 (4)
C9—C101.462 (3)C4—H40.9500
C9—C81.343 (4)C8—H80.9500
C11—H110.9500C8—C71.477 (3)
C11—C121.391 (3)C2—H20.9500
C11—C101.388 (3)C17—H17A0.9800
C12—H120.9500C17—H17B0.9800
C12—C131.387 (3)C17—H17C0.9800
C14—C151.379 (3)C6—H60.9500
C14—C131.413 (4)
C13—O2—C16116.6 (2)C11—C10—C15118.5 (2)
C14—O3—C17117.0 (2)C15—C10—C9123.0 (2)
O2—C16—H16A109.5C4—C3—Br1118.8 (2)
O2—C16—H16B109.5C2—C3—Br1118.96 (19)
O2—C16—H16C109.5C2—C3—C4122.3 (2)
H16A—C16—H16B109.5C5—C4—H4120.7
H16A—C16—H16C109.5C3—C4—C5118.5 (2)
H16B—C16—H16C109.5C3—C4—H4120.7
C10—C9—H9115.8C9—C8—H8119.6
C8—C9—H9115.8C9—C8—C7120.8 (2)
C8—C9—C10128.5 (2)C7—C8—H8119.6
C12—C11—H11119.0C1—C2—H2120.7
C10—C11—H11119.0C3—C2—C1118.7 (2)
C10—C11—C12122.0 (2)C3—C2—H2120.7
C11—C12—H12120.5O2—C13—C12124.7 (2)
C13—C12—C11119.0 (2)O2—C13—C14115.4 (2)
C13—C12—H12120.5C12—C13—C14119.9 (2)
O3—C14—C15125.2 (2)O1—C7—C1119.5 (2)
O3—C14—C13114.5 (2)O1—C7—C8121.5 (2)
C15—C14—C13120.3 (2)C8—C7—C1118.9 (2)
C2—C1—C7122.0 (2)O3—C17—H17A109.5
C6—C1—C2119.4 (2)O3—C17—H17B109.5
C6—C1—C7118.6 (2)O3—C17—H17C109.5
C14—C15—H15119.9H17A—C17—H17B109.5
C14—C15—C10120.1 (2)H17A—C17—H17C109.5
C10—C15—H15119.9H17B—C17—H17C109.5
C4—C5—H5119.8C1—C6—H6119.6
C6—C5—H5119.8C5—C6—C1120.7 (2)
C6—C5—C4120.3 (2)C5—C6—H6119.6
C11—C10—C9118.4 (2)
Br1—C3—C4—C5179.3 (2)C10—C11—C12—C132.0 (4)
Br1—C3—C2—C1179.90 (18)C4—C5—C6—C11.0 (4)
O3—C14—C15—C10177.6 (2)C4—C3—C2—C10.5 (4)
O3—C14—C13—O22.7 (3)C8—C9—C10—C11171.3 (3)
O3—C14—C13—C12176.7 (2)C8—C9—C10—C157.1 (4)
C16—O2—C13—C120.9 (4)C2—C1—C7—O1159.4 (2)
C16—O2—C13—C14178.5 (2)C2—C1—C7—C822.0 (4)
C9—C8—C7—O14.7 (4)C2—C1—C6—C51.6 (4)
C9—C8—C7—C1176.7 (2)C2—C3—C4—C51.1 (4)
C11—C12—C13—O2179.5 (2)C13—C14—C15—C102.3 (4)
C11—C12—C13—C141.1 (4)C7—C1—C2—C3179.2 (2)
C12—C11—C10—C9175.6 (2)C7—C1—C6—C5178.5 (2)
C12—C11—C10—C152.9 (4)C17—O3—C14—C150.2 (4)
C14—C15—C10—C9177.7 (2)C17—O3—C14—C13179.8 (2)
C14—C15—C10—C110.7 (4)C6—C1—C2—C30.8 (4)
C15—C14—C13—O2177.3 (2)C6—C1—C7—O120.6 (4)
C15—C14—C13—C123.3 (4)C6—C1—C7—C8158.1 (2)
C10—C9—C8—C7175.1 (2)C6—C5—C4—C30.3 (4)

Experimental details

Crystal data
Chemical formulaC17H15BrO3
Mr347.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)12.7946 (5), 3.9373 (1), 29.8209 (10)
β (°) 109.219 (3)
V3)1418.54 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.91
Crystal size (mm)0.2 × 0.12 × 0.08
Data collection
DiffractometerAgilent Xcalibur Sapphire3 Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.802, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12861, 3429, 2895
Rint0.047
(sin θ/λ)max1)0.683
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.074, 1.10
No. of reflections3429
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.41

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

This work was supported by FONDECYT through grant Nos. 1080147 and 3110066. MF thanks to Becaschile Programme (Chile) for support through a postdoctoral fellowship.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationBringmann, G., Price Mortimer, A. J., Keller, P. A., Gresser, M. J., Garner, J. & Breuning, M. (2005). Angew. Chem. Int. Ed. 44, 5384–5427.  Web of Science CrossRef CAS Google Scholar
First citationChu, H.-W., Wu, H.-T. & Lee, Y.-J. (2004). Tetrahedron, 60, 2647–2655.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEscobar, C. A., Vega, A., Sicker, D. & Ibañez, A. (2008). Acta Cryst. E64, o1834.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457–2483.  Web of Science CrossRef CAS Google Scholar
First citationRadha Krishna, J., Jagadeesh Kumar, N., Krishnaiah, M., Venkata Rao, C., Koteswara Rao, Y. & Puranik, V. G. (2005). Acta Cryst. E61, o1323–o1325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetonde, O. M., Wendimagegn, M., Merhatibeb, B., Kerstin, A.-M. & Berhanu, M. A. (2010). Bioorg. Med. Chem. 18, 2464–2473.  Web of Science PubMed Google Scholar
First citationValdebenito, C., Garland, M. T., Fuentealba, M. & Escobar, C. A. (2010). Acta Cryst. E66, m838.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, H., Xu, Z. & Liang, Y.-M. (2005). Acta Cryst. E61, o1434–o1435.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds