organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o783-o784

6-Hydrazinylnicotinic acid: a powder study

aDepartment of Chemistry, Atomic Energy Commission of Syria (AECS), PO Box 6091, Damascus, Syrian Arab Republic
*Correspondence e-mail: cscientific@aec.org.sy

(Received 4 January 2012; accepted 13 February 2012; online 17 February 2012)

The structure of the title compound, C6H7N3O2, is of inter­est with respect to radiopharmacueticals. The crystal packing is characterized by N—H⋯O and O—H⋯N hydrogen bonds, which form a three-dimensional network. The molecule is planar except for one of the amine H atoms.

Related literature

For background on radiopharmacueticals, see: Callahan et al. (1996[Callahan, R. J., Barrow, S. A., Abrams, M. J., Rubin, R. H. & Fishman, A. J. (1996). J. Nucl. Med. 37, 843-846.]); Rennen et al. (2000[Rennen, H. J., Boerman, O. C., Koenders, E. B., Oyen, V. J. & Corstens, F. H. (2000). Nucl. Med. Biol. 27, 599-604.]). For general background, see: Abrams et al. (1990[Abrams, M. J., Juweid, M., tenKate, C. I., Schwartz, D. A., Hauser, M. M., Gaul, F. E., Fuccello, A. J., Rubin, R. H., Strauss, H. W. & Fischman, A. J. (1990). J. Nucl. Med. 31, 2022-2027.]). For details of the synthesis, see: Schwartz et al. (1995[Schwartz, D. A., Abrams, M. J., Giadomenico, C. M. & Zubieta, J. A. (1995). US Patent No. 5420285.]). For geometric data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For descriptions of the powder diffraction profile, see: Thompson et al. (1987[Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.]); Finger et al. (1994[Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892-900.]); Stephens (1999[Stephens, P. W. (1999). J. Appl. Cryst. 32, 281-289.]); Von Dreele (1997[Von Dreele, R. B. (1997). J. Appl. Cryst. 30, 517-525.]). For refinement by the LeBail method, see: Le Bail et al. (1988[Le Bail, A., Duroy, H. & Fourquet, J. L. (1988). Mater. Res. Bull. 23, 447-452.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N3O2

  • Mr = 153.15

  • Monoclinic, P 21 /c

  • a = 6.69930 (14) Å

  • b = 13.8834 (2) Å

  • c = 7.10677 (9) Å

  • β = 91.7805 (11)°

  • V = 660.67 (2) Å3

  • Z = 4

  • Cu Kα1 radiation

  • λ = 1.5406 Å

  • μ = 1.01 mm−1

  • T = 298 K

  • Flat sheet, 8 × 8 mm

Data collection
  • Stoe STADI P diffractometer

  • Specimen mounting: powder loaded between two Mylar foils

  • Data collection mode: transmission

  • Scan method: step

  • Absorption correction: for a cylinder mounted on the φ axis [flat-plate transmission absorption correction (GSAS absorption/surface roughness correction function number 4 with a non-refined term of μd = 0.1482)] Tmin = 0.732, Tmax = 0.795

  • 2θmin = 9.969°, 2θmax = 84.949°, 2θstep = 0.02°

Refinement
  • Rp = 0.023

  • Rwp = 0.030

  • Rexp = 0.021

  • R(F2) = 0.01796

  • χ2 = 2.016

  • 4250 data points

  • 146 parameters

  • 26 restraints

  • Only H-atom coordinates refined

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.89 (3) 1.94 (2) 2.792 (8) 158 (4)
N3—H1N3⋯O2ii 0.87 (3) 2.39 (4) 2.967 (10) 124 (6)
N3—H2N3⋯O1iii 0.87 (3) 2.23 (6) 2.950 (11) 141 (5)
O2—H1O2⋯N1iv 0.822 (15) 1.818 (16) 2.622 (10) 165.2 (18)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: WinXPOW (Stoe & Cie, 1999[Stoe & Cie (1999). WinXPOW. Stoe & Cie, Darmstadt, Germany.]); cell refinement: FULLPROF (Rodriguez-Carvajal, 2001[Rodriguez-Carvajal, J. (2001). FULLPROF. CEA/Saclay, France.]) and GSAS (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). GSAS. Report LAUR 86-748. LosAlamos National Laboratory, New Mexico, USA.]); data reduction: WinXPOW, DICVOL04 (Boultif & Louër, 2004[Boultif, A. & Louër, D. (2004). J. Appl. Cryst. 37, 724-731.]), and CheckGroup interfaced by WinPLOTR (Roisnel & Rodriguez-Carvajal, 2001[Roisnel, T. & Rodriguez-Carvajal, J. (2001). Mater. Sci. Forum, 378-381, 118-123.]); program(s) used to solve structure: EXPO2009 (Altomare et al., 2009[Altomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A. & Rizzi, R. (2009). J. Appl. Cryst. 42, 1197-1202.]); program(s) used to refine structure: GSAS interfaced by EXPGUI (Toby, 2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

6-Hydrazinylnicotinic acid (I) introduced by Abrams et al., (1990), functions as a bifunctional chelating agent, forming a bridge between biomolecules and technetium (Callahan et al., 1996; Rennen et al., 2000). The (I) conjugated molecules react as monodentate ligands. Compound (I) is often used to synthesize bioconjugates for radiolabelling with 99mTc and it is capable of efficient capture of technetium at extremely low concentrations. Compound (I) has a tendency to crystallize in the form of very fine pale yellow powder. Since no single-crystal of sufficient thickness and quality could be obtained, a structure determination by powder X-ray diffraction data was attempted. An ORTEP (Farrugia, 1997) view of compound (I) with atomic labeling is shown in Fig. 1. Bond lengths and angles in compound (I) are in their normal ranges (Allen et al., 1987). The crystal packing is characterized by intermolecular hydrogen bonds involving the hydroxyl H atom and the amine H atom (Table 1).The hydrogen bonds form a three dimensional network (Fig. 2).

Related literature top

For general background, see: Abrams et al. (1990); Callahan et al. (1996); Rennen et al. (2000). For details of the synthesis, see: Schwartz et al. (1995). For geometric data, see: Allen et al. (1987). For descriptions of the powder diffraction profile, see: Thompson et al. (1987); Finger et al. (1994); Stephens (1999); Von Dreele (1997). For refinement by the LeBail method, see: Le Bail et al. (1988).

Experimental top

The synthesis of 6-hydrazinylnicotinic acid (I) was achieved according to the reported method (Schwartz et al., 1995). 6-Chloronicotinic acid (8.0 g) was added to 35 ml of 85% hydrazine hydrate. The reaction mixture was heated at 373 K for 4 h. The homogeneous reaction mixture was concentrated to dryness to give a white solid. This solid was dissolved in water and on acidification to pH 5.5 with concentrated hydrochloric acid a precipitate formed. The precipitate was filtered and the solid was washed with 95% ethanol and ether to give 4.52 g of a pale brown solid (I); yield 58%.

1H and 13C{1H} NMR spectra were recorded in DMSO-D6 on a Bruker Biospin 400 spectrometer. IR spectrum was recorded on a Jasco FT–IR 300E instrument.

Spectroscopic data for (I): 1H NMR (DMSO-D6): δ 6.71 (d, 1H, py, J = 8.8 Hz),7.86 (dd, 1H, py, J = 2.4, 8.8 Hz), 8.52 (d, 1H, py, J = 2 Hz); 13C NMR (DMSO-D6) δ: 105.2 (py), 114.9 (py), 138.1 (py), 151.1 (py), 164 (py), 167.2 (CO); IR (KBr, ν, cm-1): 3309, 3231 (NH2).

Refinement top

For pattern indexing, the extraction of the peak positions was carried out with the program WinPLOTR (Roisnel & Rodriguez-Carvajal, 2001). Pattern indexing was performed with the program DicVol4.0 (Boultif & Louër, 2004). The first 20 lines of powder pattern were completely indexed on the basis of monoclinic system. The absolute error on each observed line was fixed at 0.02° (2θ). The figures of merit are sufficiently high to support the obtained indexing results [M(20) = 40.2, F(20) = 62.6(0.0045, 71)]. The whole powder diffraction pattern from 10 to 95° (2θ) was subsequently refined with cell and resolution constraints (Le Bail et al., 1988) with a space group without systematic extinctions in monoclinic system, P2/m, using the `profile matching' option of the program FullProf (Rodriguez-Carvajal, 2001). The best estimated space group in the monoclinic system was P21/c which determined with the help of the program Check Group interfaced by WinPLOTR (Roisnel & Rodriguez-Carvajal, 2001). The number of molecules per unit cell was estimated to be equal to Z = 4, it can be concluded that the number of molecules in the asymmetric unit is Z' = 1 for the space group P21/c.

The structure was solved ab initio by direct methods using the program EXPO2009 (Altomare et al., 2009). The model found by this program was introduced in the program GSAS (Larson & Von Dreele, 2004) implemented in EXPGUI (Toby, 2001) for Rietveld refinements. During the Rietveld refinements, the effect of the asymmetry of low-order peaks was corrected using a pseudo-Voigt description of the peak shape (Thompson et al., 1987) which allows for angle-dependent asymmetry with axial divergence (Finger et al., 1994). The two asymmetry parameters of this function S/L and D/L were both fixed at 0.0225 during the Rietveld refinement. An excluded region from 85 to 95° (2θ) was used, which leads to better molecular geometry.

Non-H atoms were not restrained, but several restraints on bonds lengths and angles were applied to H atoms (see below). A planar group restraints to the aromatic ring and the carboxyl group, including their H atoms were also applied.

The H atoms of the NH, NH2, OH groups were located in a difference map. The aromatic H atoms were positioned in their idealized geometries using a riding model with C—H = 0.99 Å. The coordinates of these H atoms restrained to the distances N—H = 0.89 (1) Å, N—H2 = 0.87 (1) Å, O—H = 0.82 (1) Å and C—H = 0.99 (1) Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom for aromatic H atoms and to 1.5 times of the Ueq of the parent atom for NH, NH2, OH groups).

Intensities were corrected from absorption effects with a µ.d value of 0.148. A spherical harmonics correction (Von Dreele, 1997) of intensities for preferred orientation was applied in the final refinement with 12 coefficients. The use of the preferred orientation correction leads to better molecular geometry with better agreement factors. The final Rietveld agreement factors are Rp = 0.023, Rwp = 0.030 Rexp = 0.022, χ2 = 1.904, and RF2 = 0.02438. The final Rietveld plot of the X-ray diffraction pattern is given in Fig. 3.

Computing details top

Data collection: WinXPOW (Stoe & Cie, 1999); cell refinement: FULLPROF (Rodriguez-Carvajal, 2001) and GSAS (Larson & Von Dreele, 2004); data reduction: WinXPOW (Stoe & Cie, 1999), DICVOL04 (Boultif & Louër, 2004), and CheckGroup interfaced by WinPLOTR (Roisnel & Rodriguez-Carvajal, 2001); program(s) used to solve structure: EXPO2009 (Altomare et al., 2009); program(s) used to refine structure: GSAS (Larson & Von Dreele, 2004) interfaced by EXPGUI (Toby, 2001); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecule structure of (I), showing the atom numbering. Displacement ellipsoids are drown at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. View of crystal packing of compound (I). Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Final Rietveld plot of compound (I). Observed data points are indicated by dots, the best-fit profile (upper trace) and the difference pattern (lower trace) are solid lines. The vertical bars indicate the positions of Bragg peaks.
6-Hydrazinylpyridine-3-carboxylic acid top
Crystal data top
C6H7N3O2F(000) = 320
Mr = 153.15Dx = 1.54 Mg m3
Monoclinic, P21/cCu Kα1 radiation, λ = 1.5406 Å
Hall symbol: -P 2ybcµ = 1.01 mm1
a = 6.69930 (14) ÅT = 298 K
b = 13.8834 (2) ÅParticle morphology: Fine powder
c = 7.10677 (9) Åpale brown
β = 91.7805 (11)°flat sheet, 8 × 8 mm
V = 660.67 (2) Å3Specimen preparation: Prepared at 298 K and 101.3 kPa
Z = 4
Data collection top
Stoe STADI P
diffractometer
Scan method: step
Radiation source: sealed X-ray tubeAbsorption correction: for a cylinder mounted on the ϕ axis
[Flat-plate transmission absorption correction (GSAS absorption/surface roughness correction function number 4 with a non-refined term of µd = 0.1482)]
Curved Ge(111) monochromatorTmin = 0.732, Tmax = 0.795
Specimen mounting: powder loaded between two Mylar foils2θmin = 9.969°, 2θmax = 84.949°, 2θstep = 0.02°
Data collection mode: transmission
Refinement top
Least-squares matrix: full146 parameters
Rp = 0.02326 restraints
Rwp = 0.030Primary atom site location: structure-invariant direct methods
Rexp = 0.021Secondary atom site location: difference Fourier map
R(F2) = 0.01796Hydrogen site location: difference Fourier map
χ2 = 2.016Only H-atom coordinates refined
4250 data points(Δ/σ)max = 0.03
Excluded region(s): The use of the excluded region from 85 to 95° (2θ) leads to better molecular geometry.Background function: Shifted Chebyshev function of 1st kind (GSAS Background function number 1) with 15 terms 1: 1800.66 2: -1847.80 3: 941.880 4: -249.680 5: 12.6164 6: 58.5368 7: -22.4573 8: -39.9081 9: 32.2315 10: 0.665645 11: -20.8095 12: 16.0647 13: -6.68008 14: -5.95330 15: 5.95798
Profile function: GSAS CW profile function number 4 with 21 terms, i.e., pseudovoigt profile coefficients as parameterized in (Thompson et al., 1987), asymmetry correction of Finger et al. (1994) and microstrain broadening by Stephens (1999). #1(GU) = 0.000 #2(GV) = 0.000 #3(GW) = 8.378 #4(GP) = 0.000 #5(LX) = 1.698 #6(ptec) = 0.00 #7(trns) = 0.00 #8(shft) = 0.0000 #9(sfec) = 0.00 #10(S/L) = 0.0225 #11(H/L) = 0.0228 #12(eta) = 0.6000 #13(S400 ) = 2.2E-01 #14(S040 ) = 3.7E-03 #15(S004 ) = 4.3E-01 #16(S220 ) = 3.8E-02 #17(S202 ) = 2.3E-01 #18(S022 ) = 5.1E-01 #19(S301 ) = -2.6E-01 #20(S103 ) = 1.6E-01 #21(S121 ) = -1.9E-01. Peak tails are ignored where the intensity is below 0.0010 times the peak. Aniso. broadening axis 0.0 0.0 1.0Preferred orientation correction: spherical hamonics function
Crystal data top
C6H7N3O2V = 660.67 (2) Å3
Mr = 153.15Z = 4
Monoclinic, P21/cCu Kα1 radiation, λ = 1.5406 Å
a = 6.69930 (14) ŵ = 1.01 mm1
b = 13.8834 (2) ÅT = 298 K
c = 7.10677 (9) Åflat sheet, 8 × 8 mm
β = 91.7805 (11)°
Data collection top
Stoe STADI P
diffractometer
Absorption correction: for a cylinder mounted on the ϕ axis
[Flat-plate transmission absorption correction (GSAS absorption/surface roughness correction function number 4 with a non-refined term of µd = 0.1482)]
Specimen mounting: powder loaded between two Mylar foilsTmin = 0.732, Tmax = 0.795
Data collection mode: transmission2θmin = 9.969°, 2θmax = 84.949°, 2θstep = 0.02°
Scan method: step
Refinement top
Rp = 0.0234250 data points
Rwp = 0.030146 parameters
Rexp = 0.02126 restraints
R(F2) = 0.01796Only H-atom coordinates refined
χ2 = 2.016
Special details top

Experimental. The sample was ground lightly in a mortar, loaded between two Mylar foils and fixed in the sample holder with a mask of 8.0 mm internal diameter.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0949 (15)0.0911 (6)0.7824 (15)0.025 (3)*
C20.3019 (11)0.0838 (5)0.8434 (12)0.024 (3)*
C30.4127 (11)0.1653 (6)0.8763 (12)0.035 (4)*
C40.3286 (12)0.2568 (6)0.8428 (14)0.018 (3)*
C50.0146 (12)0.1829 (7)0.7521 (12)0.039 (5)*
C60.035 (2)0.0069 (9)0.7503 (17)0.047 (4)*
N10.1331 (11)0.2628 (5)0.7828 (11)0.026 (3)*
N20.4164 (12)0.3424 (4)0.8716 (12)0.034 (3)*
N30.6139 (10)0.3455 (6)0.9453 (13)0.050 (3)*
O10.2097 (8)0.0126 (4)0.7110 (10)0.032 (3)*
O20.0600 (8)0.0758 (5)0.7824 (11)0.043 (3)*
H20.362 (2)0.0198 (11)0.869 (3)0.029 (4)*
H30.554 (3)0.1597 (10)0.917 (3)0.042 (4)*
H50.127 (3)0.1905 (12)0.707 (3)0.047 (5)*
H1N20.364 (4)0.3948 (12)0.816 (6)0.052 (4)*
H1N30.696 (2)0.325 (5)0.861 (5)0.075 (5)*
H2N30.644 (4)0.4040 (17)0.977 (10)0.075 (5)*
H1O20.018 (3)0.1211 (10)0.768 (4)0.065 (4)*
Geometric parameters (Å, º) top
C1—C21.444 (10)C6—C11.471 (15)
C2—C31.369 (9)C6—O11.198 (12)
C2—H20.990 (14)C6—O21.328 (11)
C3—C41.407 (10)N2—C41.339 (7)
C3—H30.981 (14)N2—N31.409 (7)
C4—N11.367 (9)N2—H1N20.89 (3)
N1—C51.378 (9)N3—H1N30.87 (3)
C5—C11.397 (12)N3—H2N30.87 (3)
C5—H50.997 (14)O2—H1O20.824 (14)
C2—C1—C5118.2 (7)C1—C5—H5120.3 (13)
C2—C1—C6123.3 (9)N1—C5—H5120.2 (13)
C5—C1—C6118.6 (9)C1—C6—O1123.5 (12)
C1—C2—C3120.3 (6)C1—C6—O2112.5 (10)
C1—C2—H2119.9 (6)O1—C6—O2123.8 (13)
C3—C2—H2119.7 (6)C4—N1—C5122.8 (8)
C2—C3—C4120.3 (7)C4—N2—N3119.2 (7)
C2—C3—H3119.8 (6)C4—N2—H1N2119 (2)
C4—C3—H3119.8 (6)N3—N2—H1N2119.4 (18)
C3—C4—N1118.9 (7)N2—N3—H1N3110 (2)
C3—C4—N2127.1 (8)N2—N3—H2N3110 (2)
N1—C4—N2113.9 (8)H1N3—N3—H2N3110 (5)
C1—C5—N1119.5 (6)C6—O2—H1O2109.9 (15)
C4—N1—C5—C10.1 (13)C5—C1—C2—C32.2 (14)
C5—N1—C4—N2177.5 (8)C2—C1—C6—O20.5 (15)
C5—N1—C4—C30.5 (13)C5—C1—C6—O14.9 (17)
N3—N2—C4—N1175.9 (8)C2—C1—C6—O1175.2 (10)
N3—N2—C4—C30.8 (15)C5—C1—C6—O2179.4 (9)
C2—C1—C5—N10.7 (13)C1—C2—C3—C42.9 (13)
C6—C1—C5—N1179.5 (9)C2—C3—C4—N2178.6 (9)
C6—C1—C2—C3178.0 (10)C2—C3—C4—N12.1 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.89 (3)1.94 (2)2.792 (8)158 (4)
N3—H1N3···O2ii0.87 (3)2.39 (4)2.967 (10)124 (6)
N3—H2N3···O1iii0.87 (3)2.23 (6)2.950 (11)141 (5)
O2—H1O2···N1iv0.822 (15)1.818 (16)2.622 (10)165.2 (18)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC6H7N3O2
Mr153.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.69930 (14), 13.8834 (2), 7.10677 (9)
β (°) 91.7805 (11)
V3)660.67 (2)
Z4
Radiation typeCu Kα1, λ = 1.5406 Å
µ (mm1)1.01
Specimen shape, size (mm)Flat sheet, 8 × 8
Data collection
DiffractometerStoe STADI P
diffractometer
Specimen mountingPowder loaded between two Mylar foils
Data collection modeTransmission
Scan methodStep
Absorption correctionFor a cylinder mounted on the ϕ axis
[Flat-plate transmission absorption correction (GSAS absorption/surface roughness correction function number 4 with a non-refined term of µd = 0.1482)]
Tmin, Tmax0.732, 0.795
2θ values (°)2θmin = 9.969 2θmax = 84.949 2θstep = 0.02
Refinement
R factors and goodness of fitRp = 0.023, Rwp = 0.030, Rexp = 0.021, R(F2) = 0.01796, χ2 = 2.016
No. of data points4250
No. of parameters146
No. of restraints26
H-atom treatmentOnly H-atom coordinates refined

Computer programs: , FULLPROF (Rodriguez-Carvajal, 2001) and GSAS (Larson & Von Dreele, 2004), WinXPOW (Stoe & Cie, 1999), DICVOL04 (Boultif & Louër, 2004), and CheckGroup interfaced by WinPLOTR (Roisnel & Rodriguez-Carvajal, 2001), EXPO2009 (Altomare et al., 2009), GSAS (Larson & Von Dreele, 2004) interfaced by EXPGUI (Toby, 2001), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.89 (3)1.94 (2)2.792 (8)158 (4)
N3—H1N3···O2ii0.87 (3)2.39 (4)2.967 (10)124 (6)
N3—H2N3···O1iii0.87 (3)2.23 (6)2.950 (11)141 (5)
O2—H1O2···N1iv0.822 (15)1.818 (16)2.622 (10)165.2 (18)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y1/2, z+3/2.
 

Acknowledgements

The authors thank Professor I. Othman, Director General, and Professor T. Yassine, Head of Chemistry, for their support and encouragement. Thanks are also expressed to Ms Dalal Alnaameh for her assistance with some of the laboratory work.

References

First citationAbrams, M. J., Juweid, M., tenKate, C. I., Schwartz, D. A., Hauser, M. M., Gaul, F. E., Fuccello, A. J., Rubin, R. H., Strauss, H. W. & Fischman, A. J. (1990). J. Nucl. Med. 31, 2022–2027.  CAS PubMed Web of Science Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A. & Rizzi, R. (2009). J. Appl. Cryst. 42, 1197–1202.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBoultif, A. & Louër, D. (2004). J. Appl. Cryst. 37, 724–731.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCallahan, R. J., Barrow, S. A., Abrams, M. J., Rubin, R. H. & Fishman, A. J. (1996). J. Nucl. Med. 37, 843–846.  CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFinger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (2004). GSAS. Report LAUR 86-748. LosAlamos National Laboratory, New Mexico, USA.  Google Scholar
First citationLe Bail, A., Duroy, H. & Fourquet, J. L. (1988). Mater. Res. Bull. 23, 447–452.  CrossRef CAS Web of Science Google Scholar
First citationRennen, H. J., Boerman, O. C., Koenders, E. B., Oyen, V. J. & Corstens, F. H. (2000). Nucl. Med. Biol. 27, 599–604.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRodriguez-Carvajal, J. (2001). FULLPROF. CEA/Saclay, France.  Google Scholar
First citationRoisnel, T. & Rodriguez-Carvajal, J. (2001). Mater. Sci. Forum, 378–381, 118–123.  CrossRef CAS Google Scholar
First citationSchwartz, D. A., Abrams, M. J., Giadomenico, C. M. & Zubieta, J. A. (1995). US Patent No. 5420285.  Google Scholar
First citationStephens, P. W. (1999). J. Appl. Cryst. 32, 281–289.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). WinXPOW. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationThompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationToby, B. H. (2001). J. Appl. Cryst. 34, 210–213.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVon Dreele, R. B. (1997). J. Appl. Cryst. 30, 517–525.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o783-o784
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds