organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Ammonio­meth­yl)pyridinium sulfate monohydrate

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: schuttem@ufs.ac.za

(Received 19 January 2012; accepted 21 February 2012; online 29 February 2012)

In the crystal of the title hydrated molecular salt, C6H10N22+·SO42−·H2O, N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the ab plane. C—H⋯O hydrogen bonds are observed both within these layers and between mol­ecules and ions in adjacent layers.

Related literature

For other salts of 2-amino­methyl­pyridine, see: Tooke et al. (2004[Tooke, D. M., Spek, A. L., Reedijk, J. & Kannappan, R. (2004). Acta Cryst. E60, o911-o912.]); Mahjaub et al. (2005[Mahjaub, A. R., Morsali, A. & Aval, S. N. (2005). Z. Kristallogr. New Cryst. Struct. 220, 45-46.]); Lemmerer et al. (2008[Lemmerer, A., Bourne, S. A. & Fernandes, M. A. (2008). CrystEngComm, 10, 1750-1757.]); Khemiri et al. (2010[Khemiri, H., Akriche, S. & Rzaigui, M. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 267-273.]); Døssing et al. (2001[Døssing, A., Skands, M. C. & Madsen, A. Ø. (2001). Acta Cryst. C57, 1460-1461.]); Junk et al. (2006[Junk, D. C., Kim, Y., Skelton, B. W. & White, A. H. (2006). Z. Anorg. Allg. Chem. 632, 1340-1350.]); Yuge et al. (2008[Yuge, T., Sakai, T., Kai, N., Hisaki, I., Miyata, M. & Tohnai, N. (2008). Chem. Eur. J. 14, 2984-2993.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N22+·SO42−·H2O

  • Mr = 224.24

  • Triclinic, [P \overline 1]

  • a = 5.2804 (1) Å

  • b = 6.9458 (2) Å

  • c = 12.4262 (3) Å

  • α = 81.392 (1)°

  • β = 82.874 (1)°

  • γ = 85.193 (1)°

  • V = 446.15 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 100 K

  • 0.35 × 0.34 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.881, Tmax = 0.921

  • 9334 measured reflections

  • 1926 independent reflections

  • 1846 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.075

  • S = 1.07

  • 1926 reflections

  • 151 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H7C⋯O1i 0.87 (2) 2.587 (19) 2.8753 (14) 100.3 (14)
N2—H7A⋯O2ii 0.87 (2) 1.91 (2) 2.7514 (15) 161.2 (18)
N2—H7B⋯O4iii 0.875 (18) 1.944 (18) 2.8019 (15) 166.4 (16)
N2—H7C⋯O1iv 0.87 (2) 1.87 (2) 2.7320 (15) 168.0 (18)
N1—H8⋯O4 0.86 (2) 1.86 (2) 2.7170 (15) 173.0 (18)
O5—H9⋯O3 0.82 (2) 1.97 (3) 2.7928 (15) 173 (2)
O5—H10⋯O2iii 0.82 (3) 2.46 (2) 3.1822 (15) 149 (2)
O5—H10⋯O3iii 0.82 (3) 2.55 (3) 3.3009 (16) 154 (2)
C2—H2⋯O3v 0.93 2.39 3.2856 (16) 162
C3—H3⋯O5vi 0.93 2.57 3.2581 (17) 131
C6—H6A⋯O4 0.97 2.40 3.2080 (15) 141
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+2, -y, -z+2; (iii) x-1, y, z; (iv) x-1, y+1, z; (v) -x+2, -y, -z+1; (vi) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

2-(Ammoniomethyl)pyridinium sulfate monohydrate crystallized in the triclinic spacegroup with both nitrogen atoms protonated in the 2-aminomethylpyridine molecule. One 2-(ammoniomethyl)pyridinium cation, one sulfate anion and one solvent water molecule are present in the asymmetric unit. The bond distances compare well with those of other similar reported structures (Tooke et al., 2004; Mahjaub et al., 2005; Døssing et al., 2001; Junk et al., 2006; Yuge et al., 2008; Lemmerer et al., 2008; Khemiri et al., 2010). Also, the four sulfur-oxygen distances of 1.4694 (17) Å, 1.4718 (12) Å, 1.4741 (13) Å and 1.4965 (13) Å are well within range for sulfur-oxygen bond distances as well as the angles of 109.58 (7) °, 110.91 (7) °, 110.63 (7) °, 109.16 (8) °, 108.32 (6) ° and 108.18 (8) °. A total of eleven hydrogen bonds (N—H···O, O—H···O and C—H···O) are observed in the crystal structure. Seven of the hydrogen bonds are between the cations and sulfate anions, three are between a water molecule and sulfate anions and one is between the water molecule and the 2-(ammoniomethyl)pyridinium cation. The sulfate anions seems to surround the 2-(ammoniomethyl)pyridinium cation. The molecules pack in alternating layers parallel with the ab plane (Figure 2).

Related literature top

For other salts of 2-aminomethylpyridine, see: Tooke et al. (2004); Mahjaub et al. (2005); Lemmerer et al. (2008); Khemiri et al. (2010); Døssing et al. (2001); Junk et al. (2006); Yuge et al. (2008).

Experimental top

The crystal structure of (2-ammoniomethyl)pyridinium sulfate monohydrate was obtained by dissolving the ligand, 2-aminomethylpyridine, in water acidified with sulfuric acid. The final pH of the solution was recorded as pH = 6.1. The crystals were grown from this mixture by slow evaporation.

Refinement top

Aromatic H atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(parent) of the parent atom with a C—H distance of 0.93 Å. The methene H atoms were placed in geometrically idealized positions and constrained to ride on the parent atom with Uiso(H) = 1.2 Ueq(C) and at a distance of 0.97 Å. The O– and N– bound H atoms were placed from the electron density map and were refined freely with isotropic displacement parameters.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Diamond representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability).
[Figure 2] Fig. 2. Packing of the title compound in the unit cell. Hydrogen atoms have been omitted for clarity.
2-(Ammoniomethyl)pyridinium sulfate monohydrate top
Crystal data top
C6H10N22+·SO42·H2OZ = 2
Mr = 224.24F(000) = 236
Triclinic, P1Dx = 1.669 Mg m3
a = 5.2804 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.9458 (2) ÅCell parameters from 7388 reflections
c = 12.4262 (3) Åθ = 3.0–28.4°
α = 81.392 (1)°µ = 0.36 mm1
β = 82.874 (1)°T = 100 K
γ = 85.193 (1)°Cuboid, colourless
V = 446.15 (2) Å30.35 × 0.34 × 0.23 mm
Data collection top
Bruker APEXII CCD
diffractometer
1846 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 27.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 56
Tmin = 0.881, Tmax = 0.921k = 88
9334 measured reflectionsl = 1515
1926 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.2718P]
where P = (Fo2 + 2Fc2)/3
1926 reflections(Δ/σ)max = 0.019
151 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C6H10N22+·SO42·H2Oγ = 85.193 (1)°
Mr = 224.24V = 446.15 (2) Å3
Triclinic, P1Z = 2
a = 5.2804 (1) ÅMo Kα radiation
b = 6.9458 (2) ŵ = 0.36 mm1
c = 12.4262 (3) ÅT = 100 K
α = 81.392 (1)°0.35 × 0.34 × 0.23 mm
β = 82.874 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1926 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1846 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.921Rint = 0.023
9334 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.35 e Å3
1926 reflectionsΔρmin = 0.49 e Å3
151 parameters
Special details top

Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 10 s/frame. A total of 2250 frames were collected with a frame width of 0.5° covering up to θ = 28.43° with 97.3% completeness accomplished.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.22129 (5)0.18907 (4)0.83046 (2)0.00951 (11)
O41.07225 (18)0.01241 (13)0.86655 (8)0.0137 (2)
O11.10127 (19)0.36349 (14)0.89092 (8)0.0170 (2)
O31.2139 (2)0.18084 (14)0.71186 (7)0.0171 (2)
O21.48757 (18)0.18785 (16)0.85337 (8)0.0206 (2)
N10.7557 (2)0.15757 (15)0.71789 (9)0.0113 (2)
C10.7793 (3)0.13486 (19)0.61148 (11)0.0144 (3)
H10.92190.06490.58150.017*
C20.5927 (3)0.21501 (19)0.54669 (11)0.0148 (3)
H20.6080.20080.47290.018*
C50.5565 (2)0.25896 (18)0.76561 (10)0.0106 (2)
C40.3629 (2)0.34100 (18)0.70404 (10)0.0121 (3)
H40.22250.41080.73580.015*
C30.3814 (3)0.31756 (18)0.59413 (11)0.0137 (3)
H30.25180.37070.55220.016*
C60.5689 (2)0.27891 (19)0.88357 (10)0.0124 (3)
H6A0.68440.17550.91490.015*
H6B0.63760.40260.88750.015*
O50.8069 (2)0.35284 (16)0.64843 (9)0.0215 (2)
N20.3142 (2)0.26919 (17)0.94897 (9)0.0116 (2)
H90.924 (5)0.307 (3)0.6720 (18)0.034 (6)*
H100.682 (5)0.305 (3)0.6830 (19)0.041 (6)*
H7B0.235 (3)0.172 (3)0.9344 (14)0.014 (4)*
H7C0.226 (4)0.380 (3)0.9352 (15)0.023 (4)*
H7A0.341 (4)0.246 (3)1.0179 (17)0.023 (5)*
H80.864 (4)0.100 (3)0.7607 (15)0.021 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.00975 (17)0.00982 (17)0.00827 (17)0.00146 (11)0.00037 (11)0.00074 (11)
O40.0147 (4)0.0112 (4)0.0154 (4)0.0017 (3)0.0013 (3)0.0048 (3)
O10.0185 (5)0.0109 (4)0.0181 (5)0.0016 (4)0.0055 (4)0.0017 (4)
O30.0247 (5)0.0183 (5)0.0090 (5)0.0038 (4)0.0010 (4)0.0035 (4)
O20.0097 (5)0.0313 (6)0.0186 (5)0.0013 (4)0.0033 (4)0.0036 (4)
N10.0120 (5)0.0098 (5)0.0115 (5)0.0013 (4)0.0014 (4)0.0009 (4)
C10.0165 (6)0.0132 (6)0.0128 (6)0.0004 (5)0.0019 (5)0.0033 (5)
C20.0202 (6)0.0143 (6)0.0099 (6)0.0041 (5)0.0006 (5)0.0010 (5)
C50.0120 (6)0.0088 (5)0.0108 (6)0.0019 (4)0.0005 (4)0.0015 (4)
C40.0116 (6)0.0105 (6)0.0140 (6)0.0006 (4)0.0008 (5)0.0012 (5)
C30.0153 (6)0.0119 (6)0.0138 (6)0.0039 (5)0.0042 (5)0.0019 (5)
C60.0108 (6)0.0154 (6)0.0112 (6)0.0005 (4)0.0007 (5)0.0039 (5)
O50.0183 (5)0.0250 (5)0.0229 (5)0.0029 (4)0.0016 (4)0.0087 (4)
N20.0119 (5)0.0120 (5)0.0108 (5)0.0008 (4)0.0003 (4)0.0029 (4)
Geometric parameters (Å, º) top
S1—O21.4697 (10)C5—C61.5028 (16)
S1—O31.4715 (9)C4—C31.3900 (18)
S1—O11.4737 (10)C4—H40.93
S1—O41.4971 (9)C3—H30.93
N1—C51.3419 (16)C6—N21.4835 (16)
N1—C11.3443 (17)C6—H6A0.97
N1—H80.86 (2)C6—H6B0.97
C1—C21.3783 (19)O5—H90.82 (2)
C1—H10.93O5—H100.82 (3)
C2—C31.3891 (19)N2—H7B0.875 (18)
C2—H20.93N2—H7C0.87 (2)
C5—C41.3860 (17)N2—H7A0.87 (2)
O2—S1—O3109.59 (6)C5—C4—H4120.5
O2—S1—O1110.90 (6)C3—C4—H4120.5
O3—S1—O1110.65 (6)C2—C3—C4120.26 (12)
O2—S1—O4109.13 (6)C2—C3—H3119.9
O3—S1—O4108.33 (6)C4—C3—H3119.9
O1—S1—O4108.17 (5)N2—C6—C5112.19 (10)
C5—N1—C1122.78 (11)N2—C6—H6A109.2
C5—N1—H8116.0 (12)C5—C6—H6A109.2
C1—N1—H8121.1 (12)N2—C6—H6B109.2
N1—C1—C2120.15 (12)C5—C6—H6B109.2
N1—C1—H1119.9H6A—C6—H6B107.9
C2—C1—H1119.9H9—O5—H10101 (2)
C1—C2—C3118.50 (12)C6—N2—H7B110.1 (11)
C1—C2—H2120.8C6—N2—H7C109.4 (13)
C3—C2—H2120.8H7B—N2—H7C111.4 (17)
N1—C5—C4119.20 (11)C6—N2—H7A106.9 (12)
N1—C5—C6115.55 (11)H7B—N2—H7A108.3 (16)
C4—C5—C6125.22 (11)H7C—N2—H7A110.7 (17)
C5—C4—C3119.09 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H7C···O1i0.87 (2)2.587 (19)2.8753 (14)100.3 (14)
N2—H7A···O2ii0.87 (2)1.91 (2)2.7514 (15)161.2 (18)
N2—H7B···O4iii0.875 (18)1.944 (18)2.8019 (15)166.4 (16)
N2—H7C···O1iv0.87 (2)1.87 (2)2.7320 (15)168.0 (18)
N1—H8···O40.86 (2)1.86 (2)2.7170 (15)173.0 (18)
O5—H9···O30.82 (2)1.97 (3)2.7928 (15)173 (2)
O5—H10···O2iii0.82 (3)2.46 (2)3.1822 (15)149 (2)
O5—H10···O3iii0.82 (3)2.55 (3)3.3009 (16)154 (2)
C2—H2···O3v0.932.393.2856 (16)162
C3—H3···O5vi0.932.573.2581 (17)131
C6—H6A···O40.972.43.2080 (15)141
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+2; (iii) x1, y, z; (iv) x1, y+1, z; (v) x+2, y, z+1; (vi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H10N22+·SO42·H2O
Mr224.24
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.2804 (1), 6.9458 (2), 12.4262 (3)
α, β, γ (°)81.392 (1), 82.874 (1), 85.193 (1)
V3)446.15 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.35 × 0.34 × 0.23
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.881, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
9334, 1926, 1846
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.075, 1.07
No. of reflections1926
No. of parameters151
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.49

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H7C···O1i0.87 (2)2.587 (19)2.8753 (14)100.3 (14)
N2—H7A···O2ii0.87 (2)1.91 (2)2.7514 (15)161.2 (18)
N2—H7B···O4iii0.875 (18)1.944 (18)2.8019 (15)166.4 (16)
N2—H7C···O1iv0.87 (2)1.87 (2)2.7320 (15)168.0 (18)
N1—H8···O40.86 (2)1.86 (2)2.7170 (15)173.0 (18)
O5—H9···O30.82 (2)1.97 (3)2.7928 (15)173 (2)
O5—H10···O2iii0.82 (3)2.46 (2)3.1822 (15)149 (2)
O5—H10···O3iii0.82 (3)2.55 (3)3.3009 (16)154 (2)
C2—H2···O3v0.932.393.2856 (16)161.6
C3—H3···O5vi0.932.573.2581 (17)130.9
C6—H6A···O40.972.43.2080 (15)140.9
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+2; (iii) x1, y, z; (iv) x1, y+1, z; (v) x+2, y, z+1; (vi) x+1, y, z+1.
 

Acknowledgements

The authors would like to thank Alice Brink for the data collection, and the Department of Chemistry of the University of the Free State, the NRF and Sasol Ltd for funding; special thanks go to Professor Roodt and Professor Visser.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDøssing, A., Skands, M. C. & Madsen, A. Ø. (2001). Acta Cryst. C57, 1460–1461.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJunk, D. C., Kim, Y., Skelton, B. W. & White, A. H. (2006). Z. Anorg. Allg. Chem. 632, 1340–1350.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhemiri, H., Akriche, S. & Rzaigui, M. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 267–273.  Web of Science CSD CrossRef CAS Google Scholar
First citationLemmerer, A., Bourne, S. A. & Fernandes, M. A. (2008). CrystEngComm, 10, 1750–1757.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahjaub, A. R., Morsali, A. & Aval, S. N. (2005). Z. Kristallogr. New Cryst. Struct. 220, 45–46.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTooke, D. M., Spek, A. L., Reedijk, J. & Kannappan, R. (2004). Acta Cryst. E60, o911–o912.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYuge, T., Sakai, T., Kai, N., Hisaki, I., Miyata, M. & Tohnai, N. (2008). Chem. Eur. J. 14, 2984–2993.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds