metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis(thio­urea-κS)nickel(II)

aLaboratoire Privé de Cristallographie (LPC), Kénitra, Morocco
*Correspondence e-mail: hafid.zouihri@gmail.com

(Received 11 February 2012; accepted 12 February 2012; online 24 February 2012)

The title complex, [NiCl2(CH4N2S)2], has been synthesized from the previously reported (diamino­methyl­idene)sulfonium chloride–thio­urea (3/2) salt [Zouihri (2012b[Zouihri, H. (2012b). Acta Cryst. E68, o257.]). Acta Cryst. E68, o257]. The NiII ion is coordinated in a distorted tetra­hedral geometry by two mol­ecules of thio­urea [Ni—S = 2.3079 (7) and 2.3177 (6) Å] and two chloride anions [Ni—Cl = 2.2516 (7) and 2.2726 (7) Å]. The bond angles at the Ni atom lie between 96.69 (2) and 115.40 (3)°, while the dihedral angle between the mean planes of the two thio­urea ligands is 6.36 (15)°. The crystal structure is characterized by intra- and inter­molecular N—H⋯Cl hydrogen bonds, which lead to the formation of two-dimensional networks lying parallel to the ab plane. The networks are linked via classical N—H⋯Cl and N—H⋯S hydrogen bonds, forming a three-dimensional arrangement.

Related literature

For the synthesis and the crystal structure of (diamino­methyl­idene)sulfonium chloride thio­urea (3/2), see: Zouihri (2012b[Zouihri, H. (2012b). Acta Cryst. E68, o257.]). For related structures, see: Ambujam et al. (2007[Ambujam, K., Thomas Preema, C., Aruna, S., Prem Anand, D. & Sagayaraj, P. (2007). Mater. Manuf. Process. 22, 346-350.]); Zouihri (2012a[Zouihri, H. (2012a). Acta Cryst. E68, m260-m261.]). For related literature on the coordination complexes of NiII salts with thio­urea, see: Asif et al. (2010[Asif, I., Mahmood, R., Stoeckli-Evans, H., Mateen, M. & Ahmad, S. (2010). Acta Cryst. E66, m1393-m1394.]).

[Scheme 1]

Experimental

Crystal data
  • [NiCl2(CH4N2S)2]

  • Mr = 281.85

  • Monoclinic, C c

  • a = 8.1578 (3) Å

  • b = 11.8183 (5) Å

  • c = 10.8526 (6) Å

  • β = 103.869 (2)°

  • V = 1015.81 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.79 mm−1

  • T = 100 K

  • 0.42 × 0.37 × 0.17 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.322, Tmax = 0.622

  • 4883 measured reflections

  • 1695 independent reflections

  • 1678 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.045

  • S = 1.08

  • 1695 reflections

  • 132 parameters

  • 10 restraints

  • All H-atom parameters refined

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 745 Friedel pairs

  • Flack parameter: 0.069 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.84 (3) 2.60 (3) 3.388 (3) 157 (3)
N1—H1B⋯Cl2i 0.83 (3) 2.56 (3) 3.365 (3) 164 (3)
N2—H2A⋯Cl2i 0.83 (3) 2.75 (3) 3.499 (2) 150 (3)
N2—H2B⋯Cl2ii 0.81 (2) 2.64 (2) 3.432 (2) 166 (3)
N3—H3A⋯Cl1iii 0.86 (3) 2.83 (5) 3.423 (3) 128 (5)
N3—H3B⋯Cl2iv 0.86 (4) 2.47 (4) 3.317 (3) 168 (4)
N4—H4A⋯S2v 0.84 (3) 2.70 (3) 3.366 (2) 137 (3)
N4—H4B⋯Cl1 0.86 (3) 2.60 (3) 3.448 (3) 168 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x+1, y, z; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Nickel(II), which has a d8 configuration, commonly exhibits octahedral, square planar and tetrahedral coordination geometries depending upon the nature of the ligands and the Crystal Field Splitting Parameter value.

In our case, the coordination complexes of Ni(II) salts with thiourea show a variety of compositions and types of coordination (octahedral, tetragonal, square-planar and tetrahedral) (Asif et al. 2010). In general, the predominant coordination geometries for the Ni(II)-Ligand-X (X= Cl-, Br- and I-) are Tetragonal (Ni(II)L4)X2 and Octahedral (Ni(II)L6)X2. Tetrakis coordiantion of thiourea about Nickel Ni(Th)4Cl2 has been found in centered tetragonal symmetry class I4 by K. Ambujam (Ambujam et al. 2007).

In former work we have reported the synthesis and crystal structure of the catena-poly[[chlorido(thiourea-κS)copper(I)]-µ-thiourea-κ2S:S] complexe (Zouihri, 2012a). In this paper we report the crystal structure of [Ni(II)(Th)2] 2Cl- which has been synthetized from the (Diaminomethylidene)sulfonium chloride-thiourea (3/2) (Zouihri, 2012b).

In the title complexe compound, (SCN2H4)2Ni(II)Cl2, The Ni(II) atom is four coordinated in a tetrahedral geometry by two molecules of thiourea (average Ni—S distance = 2.3079 (7) to 2.3177 (6) Å) and two chloride anions (average Ni—Cl distance = 2.2516 (7) to 2.2726 (7) Å) with average (S, Cl)—NiII—(S, Cl) torsion angles between 96.69 (2)° and 115.40 (3)°. The dihedral angle between the two thiourea Ligands is: 6.36 (15)°.

The crystal structure is characterized by intramolecular and intermolecular N—H···Cl hydrogen bonds which lead to the formation of two-dimensional networks lying parallel to the ab plane (Fig. 2 and Table 1). The networks are linked via classical intermolecular N—H···Cl and N—H···S hydrogen bonds, forming a three-dimensional arrangement (Fig. 3 and Table 1).

Related literature top

For the synthesis and the crystal structure of (diaminomethylidene)sulfonium chloride thiourea (3/2), see: Zouihri (2012b). For related structures, see: Ambujam et al. (2007); Zouihri (2012a). For related literature on the coordination complexes of NiII salts with thiourea, see: Asif et al. (2010).

Experimental top

To a 10 ml aqueous solution of NiCl2 (2 mmol) was added 10 ml EtOH solution of (Diaminomethylidene)sulfonium chloride-thiourea (3/2) (Zouihri, 2012b) (1.0 mmol). Colourless crystal were obtained after about one week.

Refinement top

All H atoms were located from difference Fourier maps and refined isotropically, with restained distance N—H = 0.86 (2) A.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Projection of the title compound along the a axis showing two-dimensional networks lying parallel to the ab plane, H-bonds are represented by dashed lines.
[Figure 3] Fig. 3. Projection of the title compound along the b axis showing the three-dimensional arrangement of the title complexe, H-bonds are represented by dashed lines.
Dichloridobis(thiourea-κS)nickel(II) top
Crystal data top
[NiCl2(CH4N2S)2]F(000) = 568
Mr = 281.85Dx = 1.843 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 289 reflections
a = 8.1578 (3) Åθ = 1.8–26.7°
b = 11.8183 (5) ŵ = 2.79 mm1
c = 10.8526 (6) ÅT = 100 K
β = 103.869 (2)°Prism, colourless
V = 1015.81 (8) Å30.42 × 0.37 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD detector
diffractometer
1695 independent reflections
Radiation source: fine-focus sealed tube1678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and ϕ scansθmax = 25.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 98
Tmin = 0.322, Tmax = 0.622k = 1414
4883 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017All H-atom parameters refined
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0205P)2 + 0.1021P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
1695 reflectionsΔρmax = 0.25 e Å3
132 parametersΔρmin = 0.15 e Å3
10 restraintsAbsolute structure: Flack (1983), 745 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.069 (10)
Crystal data top
[NiCl2(CH4N2S)2]V = 1015.81 (8) Å3
Mr = 281.85Z = 4
Monoclinic, CcMo Kα radiation
a = 8.1578 (3) ŵ = 2.79 mm1
b = 11.8183 (5) ÅT = 100 K
c = 10.8526 (6) Å0.42 × 0.37 × 0.17 mm
β = 103.869 (2)°
Data collection top
Bruker APEXII CCD detector
diffractometer
1695 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1678 reflections with I > 2σ(I)
Tmin = 0.322, Tmax = 0.622Rint = 0.022
4883 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.017All H-atom parameters refined
wR(F2) = 0.045Δρmax = 0.25 e Å3
S = 1.08Δρmin = 0.15 e Å3
1695 reflectionsAbsolute structure: Flack (1983), 745 Friedel pairs
132 parametersAbsolute structure parameter: 0.069 (10)
10 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.15345 (3)0.18215 (2)0.53899 (3)0.03234 (9)
Cl20.03840 (8)0.33531 (5)0.61305 (6)0.03892 (15)
S20.33740 (7)0.22386 (7)0.41358 (6)0.04019 (16)
S10.05478 (8)0.10041 (6)0.38067 (5)0.03680 (15)
Cl10.26641 (9)0.06856 (6)0.70409 (7)0.04738 (16)
C10.1912 (3)0.03547 (18)0.4566 (2)0.0312 (5)
N10.1424 (3)0.0014 (2)0.5748 (2)0.0427 (5)
N20.3484 (3)0.0180 (2)0.3936 (2)0.0419 (5)
C20.5326 (3)0.2585 (2)0.5057 (2)0.0341 (5)
N30.6387 (3)0.3127 (2)0.4532 (3)0.0535 (7)
N40.5794 (3)0.2294 (3)0.6260 (2)0.0562 (7)
H1A0.042 (3)0.001 (3)0.618 (3)0.054 (10)*
H2A0.412 (4)0.012 (3)0.434 (3)0.052 (9)*
H3A0.597 (8)0.333 (4)0.376 (3)0.13 (2)*
H4A0.672 (3)0.255 (3)0.667 (3)0.067 (11)*
H1B0.217 (4)0.033 (3)0.599 (3)0.048 (9)*
H2B0.392 (4)0.048 (2)0.327 (2)0.039 (8)*
H3B0.737 (4)0.327 (4)0.501 (5)0.095 (17)*
H4B0.513 (4)0.186 (2)0.656 (3)0.046 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02675 (16)0.03985 (16)0.03008 (15)0.00044 (13)0.00613 (11)0.00065 (13)
Cl20.0308 (3)0.0446 (3)0.0418 (3)0.0015 (2)0.0094 (3)0.0120 (3)
S20.0226 (3)0.0721 (4)0.0250 (3)0.0055 (3)0.0039 (2)0.0010 (3)
S10.0339 (3)0.0500 (4)0.0255 (3)0.0108 (3)0.0052 (2)0.0026 (3)
Cl10.0441 (4)0.0561 (4)0.0385 (4)0.0094 (3)0.0032 (3)0.0128 (3)
C10.0307 (12)0.0278 (11)0.0344 (13)0.0013 (9)0.0063 (10)0.0036 (10)
N10.0366 (13)0.0507 (13)0.0385 (12)0.0128 (10)0.0046 (10)0.0096 (9)
N20.0301 (12)0.0458 (14)0.0462 (14)0.0054 (10)0.0020 (10)0.0098 (11)
C20.0230 (12)0.0414 (13)0.0366 (13)0.0039 (10)0.0045 (9)0.0070 (10)
N30.0270 (13)0.0680 (18)0.0648 (19)0.0072 (11)0.0099 (13)0.0030 (14)
N40.0326 (14)0.095 (2)0.0335 (13)0.0043 (14)0.0065 (11)0.0040 (14)
Geometric parameters (Å, º) top
Ni1—Cl12.2516 (7)N1—H1B0.822 (18)
Ni1—Cl22.2726 (7)N2—H2A0.840 (19)
Ni1—S22.3079 (7)N2—H2B0.806 (18)
Ni1—S12.3177 (6)C2—N31.312 (4)
S2—C21.715 (2)C2—N41.315 (4)
S1—C11.716 (2)N3—H3A0.87 (2)
C1—N11.312 (3)N3—H3B0.86 (2)
C1—N21.317 (3)N4—H4A0.836 (19)
N1—H1A0.843 (19)N4—H4B0.865 (19)
Cl1—Ni1—Cl2108.56 (3)H1A—N1—H1B120 (3)
Cl1—Ni1—S2113.37 (3)C1—N2—H2A116 (3)
Cl2—Ni1—S2114.86 (3)C1—N2—H2B124 (2)
Cl1—Ni1—S1115.40 (3)H2A—N2—H2B117 (4)
Cl2—Ni1—S1107.62 (3)N3—C2—N4119.7 (3)
S2—Ni1—S196.69 (2)N3—C2—S2118.7 (2)
C2—S2—Ni1110.56 (9)N4—C2—S2121.6 (2)
C1—S1—Ni1105.95 (8)C2—N3—H3A114 (4)
N1—C1—N2119.3 (2)C2—N3—H3B117 (4)
N1—C1—S1121.80 (19)H3A—N3—H3B128 (6)
N2—C1—S1118.9 (2)C2—N4—H4A116 (3)
C1—N1—H1A126 (3)C2—N4—H4B118 (3)
C1—N1—H1B113 (3)H4A—N4—H4B126 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.84 (3)2.60 (3)3.388 (3)157 (3)
N1—H1B···Cl2i0.83 (3)2.56 (3)3.365 (3)164 (3)
N2—H2A···Cl2i0.83 (3)2.75 (3)3.499 (2)150 (3)
N2—H2B···Cl2ii0.81 (2)2.64 (2)3.432 (2)166 (3)
N3—H3A···Cl1iii0.86 (3)2.83 (5)3.423 (3)128 (5)
N3—H3B···Cl2iv0.86 (4)2.47 (4)3.317 (3)168 (4)
N4—H4A···S2v0.84 (3)2.70 (3)3.366 (2)137 (3)
N4—H4B···Cl10.86 (3)2.60 (3)3.448 (3)168 (3)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y, z; (v) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[NiCl2(CH4N2S)2]
Mr281.85
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)8.1578 (3), 11.8183 (5), 10.8526 (6)
β (°) 103.869 (2)
V3)1015.81 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.79
Crystal size (mm)0.42 × 0.37 × 0.17
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.322, 0.622
No. of measured, independent and
observed [I > 2σ(I)] reflections
4883, 1695, 1678
Rint0.022
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.045, 1.08
No. of reflections1695
No. of parameters132
No. of restraints10
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.25, 0.15
Absolute structureFlack (1983), 745 Friedel pairs
Absolute structure parameter0.069 (10)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.84 (3)2.60 (3)3.388 (3)157 (3)
N1—H1B···Cl2i0.83 (3)2.56 (3)3.365 (3)164 (3)
N2—H2A···Cl2i0.83 (3)2.75 (3)3.499 (2)150 (3)
N2—H2B···Cl2ii0.81 (2)2.64 (2)3.432 (2)166 (3)
N3—H3A···Cl1iii0.86 (3)2.83 (5)3.423 (3)128 (5)
N3—H3B···Cl2iv0.86 (4)2.47 (4)3.317 (3)168 (4)
N4—H4A···S2v0.84 (3)2.70 (3)3.366 (2)137 (3)
N4—H4B···Cl10.86 (3)2.60 (3)3.448 (3)168 (3)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y, z; (v) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The author thanks the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAmbujam, K., Thomas Preema, C., Aruna, S., Prem Anand, D. & Sagayaraj, P. (2007). Mater. Manuf. Process. 22, 346–350.  Web of Science CrossRef CAS Google Scholar
First citationAsif, I., Mahmood, R., Stoeckli-Evans, H., Mateen, M. & Ahmad, S. (2010). Acta Cryst. E66, m1393–m1394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZouihri, H. (2012a). Acta Cryst. E68, m260–m261.  CSD CrossRef IUCr Journals Google Scholar
First citationZouihri, H. (2012b). Acta Cryst. E68, o257.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds