organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o807-o808

2-[3,5-Bis­(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]-4,6-bis­(4-fluoro­phenyl)pyrimidine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 10 February 2012; accepted 16 February 2012; online 24 February 2012)

In the title compound, C31H20F4N4, the pyrazole ring adopts an envelope conformation and forms a dihedral angle of 9.91 (6)° with the adjacent pyrimidine ring. The pyrimidine ring forms dihedral angles of 9.23 (6) and 2.16 (5)° with its adjacent fluoro-substituted benzene rings, whereas these angles are 88.22 (6) and 9.66 (6)° for the pyrazole ring and its adjacent benzene rings. In the crystal, mol­ecules are linked by C—H⋯F hydrogen bonds into ribbons along [01-1]. The crystal packing is further stabilized by C—H⋯π and by ππ inter­actions, with centroid–centroid distances of 3.7428 (7) and 3.7630 (6) Å.

Related literature

For related literature, see: Calabresi et al. (1975[Calabresi, P., Parks, R. E., Goodman, L. S. & Gilman, A. (1975). The Pharmacological Basis of Therapeutics, 5th ed., p. 1254. New York: Macmillan.]); El-Hashash et al. (1993[El-Hashash, M. A., Mahmoud, M. R. & Madboli, S. A. (1993). Indian J. Chem. Sect. B, 32, 449-451.]); Huang & Huang (2002[Huang, J. & Huang, Z. (2002). Chem. Abstr. 136, 284403.]); Marquez & Russ (2002[Marquez, V. E. & Russ, P. L. (2002). Chem. Abstr. 136, 118704.]); Townsend & Drach (2002[Townsend, L. B. & Drach, J. C. (2002). Chem. Abstr. 136, 134778.]). For related structures and background to various derivatives of 4,4′-difluoro­chalcone, see: Fun et al. (2010a[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582-o583.],b[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864-o865.], 2011[Fun, H.-K., Chia, T. S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Acta Cryst. E67, o3390.], 2012[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o163.]). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C31H20F4N4

  • Mr = 524.51

  • Triclinic, [P \overline 1]

  • a = 10.1020 (1) Å

  • b = 10.1106 (1) Å

  • c = 12.3886 (1) Å

  • α = 104.719 (1)°

  • β = 98.275 (1)°

  • γ = 102.167 (1)°

  • V = 1169.94 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.38 × 0.26 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.987

  • 30262 measured reflections

  • 8234 independent reflections

  • 6443 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.132

  • S = 1.04

  • 8234 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C20–C25 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯F4i 0.93 2.43 3.2759 (16) 151
C31—H31A⋯F3ii 0.93 2.53 3.3208 (14) 143
C1—H1ACg5iii 0.93 2.98 3.7144 (14) 137
C15—H15ACg5iv 0.93 2.74 3.6459 (13) 166
Symmetry codes: (i) x, y-1, z+1; (ii) -x+1, -y+2, -z; (iii) x, y-1, z; (iv) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The importance of pyrimidines and analogous compounds in pharmaceutical and biological fields is well known (Townsend & Drach, 2002). Some substituted pyrimidines and their derivatives have been reported to possess antimicrobial and antifungal activities (El-Hashash et al., 1993). It has incidental antiviral activity against herpes and vaccinia infections (Calabresi et al., 1975). With the development of clinically useful pyrimidine-based antitumor (Huang & Huang, 2002) and antiviral (Marquez & Russ, 2002) drugs, there has been noticeable interest in synthetic manipulations of pyrimidines. In view of the biological importance of pyrimidines and in continuation of our work on synthesis of various derivatives of 4,4'-difluoro chalcone (Fun et al., 2010a,b;2011;2012), the title compound is prepared and its crystal structure is reported.

The molecular structure of the title compound is shown in Fig. 1. The pyrazole ring (N3/N4/C17–C19) adopts an envelope conformation [puckering parameters Q = 0.1757 (11) Å and ϕ = 135.8 (4)° (Cremer & Pople, 1975)] and forms a dihedral angle of 9.91 (6)° with the adjacent pyrimidine ring (N1/N2/C7–C10) (maximum deviation = 0.011 (1) Å at atom N1). The pyrimidine ring forms dihedral angles of 9.23 (6) and 2.16 (5)° with its adjacent fluoro-substituted benzene rings (C1–C6 & C11–C16, respectively), whereas for pyrazole ring these angles are 88.22 (6) and 9.66 (6)° (C20–C25 & C26–C31, respectively). In the crystal packing, the molecules are linked by intermolecular C—H···F hydrogen bonds into ribbons along [01–1]. The crystal packing is further stabilized by C–H···π interactions (Table 1), involving Cg5 which is the centroid of C20–C25 ring. ππ interactions are also observed with Cg2···Cg4 = 3.7428 (7) Å (symmetry code = 1-X,1-Y,-Z) and Cg2···Cg6 = 3.7630 (6) Å (symmetry code = 2-X,2-Y,-Z), where Cg2, Cg4 and Cg6 are the centroids of N1/N2/C7–C10, C11–C16 and C26–C31 rings, respectively.

Related literature top

For the importance of pyrimidines and related compounds in pharmaceutical and biological fields, see: Calabresi et al. (1975); El-Hashash et al. (1993); Huang & Huang (2002); Marquez & Russ (2002); Townsend & Drach (2002). For related structures and background to various derivatives of 4,4'-difluorochalcone, see: Fun et al. (2010a,b, 2011, 2012). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975). For reference bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of 4,4'-difluoro chalcone (2.44 g, 0.01 mol) and amino guanidine hydrochloride (0.065 g, 0.005 mol) in 25 ml e thanol was refluxed for 24 h in the presence of sodium ethoxide (2 ml). The reaction mixture was cooled to room temperature and refrigerated overnight. The solid product obtained was filtered and recrystallized from ethanol to get a yellow powder. The single crystals were grown from MDC by slow evaporation method and the yield of the compound was 49% (m.p.: 548 K).

Refinement top

All H atoms were positioned geometrically (C—H = 0.93, 0.97 or 0.98 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.
2-[3,5-Bis(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]- 4,6-bis(4-fluorophenyl)pyrimidine top
Crystal data top
C31H20F4N4Z = 2
Mr = 524.51F(000) = 540
Triclinic, P1Dx = 1.489 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1020 (1) ÅCell parameters from 9041 reflections
b = 10.1106 (1) Åθ = 2.6–32.2°
c = 12.3886 (1) ŵ = 0.11 mm1
α = 104.719 (1)°T = 100 K
β = 98.275 (1)°Block, orange
γ = 102.167 (1)°0.38 × 0.26 × 0.12 mm
V = 1169.94 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8234 independent reflections
Radiation source: fine-focus sealed tube6443 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 32.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.959, Tmax = 0.987k = 1515
30262 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.069P)2 + 0.3191P]
where P = (Fo2 + 2Fc2)/3
8234 reflections(Δ/σ)max < 0.001
352 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C31H20F4N4γ = 102.167 (1)°
Mr = 524.51V = 1169.94 (2) Å3
Triclinic, P1Z = 2
a = 10.1020 (1) ÅMo Kα radiation
b = 10.1106 (1) ŵ = 0.11 mm1
c = 12.3886 (1) ÅT = 100 K
α = 104.719 (1)°0.38 × 0.26 × 0.12 mm
β = 98.275 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8234 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6443 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.987Rint = 0.029
30262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.04Δρmax = 0.47 e Å3
8234 reflectionsΔρmin = 0.23 e Å3
352 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.89250 (10)0.66229 (9)0.65306 (6)0.0382 (2)
F20.46323 (8)0.14504 (8)0.40779 (6)0.02907 (17)
F30.41746 (8)1.23828 (8)0.34142 (7)0.02823 (17)
F40.85454 (8)1.31912 (8)0.39439 (6)0.02724 (17)
N10.80575 (9)0.81293 (10)0.19025 (7)0.01531 (16)
N20.73090 (9)0.71218 (9)0.01349 (8)0.01557 (16)
N30.82490 (10)0.95255 (9)0.07072 (7)0.01658 (17)
N40.81772 (9)0.97309 (10)0.03568 (7)0.01557 (17)
C10.79155 (15)0.54528 (13)0.34519 (10)0.0270 (3)
H1A0.76380.46140.28560.032*
C20.82258 (16)0.54050 (14)0.45700 (11)0.0333 (3)
H2A0.81660.45450.47280.040*
C30.86230 (14)0.66581 (14)0.54355 (10)0.0255 (2)
C40.87484 (13)0.79565 (13)0.52391 (10)0.0235 (2)
H4A0.90300.87900.58410.028*
C50.84417 (12)0.79855 (12)0.41174 (10)0.0210 (2)
H5A0.85230.88520.39690.025*
C60.80148 (11)0.67431 (11)0.32098 (9)0.01634 (19)
C70.77219 (10)0.68237 (11)0.20211 (9)0.01509 (18)
C80.78434 (10)0.81953 (11)0.08231 (9)0.01468 (18)
C90.69487 (10)0.58258 (11)0.00015 (9)0.01464 (18)
C100.71525 (11)0.56267 (11)0.10790 (9)0.01625 (19)
H10A0.69170.47270.11690.019*
C110.63204 (10)0.46548 (11)0.10704 (9)0.01510 (18)
C120.61879 (12)0.49503 (12)0.21201 (9)0.0189 (2)
H12A0.64930.58780.21370.023*
C130.56065 (13)0.38780 (13)0.31367 (10)0.0220 (2)
H13A0.55100.40780.38320.026*
C140.51758 (12)0.25068 (12)0.30883 (10)0.0210 (2)
C150.52830 (12)0.21662 (12)0.20708 (10)0.0204 (2)
H15A0.49800.12350.20630.025*
C160.58535 (11)0.32499 (12)0.10650 (9)0.0180 (2)
H16A0.59280.30410.03730.022*
C170.86637 (11)1.08631 (11)0.16485 (8)0.01558 (18)
H17A0.93781.08240.22560.019*
C180.92757 (11)1.19104 (11)0.10206 (9)0.01707 (19)
H18A0.89601.27660.12090.020*
H18B1.02801.21590.11980.020*
C190.87065 (10)1.10600 (11)0.02133 (9)0.01479 (18)
C200.74267 (11)1.12033 (11)0.21187 (9)0.01539 (18)
C210.74268 (11)1.14552 (12)0.32750 (9)0.0183 (2)
H21A0.81781.13750.37620.022*
C220.63167 (12)1.18269 (12)0.37163 (9)0.0207 (2)
H22A0.63101.19750.44870.025*
C230.52321 (11)1.19689 (12)0.29813 (10)0.0206 (2)
C240.51718 (12)1.17086 (12)0.18210 (10)0.0211 (2)
H24A0.44181.17960.13420.025*
C250.62721 (11)1.13136 (12)0.13951 (9)0.0185 (2)
H25A0.62471.11180.06160.022*
C260.87168 (10)1.16138 (11)0.11947 (9)0.01481 (18)
C270.92096 (11)1.30626 (11)0.10361 (9)0.01704 (19)
H27A0.95791.36720.03030.020*
C280.91544 (12)1.36053 (12)0.19632 (10)0.0193 (2)
H28A0.94781.45700.18600.023*
C290.86081 (11)1.26735 (12)0.30369 (9)0.0193 (2)
C300.81118 (12)1.12320 (12)0.32338 (9)0.0197 (2)
H30A0.77451.06320.39710.024*
C310.81755 (11)1.07049 (12)0.23047 (9)0.01756 (19)
H31A0.78560.97370.24190.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0612 (6)0.0311 (4)0.0157 (3)0.0003 (4)0.0045 (3)0.0118 (3)
F20.0366 (4)0.0216 (4)0.0209 (3)0.0025 (3)0.0030 (3)0.0020 (3)
F30.0246 (3)0.0301 (4)0.0304 (4)0.0098 (3)0.0107 (3)0.0046 (3)
F40.0355 (4)0.0302 (4)0.0214 (3)0.0086 (3)0.0041 (3)0.0180 (3)
N10.0177 (4)0.0148 (4)0.0152 (4)0.0044 (3)0.0035 (3)0.0072 (3)
N20.0183 (4)0.0132 (4)0.0158 (4)0.0036 (3)0.0034 (3)0.0059 (3)
N30.0254 (4)0.0127 (4)0.0124 (4)0.0038 (3)0.0040 (3)0.0057 (3)
N40.0196 (4)0.0151 (4)0.0140 (4)0.0047 (3)0.0043 (3)0.0071 (3)
C10.0418 (7)0.0163 (5)0.0174 (5)0.0014 (5)0.0033 (5)0.0078 (4)
C20.0533 (8)0.0191 (6)0.0211 (5)0.0027 (5)0.0061 (5)0.0120 (5)
C30.0329 (6)0.0258 (6)0.0155 (5)0.0014 (5)0.0011 (4)0.0105 (4)
C40.0335 (6)0.0210 (5)0.0158 (5)0.0087 (5)0.0019 (4)0.0052 (4)
C50.0294 (5)0.0178 (5)0.0173 (5)0.0081 (4)0.0037 (4)0.0071 (4)
C60.0180 (4)0.0165 (5)0.0152 (4)0.0032 (4)0.0021 (3)0.0076 (4)
C70.0158 (4)0.0154 (5)0.0161 (4)0.0046 (3)0.0035 (3)0.0078 (4)
C80.0164 (4)0.0135 (4)0.0159 (4)0.0041 (3)0.0038 (3)0.0068 (4)
C90.0143 (4)0.0142 (4)0.0168 (4)0.0042 (3)0.0031 (3)0.0064 (4)
C100.0184 (4)0.0141 (4)0.0170 (4)0.0031 (4)0.0024 (4)0.0073 (4)
C110.0161 (4)0.0138 (4)0.0162 (4)0.0045 (3)0.0034 (3)0.0053 (4)
C120.0237 (5)0.0164 (5)0.0175 (5)0.0055 (4)0.0041 (4)0.0066 (4)
C130.0277 (5)0.0209 (5)0.0169 (5)0.0066 (4)0.0037 (4)0.0051 (4)
C140.0212 (5)0.0186 (5)0.0196 (5)0.0046 (4)0.0034 (4)0.0004 (4)
C150.0209 (5)0.0153 (5)0.0248 (5)0.0035 (4)0.0055 (4)0.0060 (4)
C160.0188 (4)0.0159 (5)0.0205 (5)0.0045 (4)0.0043 (4)0.0070 (4)
C170.0194 (4)0.0132 (4)0.0129 (4)0.0024 (4)0.0016 (3)0.0042 (3)
C180.0210 (5)0.0141 (4)0.0149 (4)0.0014 (4)0.0030 (4)0.0052 (4)
C190.0169 (4)0.0140 (4)0.0142 (4)0.0033 (3)0.0033 (3)0.0060 (4)
C200.0187 (4)0.0121 (4)0.0142 (4)0.0017 (3)0.0020 (3)0.0046 (3)
C210.0213 (5)0.0188 (5)0.0143 (4)0.0041 (4)0.0025 (4)0.0052 (4)
C220.0243 (5)0.0201 (5)0.0165 (5)0.0044 (4)0.0054 (4)0.0040 (4)
C230.0197 (5)0.0167 (5)0.0245 (5)0.0040 (4)0.0065 (4)0.0042 (4)
C240.0198 (5)0.0212 (5)0.0212 (5)0.0050 (4)0.0012 (4)0.0064 (4)
C250.0220 (5)0.0181 (5)0.0145 (4)0.0037 (4)0.0020 (4)0.0056 (4)
C260.0161 (4)0.0142 (4)0.0156 (4)0.0038 (3)0.0038 (3)0.0069 (4)
C270.0193 (4)0.0156 (5)0.0172 (4)0.0035 (4)0.0037 (4)0.0073 (4)
C280.0220 (5)0.0169 (5)0.0215 (5)0.0042 (4)0.0053 (4)0.0104 (4)
C290.0208 (5)0.0235 (5)0.0188 (5)0.0076 (4)0.0046 (4)0.0138 (4)
C300.0238 (5)0.0208 (5)0.0152 (4)0.0057 (4)0.0030 (4)0.0070 (4)
C310.0209 (5)0.0158 (5)0.0164 (4)0.0040 (4)0.0038 (4)0.0061 (4)
Geometric parameters (Å, º) top
F1—C31.3582 (12)C13—H13A0.9300
F2—C141.3561 (13)C14—C151.3844 (16)
F3—C231.3577 (13)C15—C161.3852 (16)
F4—C291.3538 (11)C15—H15A0.9300
N1—C71.3429 (13)C16—H16A0.9300
N1—C81.3445 (12)C17—C201.5193 (15)
N2—C81.3386 (14)C17—C181.5458 (14)
N2—C91.3428 (13)C17—H17A0.9800
N3—C81.3712 (13)C18—C191.5090 (14)
N3—N41.3798 (11)C18—H18A0.9700
N3—C171.4777 (14)C18—H18B0.9700
N4—C191.2929 (13)C19—C261.4625 (13)
C1—C21.3909 (16)C20—C211.3897 (14)
C1—C61.3980 (15)C20—C251.4076 (14)
C1—H1A0.9300C21—C221.3955 (16)
C2—C31.3738 (19)C21—H21A0.9300
C2—H2A0.9300C22—C231.3769 (16)
C3—C41.3784 (17)C22—H22A0.9300
C4—C51.3886 (15)C23—C241.3839 (16)
C4—H4A0.9300C24—C251.3864 (16)
C5—C61.3938 (16)C24—H24A0.9300
C5—H5A0.9300C25—H25A0.9300
C6—C71.4861 (14)C26—C271.3966 (14)
C7—C101.3975 (15)C26—C311.4015 (15)
C9—C101.3964 (13)C27—C281.3921 (14)
C9—C111.4842 (15)C27—H27A0.9300
C10—H10A0.9300C28—C291.3763 (16)
C11—C121.4008 (14)C28—H28A0.9300
C11—C161.4013 (14)C29—C301.3824 (16)
C12—C131.3898 (16)C30—C311.3848 (14)
C12—H12A0.9300C30—H30A0.9300
C13—C141.3822 (16)C31—H31A0.9300
C7—N1—C8115.54 (9)C11—C16—H16A119.4
C8—N2—C9116.12 (9)N3—C17—C20111.40 (8)
C8—N3—N4121.04 (9)N3—C17—C18100.36 (8)
C8—N3—C17125.56 (8)C20—C17—C18112.75 (8)
N4—N3—C17113.14 (8)N3—C17—H17A110.6
C19—N4—N3107.85 (8)C20—C17—H17A110.6
C2—C1—C6121.00 (11)C18—C17—H17A110.6
C2—C1—H1A119.5C19—C18—C17101.79 (8)
C6—C1—H1A119.5C19—C18—H18A111.4
C3—C2—C1118.41 (11)C17—C18—H18A111.4
C3—C2—H2A120.8C19—C18—H18B111.4
C1—C2—H2A120.8C17—C18—H18B111.4
F1—C3—C2118.88 (10)H18A—C18—H18B109.3
F1—C3—C4118.40 (11)N4—C19—C26120.47 (9)
C2—C3—C4122.71 (10)N4—C19—C18113.62 (8)
C3—C4—C5118.12 (11)C26—C19—C18125.90 (9)
C3—C4—H4A120.9C21—C20—C25118.57 (10)
C5—C4—H4A120.9C21—C20—C17120.88 (9)
C4—C5—C6121.40 (10)C25—C20—C17120.52 (9)
C4—C5—H5A119.3C20—C21—C22120.97 (10)
C6—C5—H5A119.3C20—C21—H21A119.5
C5—C6—C1118.34 (10)C22—C21—H21A119.5
C5—C6—C7119.64 (9)C23—C22—C21118.33 (10)
C1—C6—C7121.99 (10)C23—C22—H22A120.8
N1—C7—C10121.61 (9)C21—C22—H22A120.8
N1—C7—C6115.61 (9)F3—C23—C22118.54 (10)
C10—C7—C6122.78 (9)F3—C23—C24118.54 (10)
N2—C8—N1127.67 (9)C22—C23—C24122.93 (11)
N2—C8—N3117.20 (9)C23—C24—C25117.86 (10)
N1—C8—N3115.12 (9)C23—C24—H24A121.1
N2—C9—C10121.18 (10)C25—C24—H24A121.1
N2—C9—C11115.31 (9)C24—C25—C20121.28 (10)
C10—C9—C11123.50 (9)C24—C25—H25A119.4
C9—C10—C7117.85 (9)C20—C25—H25A119.4
C9—C10—H10A121.1C27—C26—C31119.09 (9)
C7—C10—H10A121.1C27—C26—C19120.48 (9)
C12—C11—C16118.56 (10)C31—C26—C19120.37 (9)
C12—C11—C9119.53 (9)C28—C27—C26120.75 (10)
C16—C11—C9121.91 (9)C28—C27—H27A119.6
C13—C12—C11120.98 (10)C26—C27—H27A119.6
C13—C12—H12A119.5C29—C28—C27118.12 (10)
C11—C12—H12A119.5C29—C28—H28A120.9
C14—C13—C12118.31 (10)C27—C28—H28A120.9
C14—C13—H13A120.8F4—C29—C28118.58 (10)
C12—C13—H13A120.8F4—C29—C30118.33 (10)
F2—C14—C13118.70 (10)C28—C29—C30123.09 (10)
F2—C14—C15118.61 (10)C29—C30—C31118.24 (10)
C13—C14—C15122.68 (11)C29—C30—H30A120.9
C14—C15—C16118.22 (10)C31—C30—H30A120.9
C14—C15—H15A120.9C30—C31—C26120.72 (10)
C16—C15—H15A120.9C30—C31—H31A119.6
C15—C16—C11121.23 (10)C26—C31—H31A119.6
C15—C16—H16A119.4
C8—N3—N4—C19175.75 (9)C13—C14—C15—C160.36 (17)
C17—N3—N4—C199.72 (12)C14—C15—C16—C110.41 (16)
C6—C1—C2—C30.5 (2)C12—C11—C16—C150.57 (16)
C1—C2—C3—F1179.84 (13)C9—C11—C16—C15179.29 (10)
C1—C2—C3—C41.1 (2)C8—N3—C17—C2071.63 (12)
F1—C3—C4—C5179.83 (11)N4—N3—C17—C20102.61 (9)
C2—C3—C4—C50.8 (2)C8—N3—C17—C18168.78 (10)
C3—C4—C5—C60.17 (19)N4—N3—C17—C1816.98 (11)
C4—C5—C6—C10.74 (18)N3—C17—C18—C1916.42 (10)
C4—C5—C6—C7178.88 (10)C20—C17—C18—C19102.19 (10)
C2—C1—C6—C50.4 (2)N3—N4—C19—C26177.14 (9)
C2—C1—C6—C7178.49 (12)N3—N4—C19—C182.85 (12)
C8—N1—C7—C101.71 (14)C17—C18—C19—N413.07 (12)
C8—N1—C7—C6177.45 (9)C17—C18—C19—C26166.92 (10)
C5—C6—C7—N17.77 (14)N3—C17—C20—C21125.54 (10)
C1—C6—C7—N1170.30 (11)C18—C17—C20—C21122.51 (10)
C5—C6—C7—C10173.07 (10)N3—C17—C20—C2556.48 (12)
C1—C6—C7—C108.86 (17)C18—C17—C20—C2555.47 (13)
C9—N2—C8—N10.24 (16)C25—C20—C21—C220.77 (16)
C9—N2—C8—N3178.53 (9)C17—C20—C21—C22177.25 (10)
C7—N1—C8—N21.70 (15)C20—C21—C22—C231.41 (17)
C7—N1—C8—N3177.10 (9)C21—C22—C23—F3177.53 (10)
N4—N3—C8—N23.49 (14)C21—C22—C23—C242.47 (18)
C17—N3—C8—N2170.33 (9)F3—C23—C24—C25178.77 (10)
N4—N3—C8—N1175.44 (9)C22—C23—C24—C251.23 (18)
C17—N3—C8—N110.74 (15)C23—C24—C25—C201.09 (17)
C8—N2—C9—C101.20 (14)C21—C20—C25—C242.06 (16)
C8—N2—C9—C11178.28 (9)C17—C20—C25—C24175.97 (10)
N2—C9—C10—C71.11 (15)N4—C19—C26—C27175.99 (10)
C11—C9—C10—C7178.34 (9)C18—C19—C26—C274.00 (16)
N1—C7—C10—C90.45 (15)N4—C19—C26—C311.19 (15)
C6—C7—C10—C9178.66 (9)C18—C19—C26—C31178.82 (10)
N2—C9—C11—C122.11 (14)C31—C26—C27—C280.63 (16)
C10—C9—C11—C12178.42 (10)C19—C26—C27—C28176.58 (10)
N2—C9—C11—C16178.03 (9)C26—C27—C28—C290.32 (16)
C10—C9—C11—C161.44 (16)C27—C28—C29—F4179.78 (10)
C16—C11—C12—C130.02 (16)C27—C28—C29—C300.15 (17)
C9—C11—C12—C13179.89 (10)F4—C29—C30—C31179.93 (10)
C11—C12—C13—C140.74 (17)C28—C29—C30—C310.31 (17)
C12—C13—C14—F2178.73 (10)C29—C30—C31—C260.62 (16)
C12—C13—C14—C150.93 (18)C27—C26—C31—C300.79 (16)
F2—C14—C15—C16179.29 (10)C19—C26—C31—C30176.43 (10)
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C20–C25 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···F4i0.932.433.2759 (16)151
C31—H31A···F3ii0.932.533.3208 (14)143
C1—H1A···Cg5iii0.932.983.7144 (14)137
C15—H15A···Cg5iv0.932.743.6459 (13)166
Symmetry codes: (i) x, y1, z+1; (ii) x+1, y+2, z; (iii) x, y1, z; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC31H20F4N4
Mr524.51
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.1020 (1), 10.1106 (1), 12.3886 (1)
α, β, γ (°)104.719 (1), 98.275 (1), 102.167 (1)
V3)1169.94 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.38 × 0.26 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.959, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
30262, 8234, 6443
Rint0.029
(sin θ/λ)max1)0.751
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.132, 1.04
No. of reflections8234
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C20–C25 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···F4i0.93002.43003.2759 (16)151.00
C31—H31A···F3ii0.93002.53003.3208 (14)143.00
C1—H1A···Cg5iii0.93002.983.7144 (14)137
C15—H15A···Cg5iv0.93002.743.6459 (13)166
Symmetry codes: (i) x, y1, z+1; (ii) x+1, y+2, z; (iii) x, y1, z; (iv) x+1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank the Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). TSC thanks the Malaysian Government and USM for the award of the post of Research Officer under the Research University Grant No. 1001/PSKBP/8630013. BN thanks the UGC for financial assistance through SAP and BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for the research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalabresi, P., Parks, R. E., Goodman, L. S. & Gilman, A. (1975). The Pharmacological Basis of Therapeutics, 5th ed., p. 1254. New York: Macmillan.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl-Hashash, M. A., Mahmoud, M. R. & Madboli, S. A. (1993). Indian J. Chem. Sect. B, 32, 449–451.  Google Scholar
First citationFun, H.-K., Chia, T. S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Acta Cryst. E67, o3390.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o163.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHuang, J. & Huang, Z. (2002). Chem. Abstr. 136, 284403.  Google Scholar
First citationMarquez, V. E. & Russ, P. L. (2002). Chem. Abstr. 136, 118704.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTownsend, L. B. & Drach, J. C. (2002). Chem. Abstr. 136, 134778.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o807-o808
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds