organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o756-o757

2-Methyl-3-(2-methyl­phen­yl)-4-oxo-3,4-di­hydro­quinazolin-8-yl thio­phene-2-carboxyl­ate

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt, cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 10 February 2012; accepted 13 February 2012; online 17 February 2012)

In the title compound, C21H16N2O3S, the central quinazolin-4-one ring is planar (r.m.s. deviation = 0.037 Å). The N-bound benzene and thio­phenyl rings are almost perpendicular to the central plane [dihedral angles = 82.22 (5) and 77.05 (13)°, respectively]. Mol­ecules are connected into a three-dimensional array by C—H⋯O inter­actions involving both carbonyl O atoms. The thio­phene ring is disordered over two positions, which are approximately parallel and oppositely orientated. The major component refined to a site-occupancy factor of 0.6555 (17).

Related literature

For the pharmacological activity of substituted quinazolin-4(3H)-ones, see: El-Azab & El-Tahir (2012[El-Azab, A. S. & El-Tahir, K. H. (2012). Bioorg. Med. Chem. Lett. 22, 327-333.]); El-Azab et al. (2010[El-Azab, A. S., Al-Omar, M. A., Abdel-Aziz, A. A.-M., Abdel-Aziz, N. I., El-Sayed, M. A.-A., Aleisa, A. M., Sayed-Ahmed, M. M. & Abdel-Hamide, S. G. (2010). Eur. J. Med. Chem. 45, 4188-4198.], 2011[El-Azab, A. S., El-Tahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837-848.]); Al-Omary et al. (2010[Al-Omary, F. A., Abou-Zeid, L. A., Nagi, M. N., Habib, S. E., Abdel-Aziz, A. A.-M., Hamide, S. G., Al-Omar, M. A., Al-Obaid, A. M. & El-Subbagh, H. I. (2010). Bioorg. Med. Chem. 18, 2849-2863.]); Al-Obaid et al. (2009[Al-Obaid, A. M., Abdel-Hamide, S. G., El-Kashef, H. A., Abdel-Aziz, A. A.-M., El-Azab, A. S., Al-Khamees, H. A. & El-Subbagh, H. I. (2009). Eur. J. Med. Chem. 44, 2379-2391.]); Aziza et al. (1996[Aziza, M. A., Nassar, M. W., Abdel Hamid, S. G., El-Hakim, A. E. & El-Azab, A. S. (1996). Indian J. Heterocycl. Chem, 6, 25-30.]). For the synthesis and evaluation of the anti-convulsant activity of the title compound, see: El-Azab et al. (2010[El-Azab, A. S., Al-Omar, M. A., Abdel-Aziz, A. A.-M., Abdel-Aziz, N. I., El-Sayed, M. A.-A., Aleisa, A. M., Sayed-Ahmed, M. M. & Abdel-Hamide, S. G. (2010). Eur. J. Med. Chem. 45, 4188-4198.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16N2O3S

  • Mr = 376.42

  • Monoclinic, P 21 /c

  • a = 5.8031 (1) Å

  • b = 13.4281 (2) Å

  • c = 22.4853 (4) Å

  • β = 93.115 (2)°

  • V = 1749.57 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.86 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.917, Tmax = 1.000

  • 7119 measured reflections

  • 3582 independent reflections

  • 3119 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.091

  • S = 1.03

  • 3582 reflections

  • 260 parameters

  • 34 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O3i 0.95 2.60 3.3472 (16) 136
C13—H13A⋯O2ii 0.98 2.52 3.4512 (16) 160
C21—H21C⋯O2iii 0.98 2.53 3.4563 (16) 158
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x-1, y, z; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Substituted quinazoline-4(3H)-ones are known to exhibit biological activity (El-Azab & El-Tahir, 2012; El-Azab et al., 2010; El-Azab et al., 2011; Al-Omary et al., 2010; Al-Obaid et al., 2009; Aziza et al., 1996). In this connection, recently the title compound, (I), a methaqualone analogue, was synthesized and evaluated for its anti-convulsant activity (El-Azab et al., 2010). The crystal structure determination of (I) is reported herein.

In (I), Fig. 1, the 11 atoms comprising the quinazolin-4-one ring are planar [r.m.s. deviation = 0.037 Å]. Both aromatic residues are almost perpendicular to the central plane with the dihedral angles between it and the N-bound benzene and thiophenyl rings being 82.22 (5) and 77.05 (13)°, respectively [the dihedral angle = 76.0 (3)° for the minor component of the disordered thiophenyl ring]. There is a twist in the thiophen-2-carboxylate residue as seen in the value of the S1—C4—C5—O2 torsion angle of -18.14 (19)° [161.71 (14)° for the minor component].

In the crystal packing, the molecules are connected into the three-dimensional array by C—H···O interactions involving both carbonyl-O atoms, Fig. 2 and Table 1.

Related literature top

For the pharmacological activity of substituted quinazoline-4(3H)-ones, see: El-Azab & El-Tahir (2012); El-Azab et al. (2010, 2011); Al-Omary et al. (2010); Al-Obaid et al. (2009); Aziza et al. (1996). For the synthesis and evaluation of the anti-convulsant activity of the title compound, see: El-Azab et al. (2010).

Experimental top

A mixture of 8-hydroxymethaqualone (532 mg, 0.002 M) and thiophen-2-carbonyl chloride (307 mg, 0.0021 M) in 10 ml pyridine was stirred at room temperature for 9 h. The solvent was removed under reduced pressure, and the residue was triturated with water and filtered. The solid obtained was dried and recrystallized from EtOH. M.pt.: 457–459 K. Yield: 94%. 1H NMR (500 MHz, CDCl3): δ 8.24 (d, 1H, J = 7.5 Hz), 8.10 (d, 1H, J = 3.5 Hz), 7.71 (d, 1H, J = 5.0 Hz), 7.65 (d, 1H, J = 8.0 Hz), 7.50 (t, 1H, J = 8.0 Hz), 7.40–7.36 (m, 3H), 7.22 (t, 1H, J = 8.5 Hz), 7.15 (d, 1H, J = 7.0 Hz), 2.14 (s, 3H), 2.13 (s, 3H) p.p.m.; 13C NMR (CDCl3): δ 17.4, 24.3, 122.4, 125.1, 126.4, 127.4, 127.7, 127.9, 128.1, 129.6, 131.9, 132.6, 133.7, 135.0, 135.4, 136.8, 141.0, 145.8, 154.9, 160.5, 161.1 p.p.m.; MS (70 eV): m/z = 376.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The thiophene ring is disordered over two positions, which are approximately parallel and oppositely orientated. The major component refined to a site occupancy factor = 0.6555 (17). The S–C distances were restrained to 1.71±0.01 Å, the formal C–C single-bond distances were restrained to 1.42±0.01 Å and the formal C–C single bond distances to 1.36±0.01 Å. The isotropic temperature factors of the primed atoms were set to those of the unprimed ones; the anisotropic displacement factors were restrained to be nearly isotropic.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents for (I). The C—H···O interactions are shown as orange dashed lines,
2-Methyl-3-(2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-8-yl thiophene-2-carboxylate top
Crystal data top
C21H16N2O3SF(000) = 784
Mr = 376.42Dx = 1.429 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 3838 reflections
a = 5.8031 (1) Åθ = 3.3–75.8°
b = 13.4281 (2) ŵ = 1.86 mm1
c = 22.4853 (4) ÅT = 100 K
β = 93.115 (2)°Prism, colourless
V = 1749.57 (5) Å30.25 × 0.15 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3582 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3119 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 10.4041 pixels mm-1θmax = 76.0°, θmin = 3.8°
ω scanh = 74
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1616
Tmin = 0.917, Tmax = 1.000l = 2428
7119 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.431P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3582 reflectionsΔρmax = 0.27 e Å3
260 parametersΔρmin = 0.27 e Å3
34 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (2)
Crystal data top
C21H16N2O3SV = 1749.57 (5) Å3
Mr = 376.42Z = 4
Monoclinic, P21/cCu Kα radiation
a = 5.8031 (1) ŵ = 1.86 mm1
b = 13.4281 (2) ÅT = 100 K
c = 22.4853 (4) Å0.25 × 0.15 × 0.05 mm
β = 93.115 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3582 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3119 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 1.000Rint = 0.020
7119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03334 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
3582 reflectionsΔρmin = 0.27 e Å3
260 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.80579 (11)0.33540 (5)0.66390 (3)0.02055 (19)0.6555 (17)
S1'0.4573 (3)0.40315 (17)0.57788 (9)0.021*0.3445 (17)
C10.5762 (7)0.2591 (3)0.6445 (2)0.0198 (7)0.6555 (17)
H10.55580.19540.66180.024*0.6555 (17)
C1'0.434 (2)0.2918 (7)0.6120 (4)0.020*0.3445 (17)
H1'0.30710.24860.60370.024*0.3445 (17)
C20.4246 (10)0.2989 (4)0.60177 (16)0.0224 (7)0.6555 (17)
H20.28730.26760.58620.027*0.6555 (17)
C2'0.6085 (18)0.2681 (9)0.6518 (5)0.022*0.3445 (17)
H2'0.62350.20760.67350.027*0.3445 (17)
C30.5057 (6)0.3945 (3)0.58431 (19)0.0279 (9)0.6555 (17)
H30.42970.43380.55410.033*0.6555 (17)
C3'0.7640 (14)0.3487 (6)0.6557 (3)0.028*0.3445 (17)
H3'0.89510.35090.68280.033*0.3445 (17)
O10.77268 (16)0.56081 (7)0.55610 (4)0.0195 (2)
O20.98652 (18)0.54819 (7)0.64289 (4)0.0266 (2)
O30.71805 (17)1.00595 (7)0.57101 (4)0.0230 (2)
N10.55491 (18)0.71666 (8)0.60749 (5)0.0172 (2)
N20.51713 (18)0.89074 (8)0.62219 (5)0.0171 (2)
C40.7063 (2)0.42431 (10)0.61587 (5)0.0179 (3)
C50.8380 (2)0.51640 (9)0.60887 (6)0.0181 (3)
C60.8539 (2)0.65744 (9)0.54682 (6)0.0177 (3)
C71.0377 (2)0.67187 (10)0.51222 (6)0.0207 (3)
H71.12110.61640.49840.025*
C81.1023 (2)0.76923 (10)0.49728 (6)0.0210 (3)
H81.22920.77980.47310.025*
C90.9813 (2)0.84904 (10)0.51782 (6)0.0194 (3)
H9A1.02170.91470.50670.023*
C100.7984 (2)0.83409 (9)0.55517 (5)0.0170 (3)
C110.7318 (2)0.73712 (10)0.57045 (5)0.0165 (3)
C120.4559 (2)0.79166 (9)0.63163 (5)0.0171 (3)
C130.2624 (2)0.77224 (10)0.67128 (6)0.0211 (3)
H13A0.21920.70180.66880.032*
H13B0.12930.81340.65860.032*
H13C0.31190.78880.71250.032*
C140.6798 (2)0.91853 (10)0.58113 (6)0.0177 (3)
C150.4177 (2)0.96873 (10)0.65705 (6)0.0183 (3)
C160.2311 (2)1.02233 (10)0.63269 (7)0.0231 (3)
H160.17591.01060.59280.028*
C170.1259 (3)1.09295 (11)0.66693 (8)0.0287 (3)
H170.00321.12930.65070.034*
C180.2093 (3)1.11049 (11)0.72481 (7)0.0299 (3)
H18A0.13611.15840.74850.036*
C190.3999 (3)1.05823 (10)0.74834 (6)0.0265 (3)
H190.45741.07190.78790.032*
C200.5086 (2)0.98587 (10)0.71497 (6)0.0204 (3)
C210.7130 (2)0.92851 (11)0.74099 (6)0.0256 (3)
H21A0.84030.93310.71420.038*
H21B0.66990.85850.74580.038*
H21C0.76190.95660.77990.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0238 (4)0.0159 (3)0.0216 (3)0.0018 (2)0.0013 (2)0.0059 (2)
C10.0208 (18)0.0143 (13)0.0245 (18)0.0067 (11)0.0046 (12)0.0032 (12)
C20.0250 (11)0.0231 (13)0.019 (2)0.0022 (10)0.0033 (14)0.0002 (12)
C30.0283 (19)0.0165 (13)0.0391 (19)0.0004 (13)0.0032 (14)0.0046 (11)
O10.0305 (5)0.0113 (4)0.0165 (4)0.0025 (4)0.0001 (4)0.0004 (3)
O20.0319 (5)0.0215 (5)0.0255 (5)0.0071 (4)0.0059 (4)0.0044 (4)
O30.0272 (5)0.0133 (4)0.0290 (5)0.0008 (4)0.0054 (4)0.0034 (4)
N10.0209 (5)0.0134 (5)0.0172 (5)0.0023 (4)0.0000 (4)0.0010 (4)
N20.0204 (5)0.0127 (5)0.0182 (5)0.0018 (4)0.0006 (4)0.0001 (4)
C40.0216 (6)0.0153 (6)0.0169 (6)0.0004 (5)0.0028 (5)0.0005 (5)
C50.0222 (6)0.0144 (6)0.0179 (6)0.0019 (5)0.0030 (5)0.0000 (5)
C60.0255 (6)0.0124 (6)0.0150 (6)0.0022 (5)0.0020 (5)0.0004 (5)
C70.0284 (7)0.0161 (6)0.0177 (6)0.0026 (5)0.0017 (5)0.0021 (5)
C80.0256 (6)0.0212 (7)0.0163 (6)0.0016 (5)0.0036 (5)0.0004 (5)
C90.0261 (6)0.0150 (6)0.0170 (6)0.0023 (5)0.0008 (5)0.0023 (5)
C100.0220 (6)0.0139 (6)0.0150 (6)0.0016 (5)0.0005 (5)0.0013 (5)
C110.0199 (6)0.0152 (6)0.0141 (5)0.0020 (5)0.0019 (5)0.0013 (5)
C120.0201 (6)0.0138 (6)0.0169 (6)0.0027 (5)0.0019 (5)0.0014 (5)
C130.0222 (6)0.0172 (6)0.0243 (6)0.0028 (5)0.0035 (5)0.0006 (5)
C140.0196 (6)0.0151 (6)0.0183 (6)0.0012 (5)0.0006 (5)0.0018 (5)
C150.0198 (6)0.0130 (6)0.0226 (6)0.0026 (5)0.0049 (5)0.0002 (5)
C160.0221 (6)0.0163 (6)0.0308 (7)0.0020 (5)0.0013 (5)0.0021 (5)
C170.0225 (7)0.0181 (7)0.0463 (9)0.0009 (5)0.0077 (6)0.0029 (6)
C180.0344 (8)0.0154 (6)0.0418 (9)0.0030 (6)0.0196 (7)0.0025 (6)
C190.0371 (8)0.0191 (7)0.0241 (7)0.0090 (6)0.0100 (6)0.0023 (5)
C200.0250 (6)0.0154 (6)0.0212 (6)0.0052 (5)0.0040 (5)0.0013 (5)
C210.0298 (7)0.0237 (7)0.0228 (7)0.0044 (6)0.0031 (5)0.0010 (6)
Geometric parameters (Å, º) top
S1—C41.6904 (14)C6—C111.4036 (18)
S1—C11.718 (3)C7—C81.4059 (18)
S1'—C41.662 (2)C7—H70.9500
S1'—C1'1.689 (8)C8—C91.3749 (19)
C1—C21.375 (4)C8—H80.9500
C1—H10.9500C9—C101.4033 (18)
C1'—C2'1.351 (8)C9—H9A0.9500
C1'—H1'0.9500C10—C111.4061 (17)
C2—C31.430 (5)C10—C141.4641 (18)
C2—H20.9500C12—C131.4940 (18)
C2'—C3'1.408 (13)C13—H13A0.9800
C2'—H2'0.9500C13—H13B0.9800
C3—C41.389 (4)C13—H13C0.9800
C3—H30.9500C15—C161.3877 (19)
C3'—C41.383 (5)C15—C201.3975 (19)
C3'—H3'0.9500C16—C171.384 (2)
O1—C51.3633 (15)C16—H160.9500
O1—C61.4000 (15)C17—C181.384 (2)
O2—C51.1995 (16)C17—H170.9500
O3—C141.2185 (16)C18—C191.390 (2)
N1—C121.2934 (17)C18—H18A0.9500
N1—C111.3838 (16)C19—C201.3990 (19)
N2—C121.3963 (16)C19—H190.9500
N2—C141.4061 (17)C20—C211.506 (2)
N2—C151.4468 (16)C21—H21A0.9800
C4—C51.4666 (18)C21—H21B0.9800
C6—C71.3677 (19)C21—H21C0.9800
C4—S1—C191.48 (16)C8—C9—C10120.42 (12)
C4—S1'—C1'90.3 (4)C8—C9—H9A119.8
C2—C1—S1113.8 (4)C10—C9—H9A119.8
C2—C1—H1123.1C9—C10—C11120.37 (12)
S1—C1—H1123.1C9—C10—C14121.00 (11)
C2'—C1'—S1'115.7 (9)C11—C10—C14118.58 (11)
C2'—C1'—H1'122.1N1—C11—C6118.86 (11)
S1'—C1'—H1'122.1N1—C11—C10123.61 (12)
C1—C2—C3109.4 (4)C6—C11—C10117.53 (11)
C1—C2—H2125.3N1—C12—N2123.75 (11)
C3—C2—H2125.3N1—C12—C13118.68 (11)
C1'—C2'—C3'108.3 (10)N2—C12—C13117.56 (11)
C1'—C2'—H2'125.8C12—C13—H13A109.5
C3'—C2'—H2'125.8C12—C13—H13B109.5
C4—C3—C2113.5 (3)H13A—C13—H13B109.5
C4—C3—H3123.3C12—C13—H13C109.5
C2—C3—H3123.3H13A—C13—H13C109.5
C4—C3'—C2'113.1 (7)H13B—C13—H13C109.5
C4—C3'—H3'123.5O3—C14—N2120.93 (12)
C2'—C3'—H3'123.5O3—C14—C10125.26 (12)
C5—O1—C6117.08 (10)N2—C14—C10113.77 (11)
C12—N1—C11117.32 (11)C16—C15—C20121.97 (13)
C12—N2—C14122.55 (11)C16—C15—N2119.17 (12)
C12—N2—C15119.68 (10)C20—C15—N2118.84 (12)
C14—N2—C15117.73 (10)C17—C16—C15119.61 (14)
C3'—C4—C3106.6 (4)C17—C16—H16120.2
C3'—C4—C5125.4 (4)C15—C16—H16120.2
C3—C4—C5128.00 (19)C16—C17—C18119.83 (14)
C3'—C4—S1'112.4 (4)C16—C17—H17120.1
C5—C4—S1'122.17 (12)C18—C17—H17120.1
C3—C4—S1111.74 (18)C17—C18—C19120.16 (14)
C5—C4—S1120.14 (10)C17—C18—H18A119.9
S1'—C4—S1117.70 (11)C19—C18—H18A119.9
O2—C5—O1123.75 (12)C18—C19—C20121.29 (14)
O2—C5—C4126.32 (12)C18—C19—H19119.4
O1—C5—C4109.90 (11)C20—C19—H19119.4
C7—C6—O1119.68 (12)C19—C20—C15117.11 (13)
C7—C6—C11122.19 (12)C19—C20—C21121.05 (13)
O1—C6—C11117.98 (11)C15—C20—C21121.84 (12)
C6—C7—C8119.61 (12)C20—C21—H21A109.5
C6—C7—H7120.2C20—C21—H21B109.5
C8—C7—H7120.2H21A—C21—H21B109.5
C9—C8—C7119.79 (12)C20—C21—H21C109.5
C9—C8—H8120.1H21A—C21—H21C109.5
C7—C8—H8120.1H21B—C21—H21C109.5
C4—S1—C1—C20.5 (4)C12—N1—C11—C6175.58 (11)
C4—S1'—C1'—C2'0.0 (10)C12—N1—C11—C103.99 (18)
S1—C1—C2—C31.0 (6)C7—C6—C11—N1176.84 (12)
S1'—C1'—C2'—C3'2.4 (14)O1—C6—C11—N17.56 (17)
C1—C2—C3—C42.6 (6)C7—C6—C11—C102.76 (19)
C1'—C2'—C3'—C44.2 (13)O1—C6—C11—C10172.84 (11)
C2'—C3'—C4—C30.2 (9)C9—C10—C11—N1179.30 (11)
C2'—C3'—C4—C5178.8 (6)C14—C10—C11—N11.97 (18)
C2'—C3'—C4—S1'4.4 (9)C9—C10—C11—C60.27 (18)
C2'—C3'—C4—S1150 (4)C14—C10—C11—C6177.61 (11)
C2—C3—C4—C3'0.2 (6)C11—N1—C12—N20.19 (18)
C2—C3—C4—C5178.8 (3)C11—N1—C12—C13179.29 (11)
C2—C3—C4—S1'147 (2)C14—N2—C12—N15.78 (19)
C2—C3—C4—S13.0 (4)C15—N2—C12—N1171.94 (12)
C1'—S1'—C4—C3'2.5 (6)C14—N2—C12—C13173.32 (11)
C1'—S1'—C4—C333 (2)C15—N2—C12—C138.96 (17)
C1'—S1'—C4—C5179.4 (4)C12—N2—C14—O3175.02 (12)
C1'—S1'—C4—S10.4 (4)C15—N2—C14—O37.22 (18)
C1—S1—C4—C3'29 (4)C12—N2—C14—C107.25 (17)
C1—S1—C4—C32.0 (3)C15—N2—C14—C10170.51 (11)
C1—S1—C4—C5178.2 (2)C9—C10—C14—O33.8 (2)
C1—S1—C4—S1'2.0 (2)C11—C10—C14—O3178.87 (12)
C6—O1—C5—O212.14 (18)C9—C10—C14—N2173.80 (11)
C6—O1—C5—C4169.83 (10)C11—C10—C14—N23.51 (16)
C3'—C4—C5—O214.8 (5)C12—N2—C15—C1698.58 (14)
C3—C4—C5—O2166.4 (3)C14—N2—C15—C1683.59 (15)
S1'—C4—C5—O2161.71 (14)C12—N2—C15—C2079.62 (15)
S1—C4—C5—O218.14 (19)C14—N2—C15—C2098.21 (14)
C3'—C4—C5—O1163.2 (4)C20—C15—C16—C172.0 (2)
C3—C4—C5—O115.6 (3)N2—C15—C16—C17176.13 (12)
S1'—C4—C5—O120.32 (17)C15—C16—C17—C180.8 (2)
S1—C4—C5—O1159.83 (9)C16—C17—C18—C190.8 (2)
C5—O1—C6—C7100.68 (14)C17—C18—C19—C201.3 (2)
C5—O1—C6—C1183.61 (14)C18—C19—C20—C150.15 (19)
O1—C6—C7—C8172.69 (11)C18—C19—C20—C21179.16 (13)
C11—C6—C7—C82.8 (2)C16—C15—C20—C191.50 (19)
C6—C7—C8—C90.4 (2)N2—C15—C20—C19176.65 (11)
C7—C8—C9—C102.1 (2)C16—C15—C20—C21179.20 (12)
C8—C9—C10—C112.10 (19)N2—C15—C20—C212.65 (19)
C8—C9—C10—C14175.17 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O3i0.952.603.3472 (16)136
C13—H13A···O2ii0.982.523.4512 (16)160
C21—H21C···O2iii0.982.533.4563 (16)158
Symmetry codes: (i) x+2, y+2, z+1; (ii) x1, y, z; (iii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC21H16N2O3S
Mr376.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.8031 (1), 13.4281 (2), 22.4853 (4)
β (°) 93.115 (2)
V3)1749.57 (5)
Z4
Radiation typeCu Kα
µ (mm1)1.86
Crystal size (mm)0.25 × 0.15 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.917, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7119, 3582, 3119
Rint0.020
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.03
No. of reflections3582
No. of parameters260
No. of restraints34
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.27

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O3i0.952.603.3472 (16)136
C13—H13A···O2ii0.982.523.4512 (16)160
C21—H21C···O2iii0.982.533.4563 (16)158
Symmetry codes: (i) x+2, y+2, z+1; (ii) x1, y, z; (iii) x+2, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: adelazaba@yahoo.com.

Acknowledgements

This work was supported by the Research Center of Pharmacy, King Saud University, Riyadh, Saudi Arabia. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAl-Obaid, A. M., Abdel-Hamide, S. G., El-Kashef, H. A., Abdel-Aziz, A. A.-M., El-Azab, A. S., Al-Khamees, H. A. & El-Subbagh, H. I. (2009). Eur. J. Med. Chem. 44, 2379–2391.  Web of Science PubMed CAS Google Scholar
First citationAl-Omary, F. A., Abou-Zeid, L. A., Nagi, M. N., Habib, S. E., Abdel-Aziz, A. A.-M., Hamide, S. G., Al-Omar, M. A., Al-Obaid, A. M. & El-Subbagh, H. I. (2010). Bioorg. Med. Chem. 18, 2849–2863.  Web of Science CAS PubMed Google Scholar
First citationAziza, M. A., Nassar, M. W., Abdel Hamid, S. G., El-Hakim, A. E. & El-Azab, A. S. (1996). Indian J. Heterocycl. Chem, 6, 25–30.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Azab, A. S., Al-Omar, M. A., Abdel-Aziz, A. A.-M., Abdel-Aziz, N. I., El-Sayed, M. A.-A., Aleisa, A. M., Sayed-Ahmed, M. M. & Abdel-Hamide, S. G. (2010). Eur. J. Med. Chem. 45, 4188–4198.  Web of Science CAS PubMed Google Scholar
First citationEl-Azab, A. S. & El-Tahir, K. H. (2012). Bioorg. Med. Chem. Lett. 22, 327–333.  Web of Science CAS PubMed Google Scholar
First citationEl-Azab, A. S., El-Tahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837–848.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o756-o757
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds