metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m253-m254

Poly[bis­­(μ-azido-κ2N1:N1)[μ-1,2-bis­­(imid­azol-1-yl)ethane-κ2N3:N3′]cadmium]

aCollege of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, Suzhou 215123, People's Republic of China
*Correspondence e-mail: libaolong@suda.edu.cn

(Received 18 November 2011; accepted 2 February 2012; online 10 February 2012)

In the title three-dimensional coordination polymer, [Cd(N3)2(C8H10N4)]n, the coordination geometry around the CdII atom is distorted octa­hedral. The CdII atom is coordinated by two N atoms from two cis-positioned bridging 1,2-bis­(imidazol-1-yl)ethane (bime) ligands and four N atoms from four azide anions. Each azide ligand acts in an end-on bridging coordination mode. The azide ligands and CdII atoms form a one-dimensional zigzag chain constructed from four-membered [Cd(N3)2]n metallacycles extending along the a axis. These inorganic chains are connected with four other chains via bridging bime ligands to form a three-dimensional coordination network.

Related literature

For coordination polymers with intriguing structures, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]); Blake et al. (1999[Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S., Schroder, M. & Withersby, M. A. (1999). Coord. Chem. Rev. 183, 117-138.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. I. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]). For coordination polymers with flexible ligands, see: Hoskins et al. (1997a[Hoskins, B. F., Ronson, R. & Slizys, D. A. (1997a). J. Am. Chem. Soc. 119, 2952-2953.],b[Hoskins, B. F., Robson, R. & Slizys, D. A. (1997b). Angew. Chem. Int. Ed. 36, 2336-2338.]). For azide coordination compounds and polymers, see: Ribas et al. (1999[Ribas, J., Escuer, A., Monfort, M., Vicente, R., Cortes, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 193-195, 1027-1068.]); Leibeling et al. (2004[Leibeling, G., Demeshko, S., Bauer-Siebenlist, B., Meyer, F. & Pritzkow, H. (2004). Eur. J. Inorg. Chem. pp. 2413-2420.]); Chen & Chen (2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.]); Mautner et al. (1997[Mautner, F. A., Abu-Youssef, M. A. M. & Goher, M. A. S. (1997). Polyhedron, 16, 235-242.]). For 1,2-bis­(imidazol-1-yl)ethane (bime) coordination polymers, see: Zhang et al. (2005[Zhang, Y., Wang, Z.-H., Zhang, Y.-P. & Li, B.-L. (2005). Acta Cryst. E61, m2722-m2725.], 2008[Zhang, Y. P., Wang, L. Y., Wang, S. W., Li, B. L. & Zhang, Y. (2008). J. Chem. Crystallogr. 38, 81-84.]); Zhu et al. (2010[Zhu, X., Zhao, J. W., Li, B. L., Song, Y., Zhang, Y. M. & Zhang, Y. (2010). Inorg. Chem. 49, 1266-1270.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(N3)2(C8H10N4)]

  • Mr = 358.66

  • Monoclinic, P 21 /c

  • a = 6.4565 (14) Å

  • b = 18.874 (4) Å

  • c = 10.449 (2) Å

  • β = 90.485 (5)°

  • V = 1273.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.72 mm−1

  • T = 153 K

  • 0.36 × 0.17 × 0.15 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.576, Tmax = 0.783

  • 12260 measured reflections

  • 2324 independent reflections

  • 2190 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.056

  • S = 1.09

  • 2324 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—N2 2.306 (2)
Cd1—N4i 2.324 (2)
Cd1—N5 2.340 (2)
Cd1—N8 2.345 (2)
Cd1—N8ii 2.377 (2)
Cd1—N5iii 2.397 (2)
N2—Cd1—N5 91.57 (8)
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination polymers have been paid great attention for their intriguing structures and potential applications as functional materials (Batten & Robson 1998; Kitagawa et al., 2004). The selection of ligand is very important for the design and construction of the coordination polymers. In contrast to the rigid ligands with little or no conformational freedom when they interact with the metal ions, the flexible ligands can adjust their conformations to the geometric requirements of the metal ions (Hoskins et al., 1997a,b).

The short anion ligand azide (N3-) is widely used to construct novel coordination polymers because its versatile coordination modes and the ability to mediate strong magnetic coupling (Ribas et al., 1999; Leibeling et al., 2004).

In our previous studies, we synthesized two CdII coordination polymers with the flexible ligand 1,2-bis(imidazol-1-yl)ethane (bime; Zhang et al., 2005; Zhang et al., 2008) and one CuII coordination polymer (Zhu et al., 2010). In order to extend our work, in the present paper we report the preparation and crystal structure of a novel three-dimensional cadmium(II) coordination polymer [Cd(bime)(N3)2]n (I) with the flexible ligand bime and short anion ligand azide.

The structure of (I) is a novel three-dimensional network. Each CdII atom is coordinated by six nitrogen atoms: two from two bime ligands in the cis-positions and the remaining four from four azide anions, in a distorted octahedral geometry (Fig. 1, Table 1).

The Cd—N bond lengths are in the range of 2.306 (2) - 2.397 (2) Å and do not vary much. The Cd—N (bime) lengths of 2.306 (2) and 2.324 (2)Å are corresponding to the values 2.2769 (17)Å in [Cd(bime)dca)2]n (dca = dicyanamide; Zhang, et al., 2005) and 2.2748 (18) Å in [Cd(phba)2(bime)(H2O)2]n (phba = 4-hydroxybenzoate; Zhang et al., 2008). There are two symmetry independent azide ligands and they both act in end-on (EO) bridging coordination mode. The EO-azide ligands are linear and asymmetric [bond angles N5—N6—N7 = 177.5 (3)° and N8—N9—N10 = 178.4 (3)°, bond lengths N5—N6 = 1.195 (3) Å, N6—N7 = 1.158 (3) Å, N8—N9 = 1.166 (3) Å and N9—N10 = 1.177 (4) Å].

The Cd—N (azide) bond lengths of 2.340 (2) to 2.397 (2)Å are similar to the corresponding values of 2.258 (7) and 2.335 (6) Å in [Cd(picolinato)(N3]n with only EO-azide (Mautner et al., 1997) and 2.404 (3) to 2.474 (3) Å in [Cd(N3)(4-aba)(H2O)]n with µ-1,1,3-azide (4-abaH = 4-aminobenzoic acid; Chen & Chen, 2002). The cis N—Cd—N bond angles are in the range of 74.11 (9) to 98.95 (8)°, deviating much from 90°.

A pair of azide ligands bridge the CdII atoms to form a [Cd2(N3)2] four-membered metallacycle. The neighboring metallacycles have a common CdII atom and form a one-dimensional inorganic zigzag chain [Cd(N3)2]n (Fig. 2). The Cd1···Cd1# and Cd1···Cd1& separations via the EO-azide ligands are 3.6804 (7) and 3.7688 (7) Å, respectively. There is one symmetry independent bime ligand in (I). The bime ligands exhibits the anti-conformation with the torsion angle N1—C1—C2—N3 of 179.4 (2)°. The Cd···Cd distances between CdII atoms bridged via bime ligands are 11.5566 (15) Å.

The bime ligands attached to the [Cd(N3)2]n chain point in four different directions (Fig. 3) binding to adjacent [Cd(N3)2 chain and generating a three-dimensional network (Fig. 4).

Related literature top

For coordination polymers with intriguing structures, see: Batten & Robson (1998); Blake et al. (1999); Kitagawa et al. (2004). For coordination polymers with flexible ligands, see: Hoskins et al. (1997a,b). For azide coordination compounds and polymers, see: Ribas et al. (1999); Leibeling et al. (2004); Chen & Chen (2002); Mautner et al. (1997). For 1,2-bis(imidazol-1-yl)ethane (bime) coordination polymers, see: Zhang et al. (2005, 2008); Zhu et al. (2010).

Experimental top

An aqueous (20 mL) solution of Cd(NO3)2.4H2O (0.50 mmol) and NaN3 (1.0 mmol) was added to one side of a "H-shape" tube, and a methanolic solution (20 mL) of bime (0.50 mmol) was added to the another side of the "H-shape" tube. Colourless crystal were obtained after about one month. Anal. Calcd. for C8H10CdN10: C, 26.79; H, 2.81; N, 39.06%. Found: C, 26.68; H, 2.72; N, 38.98%.

Refinement top

H atoms were placed in idealized positions and refined as riding, with C—H distances of 0.99Å (ethyl) and 0.95Å (imidazole) with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of Cd1 in (I) with displacement ellipsoids drawn at the 50% probability level [symmetry codes: ( i) x - 1, -y + 3/2, z + 1/2; (ii) -x, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 1].
[Figure 2] Fig. 2. The one-dimensional inorganic chain with bridging EO-azide ligands running along the a axis.
[Figure 3] Fig. 3. Inorganic [Cd(N3)2]n chains bridged by bime ligands.
[Figure 4] Fig. 4. A three-dimensional topology of (I). The long sticks represent the bime ligands and the short ones the pair of EO-azide ligands.
Poly[bis(µ-azido-κ2N1:N1)[µ-1,2-bis(imidazol-1- yl)ethane-κ2N3:N3']cadmium] top
Crystal data top
[Cd(N3)2(C8H10N4)]F(000) = 704
Mr = 358.66Dx = 1.871 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 4950 reflections
a = 6.4565 (14) Åθ = 3.2–25.4°
b = 18.874 (4) ŵ = 1.72 mm1
c = 10.449 (2) ÅT = 153 K
β = 90.485 (5)°Block, colourless
V = 1273.2 (5) Å30.36 × 0.17 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2324 independent reflections
Radiation source: fine-focus sealed tube2190 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 25.3°, θmin = 3.2°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 77
Tmin = 0.576, Tmax = 0.783k = 2221
12260 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0271P)2 + 1.003P]
where P = (Fo2 + 2Fc2)/3
2324 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cd(N3)2(C8H10N4)]V = 1273.2 (5) Å3
Mr = 358.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.4565 (14) ŵ = 1.72 mm1
b = 18.874 (4) ÅT = 153 K
c = 10.449 (2) Å0.36 × 0.17 × 0.15 mm
β = 90.485 (5)°
Data collection top
Rigaku Mercury CCD
diffractometer
2324 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2190 reflections with I > 2σ(I)
Tmin = 0.576, Tmax = 0.783Rint = 0.029
12260 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.09Δρmax = 0.68 e Å3
2324 reflectionsΔρmin = 0.39 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.25318 (3)0.538064 (9)0.443664 (17)0.01313 (8)
N10.6247 (3)0.60924 (12)0.1163 (2)0.0180 (5)
N20.4047 (3)0.56039 (12)0.2487 (2)0.0173 (5)
N30.9231 (4)0.75635 (12)0.0341 (2)0.0214 (5)
N41.1350 (4)0.84573 (12)0.0646 (2)0.0203 (5)
N50.5555 (3)0.57080 (12)0.5537 (2)0.0174 (5)
N60.5556 (4)0.61004 (12)0.6435 (2)0.0210 (5)
N70.5618 (5)0.64938 (15)0.7285 (3)0.0419 (8)
N80.0515 (3)0.48306 (13)0.3709 (2)0.0194 (5)
N90.0800 (3)0.46469 (11)0.2657 (2)0.0163 (5)
N100.1107 (4)0.44775 (15)0.1588 (3)0.0344 (7)
C10.8087 (4)0.64601 (16)0.0693 (3)0.0228 (6)
H1A0.87690.61700.00300.027*
H1B0.90850.65340.14050.027*
C20.7448 (4)0.71673 (15)0.0134 (3)0.0244 (6)
H2A0.64520.70880.05780.029*
H2B0.67420.74500.07980.029*
C30.5867 (4)0.59166 (14)0.2384 (3)0.0182 (6)
H3A0.67860.60050.30810.022*
C40.3236 (4)0.55828 (15)0.1267 (3)0.0212 (6)
H4A0.19270.53880.10390.025*
C50.4581 (4)0.58817 (15)0.0439 (3)0.0223 (6)
H5A0.44050.59340.04600.027*
C60.9741 (4)0.82267 (14)0.0004 (3)0.0202 (6)
H6A0.90280.84970.06210.024*
C71.1899 (5)0.79080 (16)0.1438 (3)0.0322 (8)
H7A1.30120.79170.20270.039*
C81.0618 (5)0.73543 (17)0.1252 (3)0.0350 (8)
H8A1.06670.69080.16690.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01024 (12)0.01476 (13)0.01442 (12)0.00040 (7)0.00091 (8)0.00122 (7)
N10.0179 (12)0.0179 (12)0.0184 (12)0.0024 (9)0.0052 (10)0.0028 (9)
N20.0180 (12)0.0174 (11)0.0164 (12)0.0028 (10)0.0023 (10)0.0012 (10)
N30.0223 (13)0.0169 (12)0.0251 (13)0.0057 (10)0.0059 (11)0.0022 (10)
N40.0184 (12)0.0173 (12)0.0252 (13)0.0019 (10)0.0036 (10)0.0013 (10)
N50.0156 (12)0.0167 (12)0.0199 (12)0.0020 (9)0.0006 (10)0.0020 (10)
N60.0192 (13)0.0205 (13)0.0233 (14)0.0054 (10)0.0037 (10)0.0033 (11)
N70.063 (2)0.0351 (17)0.0281 (16)0.0174 (15)0.0124 (14)0.0144 (13)
N80.0136 (12)0.0269 (13)0.0178 (13)0.0039 (10)0.0006 (10)0.0029 (11)
N90.0108 (11)0.0136 (12)0.0246 (15)0.0019 (8)0.0031 (10)0.0020 (10)
N100.0336 (16)0.0459 (17)0.0238 (16)0.0125 (13)0.0015 (12)0.0103 (13)
C10.0167 (14)0.0288 (16)0.0231 (15)0.0040 (12)0.0042 (12)0.0038 (12)
C20.0205 (15)0.0215 (15)0.0312 (16)0.0055 (12)0.0040 (13)0.0020 (13)
C30.0161 (14)0.0204 (14)0.0182 (14)0.0016 (11)0.0005 (11)0.0010 (11)
C40.0203 (15)0.0209 (14)0.0222 (15)0.0042 (12)0.0011 (12)0.0031 (12)
C50.0252 (16)0.0241 (15)0.0177 (14)0.0061 (12)0.0001 (12)0.0012 (12)
C60.0199 (15)0.0161 (14)0.0247 (15)0.0019 (11)0.0056 (12)0.0025 (11)
C70.0392 (19)0.0233 (16)0.0345 (18)0.0055 (14)0.0204 (15)0.0058 (13)
C80.049 (2)0.0218 (16)0.0344 (18)0.0084 (15)0.0219 (16)0.0103 (14)
Geometric parameters (Å, º) top
Cd1—N22.306 (2)N5—Cd1iii2.397 (2)
Cd1—N4i2.324 (2)N6—N71.158 (3)
Cd1—N52.340 (2)N8—N91.166 (3)
Cd1—N82.345 (2)N8—Cd1ii2.377 (2)
Cd1—N8ii2.377 (2)N9—N101.177 (4)
Cd1—N5iii2.397 (2)C1—C21.513 (4)
N1—C31.343 (3)C1—H1A0.9900
N1—C51.369 (4)C1—H1B0.9900
N1—C11.464 (4)C2—H2A0.9900
N2—C31.320 (4)C2—H2B0.9900
N2—C41.375 (4)C3—H3A0.9500
N3—C61.341 (3)C4—C51.355 (4)
N3—C81.370 (4)C4—H4A0.9500
N3—C21.463 (4)C5—H5A0.9500
N4—C61.316 (4)C6—H6A0.9500
N4—C71.375 (4)C7—C81.348 (4)
N4—Cd1iv2.324 (2)C7—H7A0.9500
N5—N61.195 (3)C8—H8A0.9500
N2—Cd1—N4i86.36 (8)Cd1—N8—Cd1ii105.89 (9)
N2—Cd1—N591.57 (8)N8—N9—N10178.4 (3)
N4i—Cd1—N592.36 (8)N1—C1—C2109.1 (2)
N2—Cd1—N898.95 (8)N1—C1—H1A109.9
N4i—Cd1—N897.56 (8)C2—C1—H1A109.9
N5—Cd1—N8165.94 (8)N1—C1—H1B109.9
N2—Cd1—N8ii171.89 (8)C2—C1—H1B109.9
N4i—Cd1—N8ii90.38 (8)H1A—C1—H1B108.3
N5—Cd1—N8ii95.98 (8)N3—C2—C1111.7 (2)
N8—Cd1—N8ii74.11 (9)N3—C2—H2A109.3
N2—Cd1—N5iii86.80 (8)C1—C2—H2A109.3
N4i—Cd1—N5iii168.07 (8)N3—C2—H2B109.3
N5—Cd1—N5iii78.07 (8)C1—C2—H2B109.3
N8—Cd1—N5iii93.15 (8)H2A—C2—H2B107.9
N8ii—Cd1—N5iii97.62 (8)N2—C3—N1111.0 (2)
C3—N1—C5107.7 (2)N2—C3—H3A124.5
C3—N1—C1126.2 (2)N1—C3—H3A124.5
C5—N1—C1126.1 (2)C5—C4—N2109.8 (2)
C3—N2—C4105.6 (2)C5—C4—H4A125.1
C3—N2—Cd1122.58 (18)N2—C4—H4A125.1
C4—N2—Cd1130.74 (18)C4—C5—N1105.8 (2)
C6—N3—C8106.9 (2)C4—C5—H5A127.1
C6—N3—C2125.5 (2)N1—C5—H5A127.1
C8—N3—C2127.5 (2)N4—C6—N3111.6 (2)
C6—N4—C7105.4 (2)N4—C6—H6A124.2
C6—N4—Cd1iv123.63 (18)N3—C6—H6A124.2
C7—N4—Cd1iv130.37 (19)C8—C7—N4109.6 (3)
N6—N5—Cd1122.96 (18)C8—C7—H7A125.2
N6—N5—Cd1iii121.70 (18)N4—C7—H7A125.2
Cd1—N5—Cd1iii101.93 (8)C7—C8—N3106.4 (3)
N7—N6—N5177.5 (3)C7—C8—H8A126.8
N9—N8—Cd1124.23 (19)N3—C8—H8A126.8
N9—N8—Cd1ii129.46 (19)
C3—N1—C1—C2116.5 (3)C3—N1—C5—C40.1 (3)
C5—N1—C1—C261.8 (4)C1—N1—C5—C4178.4 (3)
C6—N3—C2—C1125.8 (3)C7—N4—C6—N30.1 (3)
C8—N3—C2—C158.2 (4)Cd1iv—N4—C6—N3172.20 (18)
N1—C1—C2—N3179.4 (2)C8—N3—C6—N40.5 (3)
C4—N2—C3—N10.1 (3)C2—N3—C6—N4176.2 (3)
Cd1—N2—C3—N1169.59 (17)C6—N4—C7—C80.5 (4)
C5—N1—C3—N20.0 (3)Cd1iv—N4—C7—C8172.0 (2)
C1—N1—C3—N2178.6 (2)N4—C7—C8—N30.8 (4)
C3—N2—C4—C50.2 (3)C6—N3—C8—C70.8 (4)
Cd1—N2—C4—C5168.5 (2)C2—N3—C8—C7175.9 (3)
N2—C4—C5—N10.2 (3)
Symmetry codes: (i) x1, y+3/2, z+1/2; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cd(N3)2(C8H10N4)]
Mr358.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)6.4565 (14), 18.874 (4), 10.449 (2)
β (°) 90.485 (5)
V3)1273.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.72
Crystal size (mm)0.36 × 0.17 × 0.15
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.576, 0.783
No. of measured, independent and
observed [I > 2σ(I)] reflections
12260, 2324, 2190
Rint0.029
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.056, 1.09
No. of reflections2324
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.39

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—N22.306 (2)Cd1—N82.345 (2)
Cd1—N4i2.324 (2)Cd1—N8ii2.377 (2)
Cd1—N52.340 (2)Cd1—N5iii2.397 (2)
N2—Cd1—N591.57 (8)
Symmetry codes: (i) x1, y+3/2, z+1/2; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China (grant Nos. 21171126, 20671066), and the Funds of the Key Laboratory of Organic Synthesis Chemistry, Jiangsu Province, People's Republic of China.

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBlake, A. J., Champness, N. R., Hubberstey, P., Li, W. S., Schroder, M. & Withersby, M. A. (1999). Coord. Chem. Rev. 183, 117–138.  Web of Science CrossRef CAS Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationHoskins, B. F., Robson, R. & Slizys, D. A. (1997b). Angew. Chem. Int. Ed. 36, 2336–2338.  CrossRef CAS Google Scholar
First citationHoskins, B. F., Ronson, R. & Slizys, D. A. (1997a). J. Am. Chem. Soc. 119, 2952–2953.  CSD CrossRef CAS Web of Science Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLeibeling, G., Demeshko, S., Bauer-Siebenlist, B., Meyer, F. & Pritzkow, H. (2004). Eur. J. Inorg. Chem. pp. 2413–2420.  CSD CrossRef Google Scholar
First citationMautner, F. A., Abu-Youssef, M. A. M. & Goher, M. A. S. (1997). Polyhedron, 16, 235–242.  CSD CrossRef CAS Web of Science Google Scholar
First citationRibas, J., Escuer, A., Monfort, M., Vicente, R., Cortes, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 193–195, 1027–1068.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y. P., Wang, L. Y., Wang, S. W., Li, B. L. & Zhang, Y. (2008). J. Chem. Crystallogr. 38, 81–84.  Web of Science CSD CrossRef Google Scholar
First citationZhang, Y., Wang, Z.-H., Zhang, Y.-P. & Li, B.-L. (2005). Acta Cryst. E61, m2722–m2725.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, X., Zhao, J. W., Li, B. L., Song, Y., Zhang, Y. M. & Zhang, Y. (2010). Inorg. Chem. 49, 1266–1270.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m253-m254
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds