organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o638-o639

(6Z)-3,5-Bis(4-fluoro­phen­yl)-6-(1-hy­dr­oxy­ethyl­­idene)cyclo­hex-2-en-1-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 1 January 2012; accepted 24 January 2012; online 10 February 2012)

In the title compound, C20H16F2O2, the cyclo­hex-2-en-1-one ring adopts a distorted envelope conformation and the dihedral angles between its six-atom mean plane and the fluorophenyl rings are 38.9(8) and 82.3(1)°. The two fluoro­phenyl rings are oriented at an angle of 77.3 (3)°. The long hy­droxy O—H bond length of 1.22 (3) and the H⋯O distance of 1.28 (3) Å, together with a longer than expected C=O bond length [1.290 (2) Å] in the hy­droxy(en-1-one) group, indicate sharing of the H atom as O⋯H⋯O between the two O atoms and the influence of electron delocalization. Weak C—H⋯O inter­molecular inter­actions form an infinite two-dimensional network in (011).

Related literature

For biological applications of some cyclo­hexenones, see: Eddington et al. (2000[Eddington, N. D., Cox, D. S., Roberts, R. R., Stables, J. P., Powell, C. B. & Scott, A. R. (2000). Curr. Med. Chem. 7, 417-436.]); Kolesnick & Golde (1994[Kolesnick, R. & Golde, D. W. (1994). Cell, 77, 325-328.]). For background to the applications of cyclo­hexenones, see: Padmavathi et al. (1999[Padmavathi, V., Sharmila, K., Padmaja, A. & Bhaskar Reddy, D. (1999). Heterocycl. Commun. 5, 451-456.], 2000[Padmavathi, V., Mohana Reddy, B. J., Balaiah, A., Venugopal Reddy, K. & Bhaskar Reddy, D. (2000). Molecules, 5, 1281-1286.]); Padmavathi, Sharmila, Somashekara Reddy & Bhaskar Reddy (2001[Padmavathi, V., Sharmila, K., Somashekara Reddy, A. & Bhaskar Reddy, D. (2001). Indian J. Chem. Sect. B, 40, 11-14.]); Padmavathi, Sharmila, Balaiah et al. (2001[Padmavathi, V., Sharmila, K., Balaiah, A., Somashekara Reddy, A. & Bhaskar Reddy, D. (2001). Synth. Commun. 31, 2119-2126.]). For related structures, see: Fischer et al. (2008[Fischer, A., Swamy, M. T., Narayana, B. & Yathirajan, H. S. (2008). Acta Cryst. E64, o2152.]); Li et al. (2009[Li, H., Mayekar, A. N., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009). Acta Cryst. E65, o1533.]); Dutkiewicz et al. (2011[Dutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, o445-o446.]). For the various derivatives of 4,4-difluoro­chalcone, see: Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864-o865.]); Jasinski et al. (2010[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o2018.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16F2O2

  • Mr = 326.33

  • Monoclinic, P 21 /c

  • a = 17.663 (2) Å

  • b = 6.2371 (6) Å

  • c = 15.2357 (16) Å

  • β = 107.717 (13)°

  • V = 1598.9 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.85 mm−1

  • T = 173 K

  • 0.35 × 0.20 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.754, Tmax = 0.862

  • 5441 measured reflections

  • 3023 independent reflections

  • 2154 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.147

  • S = 1.02

  • 3023 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1⋯H1⋯O2 1.22 (3) 1.28 (3) 2.465 (2) 163 (2)
C8—H8A⋯O2i 1.00 2.52 3.365 (3) 142
C19—H19A⋯O2ii 0.95 2.51 3.260 (3) 136
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cyclohexenone derivatives, prepared either from natural sources or entirely via synthetic routes, are known to possess a wide variety of biological activities, e.g. they were reported to have anticonvulsant, antimalarial and cardiovascular effects (Eddington et al., 2000). They are also well known lead molecules for the treatment of inflammation and autoimmune diseases (Kolesnick & Golde, 1994). Cyclohexenones are efficient synthons in building spiro compounds (Padmavathi, Sharmila, Somashekara Reddy & Bhaskar Reddy, 2001) or intermediates in the synthesis of benzisoxazoles or carbazole derivatives (Padmavathi et al., 2000; Padmavathi, Sharmila, Somashekara Reddy & Bhaskar Reddy, 2001; Padmavathi, Sharmila, Balaiah et al., 2001). The crystal structures of some cyclohexenone derivatives viz, rac-ethyl 3-(3-bromo-2-thienyl)-2-oxo-6-(4-propoxyphenyl) cyclohex-3-ene-1-carboxylate (Fischer et al., 2008), ethyl 6-(6-methoxy-2- naphthyl)-2-oxo-4-(2-thienyl)cyclohex-3-ene-1- carboxylate (Li et al., 2009), (1RS,6SR)-Ethyl 4-(2,4-dichlorophenyl)-6-(4-fluorophenyl)-2- oxocyclohex-3-ene-1-carboxylate, (Dutkiewicz et al., 2011) have been reported. In view of the importance of these derivatives and in continuation of our work on the synthesis of various derivatives of 4,4-difluoro chalcone (Fun et al., 2010; Jasinski et al., 2010), the title compound (I) is synthesized and its crystal structure is reported here.

In the title compound, C20H16F2O2, the dihedral angle between the mean planes of the cyclohex-2-en-1-one ring (distorted envelope conformation with puckering parameters (Cremer & Pople, 1975) Q, θ and ϕ of 0.406 (2) Å, 64.7 (3)° and 274.6 (3)°) and the two fluorophenyl rings is 38.9 (8) and 82.3 (1)° (Fig. 1). For an ideal envelope conformation θ and ϕ are 54.7° and 300°. The two fluorophenyl rings are separated by 77.3 (3)°. The long hydroxyl O–H distance (1.22 (3) Å) in concert with a longer than normal C4=O2 (1.290 (2) Å) bond length suggests a sharing effect between the two oxygen atoms, O1 and O2. Also, with the observation of long C2–C3(1.392 (3)Å) and C4=O2) bond lengths, the influence of an electron delocalization within the O1/C2/C3/C4/O2 moiety may be present. O—H···O intramolecular hydrogen bonds and weak C—H···O intermolecular interactions (Table 1) are observed forming an infinite 2-D network in (011) (Fig. 2).

Related literature top

For biological applications of some cyclohexenones, see: Eddington et al. (2000); Kolesnick & Golde (1994). For background to the applications of cyclohexenones, see: Padmavathi et al. (1999, 2000); Padmavathi, Sharmila, Somashekara Reddy & Bhaskar Reddy (2001); Padmavathi, Sharmila, Balaiah et al. (2001). For related structures, see: Fischer et al. (2008); Li et al. (2009); Dutkiewicz et al. (2011). For the various derivatives of 4,4-difluorochalcone, see: Fun et al. (2010); Jasinski et al. (2010). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of (2E)-1,3-bis(4-fluorophenyl)prop-2-en-1-one (2.44 g, 0.01 mol) and acetyl acetone (1 ml, 0.01 mol) in 20 ml ethanol was refluxed in the presence of a 0.5ml 10% NaOH solution for 6 hours. The reaction mixture was cooled and poured into 50 ml of ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from dimethylformamide by the slow evaporation method and the yield of the compound was 74%, (m.p. 383 K).

Refinement top

H1 was located by a Fourier map and refined isotropically without restraints. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2) or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis. Dashed lines indicate O—H···O intramolecular hydrogen bonds and weak C—H···O intermolecular interactions forming an infinite 2-D network along [011]. The remaining H atoms have been removed for clarity.
(6Z)-3,5-Bis(4-fluorophenyl)-6-(1-hydroxyethylidene)cyclohex-2-en-1-one top
Crystal data top
C20H16F2O2F(000) = 680
Mr = 326.33Dx = 1.356 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 1763 reflections
a = 17.663 (2) Åθ = 3.4–70.8°
b = 6.2371 (6) ŵ = 0.85 mm1
c = 15.2357 (16) ÅT = 173 K
β = 107.717 (13)°Block, yellow
V = 1598.9 (3) Å30.35 × 0.20 × 0.18 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Gemini
diffractometer
3023 independent reflections
Radiation source: Enhance (Cu) X-ray Source2154 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.1500 pixels mm-1θmax = 70.7°, θmin = 5.3°
ω scansh = 218
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 77
Tmin = 0.754, Tmax = 0.862l = 1818
5441 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.2155P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3023 reflectionsΔρmax = 0.17 e Å3
222 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (3)
Crystal data top
C20H16F2O2V = 1598.9 (3) Å3
Mr = 326.33Z = 4
Monoclinic, P21/cCu Kα radiation
a = 17.663 (2) ŵ = 0.85 mm1
b = 6.2371 (6) ÅT = 173 K
c = 15.2357 (16) Å0.35 × 0.20 × 0.18 mm
β = 107.717 (13)°
Data collection top
Oxford Diffraction Xcalibur Gemini
diffractometer
3023 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2154 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.862Rint = 0.020
5441 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.17 e Å3
3023 reflectionsΔρmin = 0.20 e Å3
222 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.55493 (10)0.1856 (4)0.43446 (11)0.1300 (7)
F20.01595 (9)0.2581 (3)0.48620 (11)0.0984 (5)
O10.26793 (10)0.4978 (3)0.05192 (11)0.0813 (5)
H10.2297 (15)0.605 (5)0.0137 (19)0.098*
O20.19432 (10)0.6694 (2)0.04310 (11)0.0785 (5)
C10.32971 (15)0.1596 (5)0.01899 (18)0.0895 (8)
H1A0.33180.17880.08200.134*
H1B0.30590.02010.01370.134*
H1C0.38370.16570.02410.134*
C20.28083 (13)0.3328 (4)0.00327 (15)0.0666 (6)
C30.25062 (12)0.3242 (3)0.07759 (13)0.0585 (5)
C40.20637 (13)0.4997 (3)0.09387 (14)0.0610 (5)
C50.17204 (13)0.4938 (3)0.16889 (15)0.0622 (5)
H5A0.15390.62350.18820.075*
C60.16517 (11)0.3107 (3)0.21179 (14)0.0552 (5)
C70.19511 (12)0.1060 (3)0.18191 (16)0.0610 (5)
H7A0.15110.03750.13360.073*
H7B0.21120.00690.23510.073*
C80.26582 (12)0.1378 (3)0.14426 (14)0.0591 (5)
H8A0.26990.00580.10870.071*
C90.34407 (12)0.1584 (3)0.22286 (14)0.0598 (5)
C100.37064 (15)0.0158 (4)0.28156 (16)0.0741 (6)
H10A0.33980.14340.27220.089*
C110.44143 (16)0.0060 (5)0.35355 (18)0.0892 (8)
H11A0.45910.12470.39370.107*
C120.48489 (16)0.1786 (6)0.36503 (17)0.0879 (8)
C130.46193 (14)0.3517 (5)0.31003 (16)0.0805 (7)
H13A0.49360.47780.31980.097*
C140.39064 (13)0.3403 (4)0.23873 (15)0.0692 (6)
H14A0.37360.46140.19990.083*
C150.12484 (11)0.2989 (3)0.28353 (13)0.0544 (5)
C160.08461 (12)0.1136 (4)0.29494 (15)0.0623 (5)
H16A0.08310.00580.25570.075*
C170.04699 (12)0.1000 (4)0.36192 (16)0.0674 (6)
H17A0.01910.02620.36860.081*
C180.05082 (13)0.2727 (4)0.41839 (15)0.0680 (6)
C190.08926 (13)0.4591 (4)0.41012 (15)0.0679 (6)
H19A0.09060.57690.45010.081*
C200.12583 (12)0.4709 (3)0.34258 (14)0.0616 (5)
H20A0.15250.59940.33590.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0915 (11)0.195 (2)0.0799 (10)0.0137 (13)0.0091 (9)0.0144 (12)
F20.1129 (12)0.1062 (11)0.0963 (10)0.0046 (9)0.0622 (9)0.0015 (9)
O10.0858 (11)0.0952 (12)0.0606 (9)0.0078 (10)0.0188 (8)0.0136 (9)
O20.0991 (12)0.0610 (9)0.0726 (10)0.0020 (8)0.0222 (9)0.0133 (8)
C10.0811 (16)0.114 (2)0.0818 (16)0.0050 (16)0.0377 (14)0.0018 (16)
C20.0587 (12)0.0782 (15)0.0583 (12)0.0082 (11)0.0110 (10)0.0009 (11)
C30.0593 (11)0.0602 (12)0.0532 (11)0.0066 (9)0.0130 (9)0.0014 (9)
C40.0672 (12)0.0521 (11)0.0569 (11)0.0050 (10)0.0087 (10)0.0021 (9)
C50.0696 (13)0.0493 (11)0.0672 (12)0.0017 (10)0.0200 (11)0.0023 (10)
C60.0528 (10)0.0474 (10)0.0614 (11)0.0019 (8)0.0113 (9)0.0038 (9)
C70.0647 (12)0.0495 (11)0.0703 (13)0.0029 (9)0.0225 (10)0.0011 (10)
C80.0645 (12)0.0528 (11)0.0621 (11)0.0017 (9)0.0225 (10)0.0034 (9)
C90.0639 (12)0.0647 (12)0.0561 (11)0.0101 (10)0.0263 (10)0.0025 (10)
C100.0818 (16)0.0723 (15)0.0732 (14)0.0130 (12)0.0310 (13)0.0104 (12)
C110.0948 (19)0.105 (2)0.0696 (15)0.0321 (17)0.0283 (15)0.0231 (15)
C120.0720 (15)0.130 (2)0.0589 (13)0.0129 (17)0.0151 (12)0.0062 (16)
C130.0727 (14)0.103 (2)0.0624 (13)0.0063 (14)0.0154 (12)0.0002 (14)
C140.0668 (13)0.0773 (15)0.0614 (12)0.0020 (12)0.0163 (11)0.0054 (11)
C150.0495 (10)0.0526 (11)0.0579 (11)0.0015 (8)0.0116 (9)0.0009 (9)
C160.0587 (11)0.0585 (12)0.0675 (12)0.0046 (10)0.0162 (10)0.0061 (10)
C170.0566 (12)0.0648 (13)0.0809 (14)0.0065 (10)0.0211 (11)0.0025 (12)
C180.0630 (13)0.0781 (15)0.0647 (13)0.0053 (11)0.0220 (11)0.0033 (12)
C190.0740 (14)0.0657 (13)0.0635 (12)0.0004 (11)0.0202 (11)0.0071 (11)
C200.0633 (12)0.0546 (11)0.0626 (12)0.0031 (9)0.0125 (10)0.0026 (10)
Geometric parameters (Å, º) top
F1—C121.362 (3)C8—H8A1.0000
F2—C181.357 (2)C9—C141.379 (3)
O1—C21.304 (3)C9—C101.394 (3)
O1—H11.22 (3)C10—C111.391 (3)
O2—C41.290 (2)C10—H10A0.9500
O2—H11.28 (3)C11—C121.365 (4)
C1—C21.485 (3)C11—H11A0.9500
C1—H1A0.9800C12—C131.351 (4)
C1—H1B0.9800C13—C141.392 (3)
C1—H1C0.9800C13—H13A0.9500
C2—C31.392 (3)C14—H14A0.9500
C3—C41.410 (3)C15—C161.395 (3)
C3—C81.513 (3)C15—C201.397 (3)
C4—C51.448 (3)C16—C171.380 (3)
C5—C61.339 (3)C16—H16A0.9500
C5—H5A0.9500C17—C181.367 (3)
C6—C151.477 (3)C17—H17A0.9500
C6—C71.505 (3)C18—C191.371 (3)
C7—C81.538 (3)C19—C201.373 (3)
C7—H7A0.9900C19—H19A0.9500
C7—H7B0.9900C20—H20A0.9500
C8—C91.534 (3)
C2—O1—H198.0 (12)C14—C9—C8123.59 (19)
C4—O2—H197.0 (12)C10—C9—C8118.9 (2)
C2—C1—H1A109.5C11—C10—C9121.2 (2)
C2—C1—H1B109.5C11—C10—H10A119.4
H1A—C1—H1B109.5C9—C10—H10A119.4
C2—C1—H1C109.5C12—C11—C10118.3 (2)
H1A—C1—H1C109.5C12—C11—H11A120.9
H1B—C1—H1C109.5C10—C11—H11A120.9
O1—C2—C3121.3 (2)C13—C12—F1119.1 (3)
O1—C2—C1115.2 (2)C13—C12—C11122.9 (3)
C3—C2—C1123.4 (2)F1—C12—C11118.0 (3)
C2—C3—C4118.9 (2)C12—C13—C14118.2 (3)
C2—C3—C8122.8 (2)C12—C13—H13A120.9
C4—C3—C8118.23 (18)C14—C13—H13A120.9
O2—C4—C3122.1 (2)C9—C14—C13121.9 (2)
O2—C4—C5117.5 (2)C9—C14—H14A119.1
C3—C4—C5120.43 (19)C13—C14—H14A119.1
C6—C5—C4121.92 (19)C16—C15—C20117.58 (19)
C6—C5—H5A119.0C16—C15—C6120.81 (18)
C4—C5—H5A119.0C20—C15—C6121.61 (18)
C5—C6—C15122.64 (18)C17—C16—C15121.4 (2)
C5—C6—C7118.91 (19)C17—C16—H16A119.3
C15—C6—C7118.34 (17)C15—C16—H16A119.3
C6—C7—C8113.80 (17)C18—C17—C16118.3 (2)
C6—C7—H7A108.8C18—C17—H17A120.9
C8—C7—H7A108.8C16—C17—H17A120.9
C6—C7—H7B108.8F2—C18—C17118.6 (2)
C8—C7—H7B108.8F2—C18—C19118.6 (2)
H7A—C7—H7B107.7C17—C18—C19122.8 (2)
C3—C8—C9113.18 (17)C18—C19—C20118.3 (2)
C3—C8—C7110.55 (17)C18—C19—H19A120.9
C9—C8—C7111.15 (17)C20—C19—H19A120.9
C3—C8—H8A107.2C19—C20—C15121.6 (2)
C9—C8—H8A107.2C19—C20—H20A119.2
C7—C8—H8A107.2C15—C20—H20A119.2
C14—C9—C10117.5 (2)
O1—C2—C3—C41.1 (3)C14—C9—C10—C110.1 (3)
C1—C2—C3—C4178.5 (2)C8—C9—C10—C11179.6 (2)
O1—C2—C3—C8178.63 (18)C9—C10—C11—C120.5 (4)
C1—C2—C3—C81.0 (3)C10—C11—C12—C130.4 (4)
C2—C3—C4—O21.3 (3)C10—C11—C12—F1178.7 (2)
C8—C3—C4—O2176.34 (18)F1—C12—C13—C14179.2 (2)
C2—C3—C4—C5178.17 (19)C11—C12—C13—C140.1 (4)
C8—C3—C4—C54.2 (3)C10—C9—C14—C130.4 (3)
O2—C4—C5—C6164.4 (2)C8—C9—C14—C13179.0 (2)
C3—C4—C5—C615.1 (3)C12—C13—C14—C90.5 (4)
C4—C5—C6—C15175.21 (18)C5—C6—C15—C16148.4 (2)
C4—C5—C6—C70.9 (3)C7—C6—C15—C1627.7 (3)
C5—C6—C7—C830.3 (3)C5—C6—C15—C2032.0 (3)
C15—C6—C7—C8153.45 (17)C7—C6—C15—C20151.90 (19)
C2—C3—C8—C985.6 (2)C20—C15—C16—C170.1 (3)
C4—C3—C8—C991.9 (2)C6—C15—C16—C17179.70 (18)
C2—C3—C8—C7148.96 (19)C15—C16—C17—C180.9 (3)
C4—C3—C8—C733.5 (2)C16—C17—C18—F2178.07 (18)
C6—C7—C8—C345.8 (2)C16—C17—C18—C191.1 (3)
C6—C7—C8—C980.8 (2)F2—C18—C19—C20178.66 (19)
C3—C8—C9—C148.3 (3)C17—C18—C19—C200.5 (3)
C7—C8—C9—C14116.8 (2)C18—C19—C20—C150.3 (3)
C3—C8—C9—C10171.12 (18)C16—C15—C20—C190.5 (3)
C7—C8—C9—C1063.8 (2)C6—C15—C20—C19179.09 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O21.22 (3)1.28 (3)2.465 (2)163 (2)
C8—H8A···O2i1.002.523.365 (3)142
C19—H19A···O2ii0.952.513.260 (3)136
Symmetry codes: (i) x, y1, z; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H16F2O2
Mr326.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)17.663 (2), 6.2371 (6), 15.2357 (16)
β (°) 107.717 (13)
V3)1598.9 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.85
Crystal size (mm)0.35 × 0.20 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.754, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
5441, 3023, 2154
Rint0.020
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.147, 1.02
No. of reflections3023
No. of parameters222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O21.22 (3)1.28 (3)2.465 (2)163 (2)
C8—H8A···O2i1.002.523.365 (3)141.5
C19—H19A···O2ii0.952.513.260 (3)136.2
Symmetry codes: (i) x, y1, z; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

BN thanks UOM for financial assistance for the purchase of chemicals. HSY thanks UOM for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase a diffractometer.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, o445–o446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEddington, N. D., Cox, D. S., Roberts, R. R., Stables, J. P., Powell, C. B. & Scott, A. R. (2000). Curr. Med. Chem. 7, 417-436.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFischer, A., Swamy, M. T., Narayana, B. & Yathirajan, H. S. (2008). Acta Cryst. E64, o2152.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o2018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKolesnick, R. & Golde, D. W. (1994). Cell, 77, 325–328.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLi, H., Mayekar, A. N., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009). Acta Cryst. E65, o1533.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPadmavathi, V., Mohana Reddy, B. J., Balaiah, A., Venugopal Reddy, K. & Bhaskar Reddy, D. (2000). Molecules, 5, 1281–1286.  Web of Science CrossRef CAS Google Scholar
First citationPadmavathi, V., Sharmila, K., Balaiah, A., Somashekara Reddy, A. & Bhaskar Reddy, D. (2001). Synth. Commun. 31, 2119–2126.  Web of Science CrossRef CAS Google Scholar
First citationPadmavathi, V., Sharmila, K., Padmaja, A. & Bhaskar Reddy, D. (1999). Heterocycl. Commun. 5, 451–456.  CrossRef CAS Google Scholar
First citationPadmavathi, V., Sharmila, K., Somashekara Reddy, A. & Bhaskar Reddy, D. (2001). Indian J. Chem. Sect. B, 40, 11–14.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o638-o639
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds