organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-({[(E)-Benzyl­­idene­amino]­­oxy}meth­yl)-1,3,4-thia­diazol-2-amine

aHubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Science, Wuhan 430064, People's Republic of China
*Correspondence e-mail: hpywy2006@163.com

(Received 15 December 2011; accepted 30 January 2012; online 17 February 2012)

In the mol­ecule of the title compound, C10H10N4OS, the configuration about the C=N double bond is E. The dihedral angle between the thia­diazole and benzene rings is 81.1 (1)°. In the crystal, mol­ecules are linked by N—H⋯N and C—H⋯O hydrogen bonds to form a two-dimensional network parallel with the bc plane.

Related literature

For the biological activity of thia­diazol compounds, see: Cressier et al. (2009[Cressier, D., Prouillac, C., Hernandez, P., Amourette, C., Diserbo, M., Lion, C. & Rima, G. (2009). Bioorg. Med. Chem. 17, 5275-5284.]); Ferrari et al. (2011[Ferrari, S., Morandi, F., Motiejunas, D., Nerini, E., Henrich, S., Luciani, R., Venturelli, A., Lazzari, S., Calo, S., Gupta, S., Hannaert, V., Michels, P. A. M., Wade, R. C. & Costi, M. P. (2011). J. Med. Chem. 54, 211-221.]). For a related structure, see: Boechat et al. (2006[Boechat, N., Ferreira, S. B., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, S. M. S. V. (2006). Acta Cryst. C62, o42-o44.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N4OS

  • Mr = 234.28

  • Monoclinic, P 21 /c

  • a = 14.504 (4) Å

  • b = 9.272 (3) Å

  • c = 8.361 (3) Å

  • β = 106.75 (1)°

  • V = 1076.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.16 × 0.12 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.967

  • 5840 measured reflections

  • 1808 independent reflections

  • 1707 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 1.09

  • 1808 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N2i 0.88 2.24 3.077 (3) 159
N4—H4B⋯N3ii 0.88 2.07 2.929 (3) 164
C8—H8A⋯O1iii 0.99 2.51 3.468 (3) 163
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The thiadiazol moiety is the constituent of many biologically significant compounds. Thiadiazol derivatives showed diverse biological properties, such as antiparasitic activity (Ferrari et al., 2011), antioxidant properties and radioprotective effects (Cressier et al., 2009). As a part of our study on the synthesis of novel thiadiazol-containing compounds with good biological activities, we report here the crystal structure of the title compound, (I)(Fig. 1).

In the molecule, all bond lengths and angles are normal(Allen et al., 1987). The conformation of the N—H and the C=N bonds in the thiadiazol segment is similar to that observed in other thiadiazol compounds (Boechat et al., 2006). The dihedral angle between the thiadiazol and the benzene rings is 81.1 (1)°. The molecular structure is linked by intermolecular N—H···N and C—H···O hydrogen-bonds to form a two-dimensional network (Table 1, Fig. 2).

Related literature top

For the biological activity of thiadiazol compounds, see: Cressier et al. (2009); Ferrari et al. (2011). For a related structure, see: Boechat et al. (2006). For reference structural data, see: Allen et al. (1987).

Experimental top

To a mixture of aminothiourea (0.43 g, 4.7 mmol) and benzylideneaminooxyacetic acid (0.75 g, 4.3 mmol) phosphorus oxychloride (16.3 mmol) was added dropwise. The reaction mixture was heated at 353 K for 15 min, then cooled to room temperature and water (4.8 mL) was added slowly. After the addtion of water, the reaction mixture was first heated at 383 K for 4 h then cooled to room temperature. The pH of the reaction mixture was then adjusted to 8–9 by addition of 40% aqueous NaOH solution. The crude product was collected by filtration. Single crystals were obtained by evaporation of an ether solution of (I) at room temperature over a period of several days.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.97Å and N—H = 0.86 Å), and refined as riding with Uiso (H) = 1.2Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing diagram of (I). Hydrogen bonds are shown as dashed lines.
5-({[(E)-Benzylideneamino]oxy}methyl)-1,3,4-thiadiazol-2-amine top
Crystal data top
C10H10N4OSF(000) = 488
Mr = 234.28Dx = 1.445 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7867 reflections
a = 14.504 (4) Åθ = 2.2–31.8°
b = 9.272 (3) ŵ = 0.28 mm1
c = 8.361 (3) ÅT = 100 K
β = 106.75 (1)°Block, colorless
V = 1076.7 (6) Å30.16 × 0.12 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
1808 independent reflections
Radiation source: fine-focus sealed tube1707 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1715
Tmin = 0.956, Tmax = 0.967k = 1110
5840 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0274P)2 + 2.2787P]
where P = (Fo2 + 2Fc2)/3
1808 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
C10H10N4OSV = 1076.7 (6) Å3
Mr = 234.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.504 (4) ŵ = 0.28 mm1
b = 9.272 (3) ÅT = 100 K
c = 8.361 (3) Å0.16 × 0.12 × 0.12 mm
β = 106.75 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1808 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1707 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.967Rint = 0.034
5840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.09Δρmax = 0.31 e Å3
1808 reflectionsΔρmin = 0.61 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.01298 (17)0.3905 (3)0.3290 (3)0.0184 (5)
C20.03790 (18)0.4774 (3)0.1867 (3)0.0215 (6)
H20.01100.52340.15020.026*
C30.13385 (19)0.4967 (3)0.0985 (4)0.0252 (6)
H30.15070.55480.00070.030*
C40.20545 (19)0.4310 (3)0.1531 (4)0.0264 (6)
H40.27120.44410.09250.032*
C50.18121 (18)0.3468 (3)0.2954 (4)0.0253 (6)
H50.23040.30180.33200.030*
C60.08548 (18)0.3276 (3)0.3849 (3)0.0215 (6)
H60.06920.27160.48430.026*
C70.08712 (17)0.3580 (3)0.4188 (3)0.0196 (5)
H70.10400.33200.53350.024*
C80.30958 (17)0.3047 (3)0.3626 (3)0.0209 (6)
H8A0.27710.26310.25170.025*
H8B0.36070.23700.42220.025*
C90.35421 (16)0.4469 (3)0.3404 (3)0.0178 (5)
C120.42588 (16)0.6806 (3)0.3667 (3)0.0171 (5)
N10.15225 (14)0.3645 (2)0.3424 (3)0.0208 (5)
N20.39251 (14)0.4743 (2)0.2222 (3)0.0196 (5)
N30.43442 (15)0.6105 (2)0.2357 (3)0.0201 (5)
N40.45809 (15)0.8148 (2)0.4095 (3)0.0213 (5)
H4A0.48760.86240.34750.026*
H4B0.44980.85520.49950.026*
O10.24135 (12)0.3211 (2)0.4548 (2)0.0230 (4)
S10.36427 (4)0.58523 (7)0.48329 (8)0.0189 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0195 (12)0.0160 (12)0.0206 (14)0.0003 (9)0.0072 (10)0.0032 (10)
C20.0232 (13)0.0183 (13)0.0249 (14)0.0024 (10)0.0100 (11)0.0010 (10)
C30.0291 (14)0.0167 (13)0.0267 (15)0.0039 (10)0.0029 (11)0.0012 (11)
C40.0184 (12)0.0258 (14)0.0328 (16)0.0029 (10)0.0040 (11)0.0073 (12)
C50.0193 (12)0.0270 (14)0.0325 (16)0.0021 (11)0.0122 (11)0.0026 (12)
C60.0224 (12)0.0194 (13)0.0243 (14)0.0006 (10)0.0095 (11)0.0000 (10)
C70.0206 (12)0.0162 (12)0.0222 (14)0.0008 (10)0.0064 (10)0.0007 (10)
C80.0168 (11)0.0216 (13)0.0260 (15)0.0008 (10)0.0090 (10)0.0007 (10)
C90.0144 (11)0.0186 (12)0.0202 (13)0.0033 (9)0.0049 (10)0.0010 (10)
C120.0119 (10)0.0237 (13)0.0163 (13)0.0037 (9)0.0051 (9)0.0027 (10)
N10.0165 (10)0.0211 (11)0.0218 (12)0.0007 (8)0.0007 (9)0.0007 (9)
N20.0180 (10)0.0227 (11)0.0190 (11)0.0005 (8)0.0067 (8)0.0010 (9)
N30.0200 (10)0.0203 (11)0.0212 (12)0.0026 (8)0.0079 (9)0.0001 (9)
N40.0257 (11)0.0207 (11)0.0210 (12)0.0044 (9)0.0122 (9)0.0029 (9)
O10.0157 (8)0.0283 (10)0.0239 (10)0.0009 (7)0.0038 (7)0.0023 (8)
S10.0204 (3)0.0219 (3)0.0177 (4)0.0020 (2)0.0106 (2)0.0010 (2)
Geometric parameters (Å, º) top
C1—C21.396 (4)C8—O11.426 (3)
C1—C61.396 (4)C8—C91.503 (3)
C1—C71.461 (3)C8—H8A0.9900
C2—C31.386 (4)C8—H8B0.9900
C2—H20.9500C9—N21.291 (3)
C3—C41.390 (4)C9—S11.730 (3)
C3—H30.9500C12—N31.309 (3)
C4—C51.381 (4)C12—N41.341 (3)
C4—H40.9500C12—S11.742 (2)
C5—C61.386 (4)N1—O11.419 (3)
C5—H50.9500N2—N31.392 (3)
C6—H60.9500N4—H4A0.8800
C7—N11.285 (3)N4—H4B0.8800
C7—H70.9500
C2—C1—C6119.5 (2)O1—C8—C9111.4 (2)
C2—C1—C7122.2 (2)O1—C8—H8A109.4
C6—C1—C7118.3 (2)C9—C8—H8A109.4
C3—C2—C1120.1 (2)O1—C8—H8B109.4
C3—C2—H2119.9C9—C8—H8B109.4
C1—C2—H2119.9H8A—C8—H8B108.0
C2—C3—C4120.0 (3)N2—C9—C8124.3 (2)
C2—C3—H3120.0N2—C9—S1114.39 (19)
C4—C3—H3120.0C8—C9—S1121.23 (19)
C5—C4—C3120.1 (2)N3—C12—N4125.0 (2)
C5—C4—H4119.9N3—C12—S1113.79 (19)
C3—C4—H4119.9N4—C12—S1121.15 (19)
C4—C5—C6120.3 (2)C7—N1—O1108.5 (2)
C4—C5—H5119.9C9—N2—N3113.0 (2)
C6—C5—H5119.9C12—N3—N2112.0 (2)
C5—C6—C1120.0 (3)C12—N4—H4A120.0
C5—C6—H6120.0C12—N4—H4B120.0
C1—C6—H6120.0H4A—N4—H4B120.0
N1—C7—C1119.9 (2)N1—O1—C8108.28 (19)
N1—C7—H7120.0C9—S1—C1286.84 (12)
C1—C7—H7120.0
C6—C1—C2—C32.3 (4)C1—C7—N1—O1177.0 (2)
C7—C1—C2—C3175.2 (2)C8—C9—N2—N3176.0 (2)
C1—C2—C3—C40.9 (4)S1—C9—N2—N30.3 (3)
C2—C3—C4—C50.1 (4)N4—C12—N3—N2178.9 (2)
C3—C4—C5—C60.2 (4)S1—C12—N3—N20.6 (3)
C4—C5—C6—C11.6 (4)C9—N2—N3—C120.2 (3)
C2—C1—C6—C52.6 (4)C7—N1—O1—C8170.3 (2)
C7—C1—C6—C5175.0 (2)C9—C8—O1—N183.4 (2)
C2—C1—C7—N124.1 (4)N2—C9—S1—C120.50 (19)
C6—C1—C7—N1153.4 (2)C8—C9—S1—C12175.9 (2)
O1—C8—C9—N2156.5 (2)N3—C12—S1—C90.63 (19)
O1—C8—C9—S127.5 (3)N4—C12—S1—C9179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N2i0.882.243.077 (3)159
N4—H4B···N3ii0.882.072.929 (3)164
C8—H8A···O1iii0.992.513.468 (3)163
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H10N4OS
Mr234.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.504 (4), 9.272 (3), 8.361 (3)
β (°) 106.75 (1)
V3)1076.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.16 × 0.12 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.956, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
5840, 1808, 1707
Rint0.034
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.09
No. of reflections1808
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.61

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N2i0.882.243.077 (3)159
N4—H4B···N3ii0.882.072.929 (3)164
C8—H8A···O1iii0.992.513.468 (3)163
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

We gratefully acknowledge the financial support of this work by the Foundation of Hubei Agricultural Scientific and Technological Innovation.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBoechat, N., Ferreira, S. B., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, S. M. S. V. (2006). Acta Cryst. C62, o42–o44.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCressier, D., Prouillac, C., Hernandez, P., Amourette, C., Diserbo, M., Lion, C. & Rima, G. (2009). Bioorg. Med. Chem. 17, 5275–5284.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFerrari, S., Morandi, F., Motiejunas, D., Nerini, E., Henrich, S., Luciani, R., Venturelli, A., Lazzari, S., Calo, S., Gupta, S., Hannaert, V., Michels, P. A. M., Wade, R. C. & Costi, M. P. (2011). J. Med. Chem. 54, 211–221.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds