organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Adamantan-1-yl)-5-(4-nitro­phen­yl)-1,3,4-oxa­diazole

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 4 February 2012; accepted 6 February 2012; online 24 February 2012)

The title mol­ecule, C18H19N3O3, lies on a mirror plane that bis­ects the adamantyl group. In the crystal, C—H⋯O and C—H⋯N inter­actions lead to supra­molecular chains along [100]. These assemble into layers in the ab plane via ππ inter­actions [centroid–centroid distance = 3.6548 (7) Å] between the oxadiazole and benzene rings.

Related literature

For the biological activity of adamantyl-1,3,4-oxadiazole derivatives, see: Kadi et al. (2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]). For related adamantane structures, see: Al-Tamimi et al. (2010[Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., El-Emam, A. A. & Ng, S. W. (2010). Acta Cryst. E66, o2131.]); Kadi et al. (2011[Kadi, A. A., Alanzi, A. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3127.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19N3O3

  • Mr = 325.36

  • Monoclinic, P 21 /m

  • a = 6.8502 (6) Å

  • b = 6.5705 (7) Å

  • c = 17.6761 (15) Å

  • β = 98.432 (8)°

  • V = 786.99 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.972, Tmax = 0.986

  • 3236 measured reflections

  • 1956 independent reflections

  • 1456 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.123

  • S = 1.05

  • 1956 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯N2i 0.95 2.59 3.297 (3) 132
C16—H16A⋯O2ii 0.95 2.49 3.256 (3) 137
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Adamantane derivatives have been reported to exhibit marked anti-bacterial and anti-inflammatory activities (Kadi et al., 2007; El-Emam et al., 2004). In continuation of our interest in the chemical and pharmacological properties of adamantane derivatives, and as part of on-going structural studies of adamantane derivatives (Kadi et al., 2011; Al-Tamimi et al., 2010), the title compound, (I), was prepared as a potential chemotherapeutic agent.

The molecule of (I), Fig. 1, lies on a mirror plane that bisects the adamantyl residue. The molecules are linked into a supramolecular linear chains along [100] via C—H···O and C—H···N interactions, Fig. 2 and Table 1. The aforementioned interactions lead to 10-membered {···HC2NO···HC3N} synthons. The chains are linked into layers in the ab plane by ππ interactions occurring between the oxadiazole and phenyl rings [centroid···centroid distance = 3.6548 (7) Å, angle between rings = 0° for symmetry operation 2 - x, -1/2 + y, 1 - z]. Layers stack along the b axis with no specific interactions between them.

Related literature top

For the biological activity of adamantyl-1,3,4-oxadiazole derivatives, see: Kadi et al. (2007); El-Emam et al. (2004). For related adamantane structures, see: Al-Tamimi et al. (2010); Kadi et al. (2011).

Experimental top

The title compound was prepared following our previously described method (Kadi et al., 2007). A mixture of 4-nitrobenzoic acid hydrazide (1.81 g, 0.01 mol), 1-adamantane carboxylic acid (1.8 g, 0.01 mol) and phosphorus oxychloride (8 ml) was heated under reflux for 1 h. On cooling, crushed ice (50 g) was added and the mixture was stirred for 30 min. The separated crude product was filtered, washed with water, then with saturated sodium hydrogen carbonate solution and finally with water, dried and crystallized from EtOH/CHCl3 to yield 2.96 g (91%) of the title compound as colourless crystals. M.pt.: 511–513 K. 1H NMR (CDCl3): δ 1.79 (s, 6H, adamantane-H), 2.08 (s, 9H, adamantane-H), 7.61 (d, 2H, Ar—H, J = 8.3 Hz), 8.33 (d, 2H, Ar—H, J = 8.3 Hz). 13C NMR: δ 27.10, 33.15, 36.80, 39.82 (adamantane-C), 125.15, 128.20, 141.95, 145.10 (Ar—C), 163.25 (oxadiazole C-5), 173.05 (oxadiazole C-2).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The (4 0 3) reflection was omitted owing to poor agreement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the linear supramolecular chain along [100] in (I). The C—H···O and C—H···N interactions are shown as orange and blue dashed lines, respectively.
[Figure 3] Fig. 3. A view of a supramolecular layer in (I) whereby the chains illustrated in Fig. 2 are linked by ππ interactions (purple dashed lines).
[Figure 4] Fig. 4. A view in projection along the b axis of the unit-cell contents for (I), highlighting the stacking of layers.
2-(Adamantan-1-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole top
Crystal data top
C18H19N3O3F(000) = 344
Mr = 325.36Dx = 1.373 Mg m3
Monoclinic, P21/mMelting point: 512 K
Hall symbol: -P 2ybMo Kα radiation, λ = 0.71073 Å
a = 6.8502 (6) ÅCell parameters from 1102 reflections
b = 6.5705 (7) Åθ = 3.0–27.5°
c = 17.6761 (15) ŵ = 0.10 mm1
β = 98.432 (8)°T = 100 K
V = 786.99 (13) Å3Prism, colourless
Z = 20.30 × 0.30 × 0.15 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1956 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1456 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.0°
ω scanh = 86
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 85
Tmin = 0.972, Tmax = 0.986l = 2320
3236 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.27P]
where P = (Fo2 + 2Fc2)/3
1956 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C18H19N3O3V = 786.99 (13) Å3
Mr = 325.36Z = 2
Monoclinic, P21/mMo Kα radiation
a = 6.8502 (6) ŵ = 0.10 mm1
b = 6.5705 (7) ÅT = 100 K
c = 17.6761 (15) Å0.30 × 0.30 × 0.15 mm
β = 98.432 (8)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1956 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1456 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.986Rint = 0.027
3236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
1956 reflectionsΔρmin = 0.34 e Å3
136 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.9944 (2)0.25000.34929 (8)0.0164 (3)
O21.7026 (2)0.25000.67325 (10)0.0406 (6)
O31.4757 (2)0.25000.74600 (9)0.0243 (4)
N10.6690 (3)0.25000.33989 (10)0.0178 (4)
N20.7505 (3)0.25000.41856 (10)0.0171 (4)
N31.5294 (3)0.25000.68283 (11)0.0216 (4)
C10.8170 (3)0.25000.30226 (12)0.0156 (4)
C20.8215 (3)0.25000.21783 (12)0.0148 (4)
C30.9314 (2)0.4411 (2)0.19610 (9)0.0195 (4)
H3A0.86240.56490.21010.023*
H3B1.06720.44260.22450.023*
C40.9390 (2)0.4400 (2)0.10939 (9)0.0204 (4)
H4A1.01000.56420.09530.024*
C51.0483 (3)0.25000.08863 (13)0.0227 (5)
H5A1.05630.25000.03320.027*
H5B1.18440.25000.11680.027*
C60.6100 (3)0.25000.17372 (12)0.0184 (5)
H6A0.53820.12790.18750.022*0.50
H6B0.53820.37210.18750.022*0.50
C70.6192 (3)0.25000.08724 (12)0.0198 (5)
H70.48210.25000.05860.024*
C80.7279 (2)0.0604 (3)0.06587 (9)0.0214 (4)
H8A0.73180.05910.01010.026*
H8B0.65720.06320.07900.026*
C100.9399 (3)0.25000.42055 (12)0.0148 (4)
C111.0933 (3)0.25000.48726 (12)0.0148 (4)
C121.2920 (3)0.25000.47852 (12)0.0184 (5)
H12A1.32930.25000.42880.022*
C131.4351 (3)0.25000.54269 (13)0.0206 (5)
H13A1.57120.25000.53750.025*
C141.3771 (3)0.25000.61451 (12)0.0166 (5)
C151.1807 (3)0.25000.62466 (12)0.0163 (5)
H15A1.14450.25000.67450.020*
C161.0384 (3)0.25000.56058 (12)0.0163 (5)
H16A0.90260.25000.56630.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0157 (8)0.0229 (8)0.0104 (7)0.0000.0019 (6)0.000
O20.0151 (9)0.0839 (17)0.0224 (9)0.0000.0019 (7)0.000
O30.0265 (9)0.0349 (10)0.0117 (8)0.0000.0031 (7)0.000
N10.0194 (9)0.0220 (10)0.0123 (9)0.0000.0030 (7)0.000
N20.0190 (10)0.0210 (10)0.0115 (9)0.0000.0024 (7)0.000
N30.0197 (10)0.0301 (11)0.0149 (9)0.0000.0025 (8)0.000
C10.0162 (10)0.0159 (10)0.0143 (10)0.0000.0011 (8)0.000
C20.0153 (10)0.0186 (11)0.0107 (9)0.0000.0027 (8)0.000
C30.0245 (8)0.0199 (8)0.0142 (7)0.0043 (7)0.0036 (6)0.0010 (6)
C40.0259 (8)0.0210 (8)0.0147 (7)0.0066 (7)0.0048 (6)0.0019 (6)
C50.0178 (11)0.0383 (14)0.0128 (10)0.0000.0049 (9)0.000
C60.0165 (11)0.0256 (12)0.0131 (10)0.0000.0024 (9)0.000
C70.0180 (11)0.0273 (12)0.0138 (10)0.0000.0008 (9)0.000
C80.0291 (9)0.0222 (8)0.0129 (7)0.0049 (7)0.0030 (7)0.0030 (6)
C100.0188 (11)0.0149 (10)0.0116 (10)0.0000.0049 (8)0.000
C110.0164 (11)0.0152 (10)0.0127 (10)0.0000.0023 (8)0.000
C120.0191 (11)0.0243 (12)0.0126 (10)0.0000.0049 (9)0.000
C130.0152 (11)0.0296 (13)0.0173 (11)0.0000.0033 (9)0.000
C140.0174 (11)0.0185 (11)0.0133 (10)0.0000.0002 (8)0.000
C150.0201 (11)0.0172 (11)0.0125 (10)0.0000.0051 (8)0.000
C160.0162 (11)0.0189 (11)0.0145 (10)0.0000.0042 (8)0.000
Geometric parameters (Å, º) top
O1—C101.365 (2)C7—C8i1.527 (2)
O1—C11.368 (3)C7—C81.527 (2)
O2—N31.223 (2)C7—H71.0000
O3—N31.226 (2)C8—C4i1.535 (2)
C1—N11.292 (3)C8—H8A0.9900
C1—C21.497 (3)C8—H8B0.9900
C2—C3i1.5412 (19)C10—N21.293 (3)
C2—C31.5412 (19)C10—C111.460 (3)
C2—C61.542 (3)C11—C121.392 (3)
C3—C41.541 (2)C11—C161.402 (3)
C3—H3A0.9900C12—C131.386 (3)
C3—H3B0.9900C12—H12A0.9500
C4—C51.528 (2)C13—C141.385 (3)
C4—C8i1.535 (2)C13—H13A0.9500
C4—H4A1.0000C14—C151.383 (3)
C5—C4i1.528 (2)C14—N31.475 (3)
C5—H5A0.9900C15—C161.382 (3)
C5—H5B0.9900C15—H15A0.9500
C6—C71.539 (3)C16—H16A0.9500
C6—H6A0.9900N1—N21.421 (2)
C6—H6B0.9900
C10—O1—C1102.83 (16)C8—C7—C6109.77 (12)
N1—C1—O1112.43 (18)C8i—C7—H7109.3
N1—C1—C2130.2 (2)C8—C7—H7109.3
O1—C1—C2117.35 (17)C6—C7—H7109.3
C1—C2—C3i109.31 (12)C7—C8—C4i109.56 (14)
C1—C2—C3109.31 (12)C7—C8—H8A109.8
C3i—C2—C3109.10 (17)C4i—C8—H8A109.8
C1—C2—C6110.42 (17)C7—C8—H8B109.8
C3i—C2—C6109.34 (12)C4i—C8—H8B109.8
C3—C2—C6109.34 (12)H8A—C8—H8B108.2
C4—C3—C2109.45 (13)N2—C10—O1112.58 (18)
C4—C3—H3A109.8N2—C10—C11128.51 (19)
C2—C3—H3A109.8O1—C10—C11118.91 (18)
C4—C3—H3B109.8C12—C11—C16120.1 (2)
C2—C3—H3B109.8C12—C11—C10120.67 (18)
H3A—C3—H3B108.2C16—C11—C10119.19 (19)
C5—C4—C8i109.71 (14)C13—C12—C11119.7 (2)
C5—C4—C3109.36 (14)C13—C12—H12A120.2
C8i—C4—C3109.38 (13)C11—C12—H12A120.2
C5—C4—H4A109.5C12—C13—C14119.1 (2)
C8i—C4—H4A109.5C12—C13—H13A120.4
C3—C4—H4A109.5C14—C13—H13A120.4
C4i—C5—C4109.59 (17)C15—C14—C13122.3 (2)
C4i—C5—H5A109.8C15—C14—N3118.57 (19)
C4—C5—H5A109.8C13—C14—N3119.13 (19)
C4i—C5—H5B109.8C16—C15—C14118.46 (19)
C4—C5—H5B109.8C16—C15—H15A120.8
H5A—C5—H5B108.2C14—C15—H15A120.8
C7—C6—C2109.26 (17)C15—C16—C11120.3 (2)
C7—C6—H6A109.8C15—C16—H16A119.8
C2—C6—H6A109.8C11—C16—H16A119.8
C7—C6—H6B109.8C1—N1—N2106.17 (18)
C2—C6—H6B109.8C10—N2—N1105.99 (17)
H6A—C6—H6B108.3O2—N3—O3123.5 (2)
C8i—C7—C8109.38 (18)O2—N3—C14118.08 (18)
C8i—C7—C6109.77 (12)O3—N3—C14118.39 (18)
C10—O1—C1—N10N2—C10—C11—C12180
C10—O1—C1—C2180O1—C10—C11—C120
N1—C1—C2—C3i120.32 (12)N2—C10—C11—C160
O1—C1—C2—C3i59.68 (12)O1—C10—C11—C16180
N1—C1—C2—C3120.32 (12)C16—C11—C12—C130
O1—C1—C2—C359.68 (12)C10—C11—C12—C13180
N1—C1—C2—C60C11—C12—C13—C140
O1—C1—C2—C6180C12—C13—C14—C150
C1—C2—C3—C4179.20 (14)C12—C13—C14—N3180
C3i—C2—C3—C459.7 (2)C13—C14—C15—C160
C6—C2—C3—C459.83 (17)N3—C14—C15—C16180
C2—C3—C4—C560.23 (18)C14—C15—C16—C110
C2—C3—C4—C8i59.94 (17)C12—C11—C16—C150
C8i—C4—C5—C4i59.3 (2)C10—C11—C16—C15180
C3—C4—C5—C4i60.7 (2)O1—C1—N1—N20
C1—C2—C6—C7180C2—C1—N1—N2180
C3i—C2—C6—C759.70 (11)O1—C10—N2—N10
C3—C2—C6—C759.70 (11)C11—C10—N2—N1180
C2—C6—C7—C8i60.13 (12)C1—N1—N2—C100
C2—C6—C7—C860.13 (12)C15—C14—N3—O2180
C8i—C7—C8—C4i60.1 (2)C13—C14—N3—O20
C6—C7—C8—C4i60.40 (18)C15—C14—N3—O30
C1—O1—C10—N20C13—C14—N3—O3180
C1—O1—C10—C11180
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···N2ii0.952.593.297 (3)132
C16—H16A···O2iii0.952.493.256 (3)137
Symmetry codes: (ii) x+1, y, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H19N3O3
Mr325.36
Crystal system, space groupMonoclinic, P21/m
Temperature (K)100
a, b, c (Å)6.8502 (6), 6.5705 (7), 17.6761 (15)
β (°) 98.432 (8)
V3)786.99 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.30 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.972, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
3236, 1956, 1456
Rint0.027
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.123, 1.05
No. of reflections1956
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.34

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···N2i0.952.593.297 (3)132
C16—H16A···O2ii0.952.493.256 (3)137
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAl-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., El-Emam, A. A. & Ng, S. W. (2010). Acta Cryst. E66, o2131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKadi, A. A., Alanzi, A. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds