organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8,10-Di­iodo-2,6-dioxo-4λ3-ioda-3,5-dioxatri­cyclo­[5.3.1.04,11]undeca-1(11),7,9-triene-9-carb­­oxy­lic acid

aKey Laboratory for Special Functional Aggregated Materials of the Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: yzhyang@sdu.edu.cn

(Received 5 January 2012; accepted 7 February 2012; online 17 February 2012)

In the title compound, C9HI3O6·2H2O, the mol­ecule is located on a twofold axis that gives rise to disorder of the carboxyl group. This disorder is correlated with the disorder of one of the H atoms of the water mol­ecule. The carboxyl group is twisted relative to the attached benzene ring by 75.1 (4)°. The intra­molecular I⋯O distance is 2.112 (6) Å. Mol­ecules are linked via O—H⋯O hydrogen bonding, C—I⋯O halogen bonding, with I⋯O distances in the range 3.156 (5)–3.274 (6) Å, and dipolar C=O⋯C=O inter­actions between the carboxyl and carboxyl­ate groups, with an O⋯C distance of 2.944 (10) Å.

Related literature

For general background to 1,3,5-triiodo­benzene derivatives, see: Morin et al. (1987[Morin, J. P., Boutelet, I., Toutain, H. & Fillastre, J. P. (1987). Pathol. Biol. 35, 1215-1220.]); Yu & Watson (1999[Yu, S. B. & Watson, A. D. (1999). Chem. Rev. 99, 2353-2378.]). For information on the related compound 1,3,5-triiodo-2,4,6-trimethyl­benzene, see: Bosch & Barnes (2002[Bosch, E. & Barnes, C. L. (2002). Cryst. Growth Des. 2, 299-302.]); Boudjada et al. (2001[Boudjada, A., Hernandez, O., Meinnel, J., Mani, M. & Paulus, W. (2001). Acta Cryst. C57, 1106-1108.]); Reddy et al. (2006[Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222-2234.]). For the crystal structures of 5-amino-2,4,6-triiodo­isophthalic acid monohydrate and 5-amino-2,4,6-triiodo­isophthalic acid–4,4′-bipyridine N,N′-dioxide–water (1/1/1), see: Beck & Sheldrick (2008[Beck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286.]); Zhang et al. (2011[Zhang, K.-L., Zhang, J.-B. & Ng, S. W. (2011). Acta Cryst. E67, o793.]).

[Scheme 1]

Experimental

Crystal data
  • C9HI3O6·2H2O

  • Mr = 621.83

  • Monoclinic, C 2/c

  • a = 14.7667 (8) Å

  • b = 11.9890 (6) Å

  • c = 9.7419 (5) Å

  • β = 127.4236 (5)°

  • V = 1369.68 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.88 mm−1

  • T = 130 K

  • 0.32 × 0.14 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.217, Tmax = 0.492

  • 4078 measured reflections

  • 1547 independent reflections

  • 1515 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.097

  • S = 1.23

  • 1547 reflections

  • 93 parameters

  • H-atom parameters constrained

  • Δρmax = 2.36 e Å−3

  • Δρmin = −2.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1W 0.82 2.08 2.772 (9) 142
O1W—H1W⋯O3 0.82 1.98 2.772 (9) 163
O1W—H2W⋯O1Wi 0.82 1.94 2.730 (14) 160
O1W—H3W⋯O1ii 0.82 2.24 3.053 (9) 172
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Iodine-based compounds have always been used as contrast agents for X-ray imaging (Morin et al., 1987). The 1,3,5-triiodo-benzene core has been the basis of many contrast agents (Yu & Watson, 1999). In this paper, we present the crystal structure of a new compound based on 1,3,5-triiodobenzene core.

In the title compound the organic molecule is located on a twofold axis what results in disorder of the carboxylic group (Fig. 1). In the crystal structure, there are hydrogen bonds between symmetry related water molecules as well as between the water molecule and the carboxylic group. It indicates that one of the hydrogen atoms of the water molecule has to be disordered and this disorder is evidently correlated with the disorder of the carboxylic group. The hydrogen atom and the oxygen atom forming hydrogen bond between the water molecule and the carboxylic group are either from the water molecule or the carboxylic group. There is also a hydrogen bond between the water molecule and the carboxylate O1 atom. Hydrogen atom involved in this interaction has full occupancy. The dihedral angle between the plane of the carboxyl group and the benzene ring is 75.1 (4)°.

In addition to hydrogen bond, the structure is stabilized by halogen bonding between the I2 atom and the carboxylate group O1 and O2 atoms. There is also a halogen bond between the water molecule and I1 atom (Fig. 2). A dipolar interaction between carboxyl C6—O3 and carboxylate C4 also is observed (C···O 2.95 Å) (Fig. 3).

Related literature top

For general background to 1,3,5-triiodobenzene derivatives, see: Morin et al. (1987); Yu & Watson (1999). For information on the related compound 1,3,5-triiodo-2,4,6-trimethylbenzene, see: Bosch & Barnes (2002); Boudjada et al. (2001); Reddy et al. (2006). For the crystal structures of 5-amino-2,4,6-triiodoisophthalic acid monohydrate and 5-amino-2,4,6-triiodoisophthalic acid–4,4'-bipyridine N,N'-dioxide–water, see: Beck & Sheldrick (2008); Zhang et al. (2011).

Experimental top

A mixture of 1,3,5-triiodo-2,4,6-trimethylbenzene (5 g) and excess of potassium permanganate (80 g) was dissolved in pyridine (60 ml) and heated under reflux for 24 h to produce the title compound (m.p. 573 K, decompose). Crystallization was carried out from a mixture of water and methanol (v/v 1:2). Colorless crystals suitable for X-ray single-crystal diffraction were obtained by slow evaporation method.

Refinement top

H atom of the carboxylic group was placed in geometrically calculated position and refined using a riding model the the occupantion factor of 0.5. Positions of H atoms from the water molecule were calculated after analysis of possible hydrogen-bond interactions. The occupantion factors of H1W and H2W were assigned as 0.5.

The isotropic displacement parameters of all H atoms were set to 1.5 times the equivalent displacement parameter of their parent O atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: APEX2 (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (i) 1 - x, y, 1.5 + z.
[Figure 2] Fig. 2. Partial view of the crystal structure. Molecules are linked by O—H···O (green dashed lines) and O—H···I hydrogen bonds (purple dashed lines).
[Figure 3] Fig. 3. Packing of the title compound, hydrogen atoms are omitted for clarity. Hydrogen bonds (green), halogen bonds (purple) and dipolar interaction (blue) are shown as dashed lines.
8,10-diiodo-2,6-dioxo-4λ3-ioda-3,5-dioxatricyclo[5.3.1.04,11]undeca- 1(11),7,9-triene-9-carboxylic acid top
Crystal data top
C9HI3O6·2H2OF(000) = 1128
Mr = 621.83Dx = 3.016 Mg m3
Monoclinic, C2/cMelting point: 573 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71069 Å
a = 14.7667 (8) ÅCell parameters from 3350 reflections
b = 11.9890 (6) Åθ = 2.4–27.4°
c = 9.7419 (5) ŵ = 6.88 mm1
β = 127.4236 (5)°T = 130 K
V = 1369.68 (12) Å3Prism, colourless
Z = 40.32 × 0.14 × 0.12 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1547 independent reflections
Radiation source: fine-focus sealed tube1515 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 27.4°, θmin = 2.4°
Absorption correction: multi-scan
(APEX2; Bruker, 2007)
h = 1019
Tmin = 0.217, Tmax = 0.492k = 1415
4078 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0157P)2 + 40.7765P]
where P = (Fo2 + 2Fc2)/3
1547 reflections(Δ/σ)max < 0.001
93 parametersΔρmax = 2.36 e Å3
0 restraintsΔρmin = 2.23 e Å3
Crystal data top
C9HI3O6·2H2OV = 1369.68 (12) Å3
Mr = 621.83Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.7667 (8) ŵ = 6.88 mm1
b = 11.9890 (6) ÅT = 130 K
c = 9.7419 (5) Å0.32 × 0.14 × 0.12 mm
β = 127.4236 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1547 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2007)
1515 reflections with I > 2σ(I)
Tmin = 0.217, Tmax = 0.492Rint = 0.016
4078 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0157P)2 + 40.7765P]
where P = (Fo2 + 2Fc2)/3
1547 reflectionsΔρmax = 2.36 e Å3
93 parametersΔρmin = 2.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.50000.3381 (8)0.75000.0216 (19)
C20.4147 (5)0.3903 (6)0.5979 (8)0.0207 (13)
C30.4155 (6)0.5066 (6)0.5979 (9)0.0249 (14)
C40.3340 (6)0.3120 (6)0.4528 (9)0.0248 (14)
C50.50000.5629 (8)0.75000.0222 (19)
C60.50000.6916 (8)0.75000.027 (2)
I10.50000.16946 (5)0.75000.02526 (18)
I20.29502 (5)0.59994 (5)0.37929 (8)0.0469 (2)
O10.2532 (5)0.3419 (5)0.3093 (7)0.0386 (14)
O20.3559 (5)0.2049 (5)0.4946 (7)0.0313 (12)
O30.5338 (6)0.7375 (5)0.6751 (9)0.0474 (16)
H30.53080.80540.68180.071*0.50
O1W0.4370 (6)0.9449 (6)0.5383 (9)0.0494 (16)
H1W0.47630.89100.59580.074*0.50
H2W0.47560.98960.53030.074*0.50
H3W0.38310.92400.44160.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.021 (4)0.019 (4)0.021 (5)0.0000.011 (4)0.000
C20.017 (3)0.024 (3)0.012 (3)0.000 (2)0.004 (2)0.001 (2)
C30.021 (3)0.030 (4)0.017 (3)0.005 (3)0.008 (3)0.004 (3)
C40.021 (3)0.031 (4)0.015 (3)0.002 (3)0.007 (3)0.003 (3)
C50.026 (5)0.018 (4)0.029 (5)0.0000.020 (4)0.000
C60.039 (6)0.012 (4)0.035 (6)0.0000.025 (5)0.000
I10.0282 (3)0.0169 (3)0.0269 (3)0.0000.0148 (3)0.000
I20.0427 (4)0.0392 (3)0.0341 (3)0.0125 (2)0.0104 (3)0.0160 (2)
O10.031 (3)0.042 (3)0.019 (3)0.000 (3)0.003 (2)0.004 (2)
O20.030 (3)0.029 (3)0.024 (3)0.008 (2)0.011 (2)0.008 (2)
O30.074 (5)0.028 (3)0.069 (5)0.000 (3)0.058 (4)0.005 (3)
O1W0.050 (4)0.044 (4)0.048 (4)0.008 (3)0.026 (3)0.002 (3)
Geometric parameters (Å, º) top
C1—C2i1.380 (8)C5—C3i1.400 (8)
C1—I12.022 (9)C5—C61.543 (13)
C2—C31.394 (10)C6—O31.237 (7)
C2—C41.501 (9)I1—O22.113 (5)
C3—C51.400 (8)O3—H30.8200
C3—I22.085 (7)O1W—H1W0.8201
C4—O11.216 (9)O1W—H2W0.8200
C4—O21.326 (9)O1W—H3W0.8201
C4···O3ii2.944 (10)I2···O2iv3.156 (5)
I1···O1Wiii3.173 (7)I2···O1iv3.274 (6)
C2i—C1—C2126.1 (9)C3—C5—C3i122.3 (9)
C2i—C1—I1117.0 (5)C3—C5—C6118.8 (5)
C2—C1—I1117.0 (5)O3i—C6—O3127.1 (10)
C1—C2—C3116.8 (6)O3—C6—C5116.5 (5)
C1—C2—C4114.3 (6)C1—I1—O278.38 (15)
C3—C2—C4128.9 (6)O2i—I1—O2156.8 (3)
C2—C3—C5119.0 (7)C4—O2—I1116.1 (4)
C2—C3—I2122.3 (5)C6—O3—H3109.5
C5—C3—I2118.7 (6)H1W—O1W—H2W109.6
O1—C4—O2121.6 (7)H1W—O1W—H3W109.5
O1—C4—C2124.1 (7)H2W—O1W—H3W109.6
O2—C4—C2114.2 (6)
C2i—C1—C2—C30.5 (5)I2—C3—C5—C3i179.6 (5)
I1—C1—C2—C3179.5 (5)C2—C3—C5—C6179.5 (5)
C2i—C1—C2—C4179.7 (6)I2—C3—C5—C60.4 (5)
I1—C1—C2—C40.3 (6)C3—C5—C6—O3i105.1 (5)
C1—C2—C3—C50.9 (9)C3—C5—C6—O374.9 (5)
C4—C2—C3—C5180.0 (6)C3i—C5—C6—O3105.1 (5)
C1—C2—C3—I2179.1 (4)C2i—C1—I1—O2179.6 (4)
C4—C2—C3—I20.1 (11)C2—C1—I1—O20.4 (4)
C1—C2—C4—O1179.7 (7)O1—C4—O2—I1180.0 (6)
C3—C2—C4—O11.3 (13)C2—C4—O2—I11.5 (8)
C1—C2—C4—O21.2 (9)C1—I1—O2—C41.1 (5)
C3—C2—C4—O2179.7 (7)O2i—I1—O2—C41.1 (5)
C2—C3—C5—C3i0.5 (5)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1W0.822.082.772 (9)142
O1W—H1W···O30.821.982.772 (9)163
O1W—H2W···O1Wv0.821.942.730 (14)160
O1W—H3W···O1iv0.822.243.053 (9)172
Symmetry codes: (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC9HI3O6·2H2O
Mr621.83
Crystal system, space groupMonoclinic, C2/c
Temperature (K)130
a, b, c (Å)14.7667 (8), 11.9890 (6), 9.7419 (5)
β (°) 127.4236 (5)
V3)1369.68 (12)
Z4
Radiation typeMo Kα
µ (mm1)6.88
Crystal size (mm)0.32 × 0.14 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2007)
Tmin, Tmax0.217, 0.492
No. of measured, independent and
observed [I > 2σ(I)] reflections
4078, 1547, 1515
Rint0.016
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.097, 1.23
No. of reflections1547
No. of parameters93
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0157P)2 + 40.7765P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.36, 2.23

Computer programs: APEX2 (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1W0.822.082.772 (9)142
O1W—H1W···O30.821.982.772 (9)163
O1W—H2W···O1Wi0.821.942.730 (14)160
O1W—H3W···O1ii0.822.243.053 (9)172
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support for this work from the National Natural Science Foundation of China (grant Nos. 20876089 and 21076115), the Natural Science Foundation of Shandong Province (grant No. ZR2010BM019) and the 973 Project of China (grant No. 2011CB935901).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBosch, E. & Barnes, C. L. (2002). Cryst. Growth Des. 2, 299–302.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoudjada, A., Hernandez, O., Meinnel, J., Mani, M. & Paulus, W. (2001). Acta Cryst. C57, 1106–1108.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMorin, J. P., Boutelet, I., Toutain, H. & Fillastre, J. P. (1987). Pathol. Biol. 35, 1215–1220.  CAS PubMed Web of Science Google Scholar
First citationReddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222–2234.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, S. B. & Watson, A. D. (1999). Chem. Rev. 99, 2353–2378.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, K.-L., Zhang, J.-B. & Ng, S. W. (2011). Acta Cryst. E67, o793.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds