organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[3-(Hy­dr­oxy­imino)­butan-2-yl­­idene]-4-methyl­benzene-1-sulfono­hydrazide

aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96201-900, Rio Grande, RS, Brazil, bDepartamento de Química, Universidade Federal de Santa Maria, Av. Roraima, Campus, 97105-900, Santa Maria, RS, Brazil, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000, São Cristóvão, SE, Brazil
*Correspondence e-mail: adriano@daad-alumni.de

(Received 17 January 2012; accepted 26 January 2012; online 4 February 2012)

In the title compound, C11H15N3O3S, the C—S—N(H)—N linkage is nonplanar, the torsion angle being 75.70 (12)°. The compound has two almost planar fragments linked to the S atom: the hydrazone-derivative fragment [(HONC4H6)N—N(H)–] and the tolyl fragment (C7H7–) have maximum deviations from the mean plane through the non-H atoms of 0.0260 (10) and 0.0148 (14) Å, respectively. The two planar fragments make an inter­planar angle of 79.47 (5)°. In the crystal, mol­ecules are connected through inversion centers via pairs of N—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For the synthesis and application of hy­droxy­imino-tosyl­hydrazones as complexing agents, see: Beger et al. (1991[Beger, J., Siedler, F., Mühl, P. & Gloe, K. (1991). German Patent DD287027A5.]). For a similar structure with a tosyl­hydrazone derivative, see: Fonseca et al. (2011[Fonseca, A. de S., Storino, T. G., Carratu, V. S., Locatelli, A. & Oliveira, A. B. de (2011). Acta Cryst. E67, o3256.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15N3O3S

  • Mr = 269.32

  • Triclinic, [P \overline 1]

  • a = 5.5740 (1) Å

  • b = 10.4354 (2) Å

  • c = 11.3997 (2) Å

  • α = 83.586 (1)°

  • β = 77.453 (1)°

  • γ = 87.688 (1)°

  • V = 643.11 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.55 × 0.24 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). COSMO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.872, Tmax = 0.946

  • 11000 measured reflections

  • 3211 independent reflections

  • 2862 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.112

  • S = 1.05

  • 3211 reflections

  • 174 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H8⋯O3i 0.82 (2) 2.19 (2) 2.9830 (18) 165.0 (19)
O1—H1⋯N1ii 0.84 (3) 1.99 (3) 2.792 (2) 160 (2)
Symmetry codes: (i) -x+2, -y, -z; (ii) -x, -y+1, -z.

Data collection: COSMO (Bruker, 2005[Bruker (2005). COSMO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT; data reduction: SAINT (Bruker, 2005[Bruker (2005). COSMO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Hydrazones have a wide range of applications on inorganic chemistry. For example, sulfonylhydrazones are used as complexing agents for cobalt (II) (Beger et al., 1991). As part of our study of sulfonylhydrazone derivatives, we report herein the crystal structure of an oxime-sulfonylhydrazone derivative. In the title compound (Fig. 1) the C—S—N(H)—N linkage is non-planar with the torsion angle being 75.70 (12)° and a tetrahedral environment suggests a sp3 hybridization for the S atom. The title structure contains additionally two planar fragments. The maximum deviations from the least squares planes for the hydrazone derivative fragment C1/C2/C3/C4/N1/N2/N3/O1 and for the tolyl fragment C5/C6/C7/C8/C9/C10/C11 amount to 0.0260 (10)° and for N3 and 0.0148 (14)° for C9 atoms, respectively. The dihedral angle between the two planes is 79.47 (5)°. The crystal packing is stabilized by intermolecular N—H···O (Table 1; N3—H8···O3i) and O—H···N bonds (Table 1; O1—H1···N1ii) connecting the molecules through inversion centers (Fig. 2). Symmetry codes: (i)-x+2, -y, -z; (ii)-x, -y+1, -z.

Related literature top

For the synthesis and application of hydroxyimino-tosylhydrazones as complexing agents, see: Beger et al. (1991). For a similar structure with a tosylhydrazone derivative, see: Fonseca et al. (2011).

Experimental top

Starting materials were commercially available and were used without further purification. The synthesis was adapted from a procedure reported previously (Beger et al., 1991). The reaction of 2,3-Butanedione monoxime (5 mmol) and p-toluenesulfonylhydrazine (5 mmol) in ethanol (50 ml) was refluxed for 3 h. After cooling and filtering, crystals suitable for X-ray diffraction were obtained.

Refinement top

H atoms attached to C atoms were positioned with idealized geometry and were refined isotropically with Uiso(H) set to 1.2 times Ueq(C) for the aromatic and 1.5 times Ueq(C) for methyl H atoms using a riding model with C—H = 0.93 Å and C—H = 0.96 Å, respectively. H atoms attached to N and O atoms were located in difference Fourier maps and included in the subsequent refinement using restraints (N3—H8 = 0.82 (2) Å and O1—H1 = 0.84 (3) Å) with Uiso(H) = 1.5 times of the Ueq(N) and Ueq(O), respectively. In the last stage of refinement, they were refined freely.

Computing details top

Data collection: COSMO (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. Molecules of the title compound connected through inversion centers via pairs of N—H···O and O—H···N hydrogen bonds in the crystal structure. Intermolecular hydrogen bonding is indicated as dashed lines. Symmetry codes: (i)-x+2, -y, -z; (ii)-x, -y+1, -z.
N'-[3-(Hydroxyimino)butan-2-ylidene]-4-methylbenzene-1-sulfonohydrazide top
Crystal data top
C11H15N3O3SZ = 2
Mr = 269.32F(000) = 284
Triclinic, P1Dx = 1.391 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5740 (1) ÅCell parameters from 6049 reflections
b = 10.4354 (2) Åθ = 2.6–28.3°
c = 11.3997 (2) ŵ = 0.26 mm1
α = 83.586 (1)°T = 293 K
β = 77.453 (1)°Block, colourless
γ = 87.688 (1)°0.55 × 0.24 × 0.22 mm
V = 643.11 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3211 independent reflections
Radiation source: fine-focus sealed tube, Bruker X8 APEXII2862 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 76
Tmin = 0.872, Tmax = 0.946k = 1313
11000 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.1526P]
where P = (Fo2 + 2Fc2)/3
3211 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C11H15N3O3Sγ = 87.688 (1)°
Mr = 269.32V = 643.11 (2) Å3
Triclinic, P1Z = 2
a = 5.5740 (1) ÅMo Kα radiation
b = 10.4354 (2) ŵ = 0.26 mm1
c = 11.3997 (2) ÅT = 293 K
α = 83.586 (1)°0.55 × 0.24 × 0.22 mm
β = 77.453 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3211 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2862 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 0.946Rint = 0.015
11000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.27 e Å3
3211 reflectionsΔρmin = 0.28 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.94931 (6)0.06163 (3)0.19318 (3)0.03670 (12)
O31.14412 (19)0.00383 (11)0.11725 (10)0.0465 (3)
O10.0184 (2)0.53370 (13)0.13328 (14)0.0599 (3)
O21.00547 (19)0.14436 (11)0.27426 (10)0.0474 (3)
N30.8101 (2)0.14880 (12)0.09796 (12)0.0410 (3)
N20.6390 (2)0.23836 (11)0.14677 (11)0.0383 (3)
N10.1759 (2)0.44076 (12)0.07432 (12)0.0446 (3)
C30.4937 (2)0.28939 (12)0.08064 (12)0.0361 (3)
C50.7414 (2)0.05473 (13)0.27630 (13)0.0377 (3)
C20.3235 (2)0.38812 (13)0.13806 (13)0.0393 (3)
C80.4212 (3)0.23753 (16)0.41661 (14)0.0489 (4)
C60.8088 (3)0.18421 (15)0.28051 (16)0.0493 (4)
H90.96020.21020.23660.059*
C90.3564 (3)0.10782 (18)0.40921 (16)0.0546 (4)
H110.20300.08210.45130.066*
C100.5143 (3)0.01583 (16)0.34077 (16)0.0502 (4)
H120.46910.07100.33790.060*
C40.4871 (3)0.25726 (17)0.04261 (15)0.0496 (4)
H50.45540.16710.03950.074*
H60.64240.27700.09620.074*
H70.35910.30700.07160.074*
C70.6482 (3)0.27425 (16)0.35074 (17)0.0554 (4)
H100.69340.36110.35390.066*
C110.2476 (4)0.3351 (2)0.49484 (18)0.0665 (5)
H130.08950.32480.47410.100*
H140.23170.32200.57820.100*
H150.31100.42050.48200.100*
C10.3317 (3)0.41963 (17)0.26113 (15)0.0539 (4)
H20.19750.47710.28870.081*
H30.48440.46040.25860.081*
H40.31860.34180.31550.081*
H80.794 (4)0.1114 (19)0.0409 (19)0.053 (5)*
H10.061 (5)0.556 (2)0.079 (2)0.082 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03284 (18)0.03859 (19)0.0401 (2)0.00890 (12)0.01154 (13)0.00617 (13)
O30.0385 (5)0.0504 (6)0.0492 (6)0.0159 (4)0.0088 (4)0.0071 (5)
O10.0532 (7)0.0575 (7)0.0732 (8)0.0290 (6)0.0195 (6)0.0236 (6)
O20.0453 (5)0.0482 (6)0.0538 (6)0.0033 (4)0.0191 (5)0.0124 (5)
N30.0415 (6)0.0419 (6)0.0407 (6)0.0153 (5)0.0128 (5)0.0067 (5)
N20.0352 (5)0.0364 (6)0.0425 (6)0.0083 (4)0.0080 (5)0.0040 (5)
N10.0374 (6)0.0396 (6)0.0567 (8)0.0137 (5)0.0106 (5)0.0093 (5)
C30.0323 (6)0.0333 (6)0.0412 (7)0.0042 (5)0.0067 (5)0.0015 (5)
C50.0373 (6)0.0396 (7)0.0382 (7)0.0059 (5)0.0133 (5)0.0053 (5)
C20.0347 (6)0.0357 (6)0.0461 (7)0.0045 (5)0.0064 (5)0.0045 (6)
C80.0541 (8)0.0520 (9)0.0427 (8)0.0057 (7)0.0148 (6)0.0042 (7)
C60.0467 (8)0.0431 (8)0.0566 (9)0.0095 (6)0.0073 (7)0.0096 (7)
C90.0450 (8)0.0599 (10)0.0548 (9)0.0056 (7)0.0030 (7)0.0059 (8)
C100.0460 (8)0.0444 (8)0.0568 (9)0.0110 (6)0.0060 (7)0.0041 (7)
C40.0522 (8)0.0521 (9)0.0457 (8)0.0189 (7)0.0145 (7)0.0094 (7)
C70.0620 (10)0.0392 (8)0.0640 (10)0.0038 (7)0.0123 (8)0.0053 (7)
C110.0719 (12)0.0650 (11)0.0590 (11)0.0142 (9)0.0079 (9)0.0007 (9)
C10.0585 (9)0.0545 (9)0.0503 (9)0.0140 (7)0.0129 (7)0.0153 (7)
Geometric parameters (Å, º) top
S1—O21.4225 (11)C8—C111.506 (2)
S1—O31.4349 (10)C6—C71.383 (2)
S1—N31.6420 (12)C6—H90.9300
S1—C51.7591 (14)C9—C101.381 (2)
O1—N11.4084 (16)C9—H110.9300
O1—H10.84 (3)C10—H120.9300
N3—N21.3807 (16)C4—H50.9600
N3—H80.82 (2)C4—H60.9600
N2—C31.2843 (18)C4—H70.9600
N1—C21.2808 (19)C7—H100.9300
C3—C21.4806 (18)C11—H130.9600
C3—C41.489 (2)C11—H140.9600
C5—C61.386 (2)C11—H150.9600
C5—C101.389 (2)C1—H20.9600
C2—C11.487 (2)C1—H30.9600
C8—C91.385 (2)C1—H40.9600
C8—C71.387 (2)
O2—S1—O3119.84 (7)C10—C9—C8121.49 (15)
O2—S1—N3107.87 (7)C10—C9—H11119.3
O3—S1—N3104.20 (6)C8—C9—H11119.3
O2—S1—C5108.48 (7)C9—C10—C5119.14 (15)
O3—S1—C5108.09 (7)C9—C10—H12120.4
N3—S1—C5107.77 (6)C5—C10—H12120.4
N1—O1—H198.5 (17)C3—C4—H5109.5
N2—N3—S1116.06 (10)C3—C4—H6109.5
N2—N3—H8122.1 (14)H5—C4—H6109.5
S1—N3—H8113.8 (14)C3—C4—H7109.5
C3—N2—N3117.27 (12)H5—C4—H7109.5
C2—N1—O1112.69 (13)H6—C4—H7109.5
N2—C3—C2113.63 (13)C6—C7—C8121.31 (15)
N2—C3—C4125.81 (13)C6—C7—H10119.3
C2—C3—C4120.56 (12)C8—C7—H10119.3
C6—C5—C10120.45 (14)C8—C11—H13109.5
C6—C5—S1119.79 (11)C8—C11—H14109.5
C10—C5—S1119.72 (11)H13—C11—H14109.5
N1—C2—C3115.11 (13)C8—C11—H15109.5
N1—C2—C1124.73 (13)H13—C11—H15109.5
C3—C2—C1120.15 (12)H14—C11—H15109.5
C9—C8—C7118.35 (15)C2—C1—H2109.5
C9—C8—C11120.18 (16)C2—C1—H3109.5
C7—C8—C11121.47 (16)H2—C1—H3109.5
C7—C6—C5119.24 (15)C2—C1—H4109.5
C7—C6—H9120.4H2—C1—H4109.5
C5—C6—H9120.4H3—C1—H4109.5
O2—S1—N3—N241.25 (12)N2—C3—C2—N1179.95 (12)
O3—S1—N3—N2169.63 (10)C4—C3—C2—N10.2 (2)
C5—S1—N3—N275.70 (12)N2—C3—C2—C10.0 (2)
S1—N3—N2—C3166.53 (10)C4—C3—C2—C1179.93 (15)
N3—N2—C3—C2177.60 (11)C10—C5—C6—C70.7 (2)
N3—N2—C3—C42.3 (2)S1—C5—C6—C7176.99 (13)
O2—S1—C5—C6117.69 (13)C7—C8—C9—C101.6 (3)
O3—S1—C5—C613.69 (15)C11—C8—C9—C10178.28 (17)
N3—S1—C5—C6125.76 (13)C8—C9—C10—C51.1 (3)
O2—S1—C5—C1060.01 (14)C6—C5—C10—C90.0 (2)
O3—S1—C5—C10168.61 (12)S1—C5—C10—C9177.65 (13)
N3—S1—C5—C1056.54 (14)C5—C6—C7—C80.2 (3)
O1—N1—C2—C3179.96 (12)C9—C8—C7—C60.9 (3)
O1—N1—C2—C10.1 (2)C11—C8—C7—C6178.96 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H8···O3i0.82 (2)2.19 (2)2.9830 (18)165.0 (19)
O1—H1···N1ii0.84 (3)1.99 (3)2.792 (2)160 (2)
Symmetry codes: (i) x+2, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H15N3O3S
Mr269.32
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.5740 (1), 10.4354 (2), 11.3997 (2)
α, β, γ (°)83.586 (1), 77.453 (1), 87.688 (1)
V3)643.11 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.55 × 0.24 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.872, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
11000, 3211, 2862
Rint0.015
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.112, 1.05
No. of reflections3211
No. of parameters174
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.28

Computer programs: COSMO (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H8···O3i0.82 (2)2.19 (2)2.9830 (18)165.0 (19)
O1—H1···N1ii0.84 (3)1.99 (3)2.792 (2)160 (2)
Symmetry codes: (i) x+2, y, z; (ii) x, y+1, z.
 

Acknowledgements

The authors gratefully acknowledge Professor Dr Manfredo Hörner (Department of Chemistry, Federal University of Santa Maria, Brazil) for his help and support with the X-ray measurements, and CNPq/FAPERGS for financial support.

References

First citationBeger, J., Siedler, F., Mühl, P. & Gloe, K. (1991). German Patent DD287027A5.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). COSMO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFonseca, A. de S., Storino, T. G., Carratu, V. S., Locatelli, A. & Oliveira, A. B. de (2011). Acta Cryst. E67, o3256.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds