organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-7-[(2E)-But-2-eno­yl]-13-chloro-N-cyclo­hexyl-7,8-di­hydro-5H-isochromeno[4,3-c]phenanthridine-8-carboxamide

aLaboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
*Correspondence e-mail: wyz@zju.edu.cn

(Received 6 January 2012; accepted 10 February 2012; online 17 February 2012)

In the title compound, C31H29ClN2O3, the two heterocyclic rings, belonging to a system of five condensed rings, adopt conformations intermediate between twist-boat and sofa. The secondary amide group is involved in a weak intramolecular N—H⋯N hydrogen bond. In the crystal, molecules are linked by pairs of C—H⋯Cl hydrogen bonds to form inversion dimers. These dimers are linked via a C—H⋯O interaction to form chains propagating along the b-axis direction.

Related literature

For the Ugi four-component reaction of 2-amino­phenols, see: Xing et al. (2006[Xing, X., Wu, J., Feng, G. & Dai, W.-M. (2006). Tetrahedron, 62, 6774-6781.]); Dai et al. (2008[Dai, W.-M., Shi, J. & Wu, J. (2008). Synlett, pp. 2716-2720.]). For microwave-assisted intra­molecular direct aryl­ation, see: Wu et al. (2007[Wu, J., Nie, L., Luo, J. & Dai, W.-M. (2007). Synlett, pp. 2728-2732.]).

[Scheme 1]

Experimental

Crystal data
  • C31H29ClN2O3

  • Mr = 513.01

  • Monoclinic, P 21 /n

  • a = 13.2616 (8) Å

  • b = 13.4515 (7) Å

  • c = 14.8338 (9) Å

  • β = 95.067 (2)°

  • V = 2635.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 296 K

  • 0.35 × 0.32 × 0.20 mm

Data collection
  • Rigaku RAXIS-RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.930, Tmax = 0.965

  • 21259 measured reflections

  • 4884 independent reflections

  • 2797 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.197

  • S = 1.00

  • 4884 reflections

  • 336 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1 0.86 2.41 2.758 (3) 105
C23—H23B⋯Cl1i 0.97 2.74 3.473 (4) 133
C14—H14⋯O3ii 0.93 2.58 3.391 (5) 146
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku Americas and Rigaku, 2007[Rigaku Americas and Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, C31H29ClN2O3, is a derivative of 7,8- dihydro-5H-6-oxa-7-azapicene, which was obtained from U-4CR of 2-amino-4-chlorophenol, 2-bromobenzaldehyde, (E)- crotonic acid and cyclohexyl isocyanide (Xing et al., 2006; Dai et al., 2008) followed by O-benzylation and palladium catalyzed intramolecular arylation (Wu et al., 2007). The structure of the title compound has been characterized by spectroscopic methods with further confirmation by X-ray analysis. We report here its crystal structure.

In the molecule of the title compound (Fig. 1), there are three benzene rings and the middle one was fused with two other benzene rings by CH2O and CH2N bridges closing six-membered heterocyclic rings. The middle benzene ring is twisted relative to two other benzene rings by 30.7 (3)° and 15.7( 3)°. In the crystal structure, the molecules are linked by two C—H···Cl weak hydrogen bonds into centrosymmetric dimers (Fig. 2).

Related literature top

For the Ugi four-component reaction of 2-aminophenols, see: Xing et al. (2006); Dai et al. (2008). For microwave- assisted intramolecular direct arylation, see: Wu et al. (2007).

Experimental top

A solution of 2-amino-4-chlorophenol (3.0 mmol) and 2-bromobenzaldehyde (3.0 mmol) in MeOH (5 ml) was stirred at room temperature for 15 min. To the resultant mixture was added (E)-crotonic acid (3.0 mmol) followed by stirring for 5 min at the same temperature. Cyclohexyl isocyanide (3.0 mmol) was then added to the above mixture followed by stirring at 323 K for 48 h. The white precipitate of the U-4CR product was collected by filtration and the solid was washed with methanol (3 ml). The combined filtrate was concentrated under reduced pressure and the residue was purified by flash column chromatography over silica gel [eluting with 25% EtOAc in PE (b.p. 333–363 K)] to give additional portion of the U-4CR product. The yield of the U-4CR is 70%. A solution of the above U-4CR product (2.0 mmol), 2-bromobenzyl bromide (2.4 mmol), and K2CO3 (3.0 mmol) in acetone (reagent grade, 10 ml) was heated at 323 K for 2 h. The reaction was allowed to cool to room temperature. After adding water, the mixture was extracted using EtOAc (3 x 10 ml). The combined organic layer was dried over anhydrous Na2SO4, filtered off, and then evaporated under reduced pressure. The residue was purified by flash column chromatography over silica gel [eluting with 20% EtOAc in PE (b.p. 333–363 K)] to give the O-benzylation product (96%).

A 10-ml pressurized process vial was charged with the above O-benzylation product (0.15 mmol), Pd(OAc)2 (7.5 x 10-3 mmol; 5 mol %), K2CO3 (0.3 mmol), and PCy3HBF4 (1.5 x 10-2 mmol, 10 mol %). The vial was sealed with a cap containing a silicon septum. The vial was evacuated and backfilled with N2 (repeated for three times) through the cap using a needle. To the degassed vial was added degassed anhydrous MeCN (3 ml) through the cap using a syringe. The loaded vial was then placed into the microwave reactor cavity and was heated at 433 K for 80 min. After cooling to room temperature the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography over silica gel [eluting with 25% EtOAc in PE (b.p. 333–363 K)] to give the title compound as a yellow solid (49 mg, 63%; m.p. 459–461 K (EtOAc-hexane). Single crystals suitable for X-ray diffraction were grown from a EtOAc/hexane mixture.

Refinement top

The H atoms were placed in calculated positions with C—H = 0.93–0.98 Å, N-H = 0.86 Å and included in the refinement as riding on their carrier atoms with Uiso(H) =1.2Ueq (C,N).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku Americas and Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Centrosymmetric dimers by C—H···Cl hydrogen bonds. Symmetry code:(i) 1 - x, 1 - y, 1 - z.
rac-7-[(2E)-But-2-enoyl]-13-chloro-N-cyclohexyl- 7,8-dihydro-5H-isochromeno[4,3-c]phenanthridine-8-carboxamide top
Crystal data top
C31H29ClN2O3F(000) = 1080
Mr = 513.01Dx = 1.293 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 12604 reflections
a = 13.2616 (8) Åθ = 3.0–27.4°
b = 13.4515 (7) ŵ = 0.18 mm1
c = 14.8338 (9) ÅT = 296 K
β = 95.067 (2)°Block, colorless
V = 2635.8 (3) Å30.35 × 0.32 × 0.20 mm
Z = 4
Data collection top
Rigaku RAXIS-RAPID/ZJUG
diffractometer
4884 independent reflections
Radiation source: rolling anode2797 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 10.00 pixels mm-1θmax = 25.5°, θmin = 3.0°
ω scansh = 1614
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1616
Tmin = 0.930, Tmax = 0.965l = 1717
21259 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.197 w = 1/[σ2(Fo2) + (0.095P)2 + 1.2622P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4884 reflectionsΔρmax = 0.22 e Å3
336 parametersΔρmin = 0.44 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0130 (19)
Crystal data top
C31H29ClN2O3V = 2635.8 (3) Å3
Mr = 513.01Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.2616 (8) ŵ = 0.18 mm1
b = 13.4515 (7) ÅT = 296 K
c = 14.8338 (9) Å0.35 × 0.32 × 0.20 mm
β = 95.067 (2)°
Data collection top
Rigaku RAXIS-RAPID/ZJUG
diffractometer
4884 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2797 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.965Rint = 0.048
21259 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
4884 reflectionsΔρmin = 0.44 e Å3
336 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.57920 (9)0.38756 (8)0.47028 (9)0.1040 (5)
O10.79308 (16)0.71162 (15)0.66645 (13)0.0592 (6)
O20.51089 (18)0.79850 (19)0.41811 (15)0.0731 (7)
O30.88187 (18)0.83063 (16)0.43610 (16)0.0692 (7)
N10.76583 (18)0.72488 (17)0.48317 (15)0.0485 (6)
N20.60639 (19)0.82566 (19)0.54842 (16)0.0576 (7)
H20.66760.83200.57210.069*
C10.6860 (2)0.7620 (2)0.41769 (19)0.0525 (7)
H10.71300.81920.38670.063*
C20.6609 (2)0.6817 (2)0.3479 (2)0.0589 (8)
C30.6369 (3)0.7041 (3)0.2577 (2)0.0764 (10)
H30.63200.77010.23930.092*
C40.6202 (3)0.6291 (4)0.1945 (3)0.0940 (13)
H40.60180.64460.13420.113*
C50.6307 (3)0.5322 (4)0.2208 (3)0.0940 (13)
H50.62240.48200.17760.113*
C60.6535 (3)0.5080 (3)0.3105 (3)0.0770 (10)
H60.66030.44150.32730.092*
C70.6663 (2)0.5820 (2)0.3765 (2)0.0593 (8)
C80.6843 (2)0.5634 (2)0.4748 (2)0.0543 (8)
C90.6473 (3)0.4825 (2)0.5230 (3)0.0641 (9)
C100.6594 (3)0.4779 (2)0.6151 (3)0.0675 (9)
H100.63390.42310.64390.081*
C110.7086 (2)0.5524 (2)0.6681 (2)0.0591 (8)
C120.7110 (3)0.5590 (3)0.7674 (2)0.0653 (9)
C130.6507 (3)0.4996 (3)0.8181 (3)0.0873 (12)
H130.60720.45250.78990.105*
C140.6565 (4)0.5118 (4)0.9117 (3)0.1064 (17)
H140.61770.47150.94600.128*
C150.7185 (4)0.5825 (5)0.9541 (3)0.1045 (16)
H150.72150.58961.01660.125*
C160.7759 (3)0.6425 (4)0.9043 (2)0.0876 (12)
H160.81660.69150.93280.105*
C170.7733 (3)0.6302 (3)0.8105 (2)0.0670 (9)
C180.8411 (3)0.6891 (3)0.7556 (2)0.0725 (10)
H18A0.85930.75070.78690.087*
H18B0.90280.65190.74960.087*
C190.7487 (2)0.6314 (2)0.6215 (2)0.0504 (7)
C200.7366 (2)0.6362 (2)0.52781 (19)0.0488 (7)
C210.5920 (2)0.7966 (2)0.46243 (19)0.0505 (7)
C220.5240 (2)0.8474 (2)0.60503 (19)0.0533 (7)
H220.45990.83360.56920.064*
C230.5303 (3)0.7807 (3)0.6868 (2)0.0775 (11)
H23A0.59340.79280.72340.093*
H23B0.52950.71180.66760.093*
C240.4415 (4)0.7998 (3)0.7433 (3)0.1050 (15)
H24A0.37870.78300.70810.126*
H24B0.44780.75750.79640.126*
C250.4383 (4)0.9064 (3)0.7721 (3)0.0954 (14)
H25A0.49750.92110.81310.114*
H25B0.37880.91740.80440.114*
C260.4355 (3)0.9754 (3)0.6917 (3)0.0875 (12)
H26A0.43921.04370.71270.105*
H26B0.37190.96690.65490.105*
C270.5232 (3)0.9550 (3)0.6338 (3)0.0753 (10)
H27A0.51670.99730.58060.090*
H27B0.58680.97100.66820.090*
C280.8642 (2)0.7546 (2)0.4774 (2)0.0519 (7)
C290.9452 (2)0.6895 (2)0.5181 (2)0.0622 (8)
H290.92850.63810.55600.075*
C301.0403 (3)0.7021 (3)0.5023 (3)0.0793 (11)
H301.05560.75770.46880.095*
C311.1257 (3)0.6351 (4)0.5333 (3)0.1114 (16)
H31A1.10180.58390.57110.167*
H31B1.17780.67280.56700.167*
H31C1.15270.60540.48170.167*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0962 (8)0.0717 (6)0.1430 (11)0.0234 (5)0.0050 (7)0.0170 (6)
O10.0654 (14)0.0622 (13)0.0484 (12)0.0042 (10)0.0033 (10)0.0042 (10)
O20.0611 (15)0.1040 (18)0.0528 (13)0.0172 (13)0.0030 (12)0.0067 (12)
O30.0746 (16)0.0604 (13)0.0752 (15)0.0084 (11)0.0224 (12)0.0076 (12)
N10.0487 (14)0.0486 (13)0.0488 (13)0.0027 (11)0.0070 (11)0.0074 (11)
N20.0509 (15)0.0712 (16)0.0511 (15)0.0036 (12)0.0063 (12)0.0106 (12)
C10.0565 (18)0.0570 (17)0.0444 (16)0.0068 (14)0.0072 (14)0.0064 (13)
C20.0571 (19)0.074 (2)0.0464 (17)0.0115 (16)0.0094 (15)0.0041 (15)
C30.088 (3)0.092 (3)0.0493 (19)0.023 (2)0.0087 (18)0.0014 (19)
C40.102 (3)0.125 (4)0.054 (2)0.020 (3)0.002 (2)0.019 (2)
C50.089 (3)0.119 (4)0.072 (3)0.011 (3)0.001 (2)0.041 (3)
C60.074 (2)0.081 (2)0.075 (3)0.0063 (19)0.003 (2)0.023 (2)
C70.0512 (18)0.072 (2)0.0546 (18)0.0052 (15)0.0040 (15)0.0145 (16)
C80.0501 (18)0.0527 (16)0.0602 (19)0.0050 (14)0.0056 (15)0.0017 (14)
C90.058 (2)0.0506 (17)0.084 (3)0.0041 (14)0.0056 (18)0.0002 (17)
C100.063 (2)0.0535 (18)0.087 (3)0.0015 (15)0.0115 (19)0.0172 (18)
C110.0567 (19)0.0575 (18)0.064 (2)0.0049 (15)0.0082 (16)0.0153 (16)
C120.061 (2)0.075 (2)0.061 (2)0.0131 (17)0.0134 (17)0.0249 (17)
C130.084 (3)0.097 (3)0.085 (3)0.009 (2)0.028 (2)0.034 (2)
C140.096 (4)0.138 (4)0.092 (3)0.022 (3)0.044 (3)0.053 (3)
C150.088 (3)0.160 (5)0.069 (3)0.031 (3)0.028 (3)0.035 (3)
C160.073 (3)0.130 (3)0.060 (2)0.021 (2)0.0050 (19)0.014 (2)
C170.059 (2)0.088 (2)0.0541 (19)0.0130 (19)0.0061 (16)0.0145 (18)
C180.068 (2)0.099 (3)0.0489 (19)0.0030 (19)0.0044 (16)0.0071 (18)
C190.0463 (17)0.0498 (16)0.0552 (18)0.0016 (13)0.0042 (14)0.0070 (14)
C200.0494 (17)0.0472 (15)0.0502 (17)0.0017 (13)0.0074 (13)0.0045 (13)
C210.058 (2)0.0492 (16)0.0444 (16)0.0078 (14)0.0065 (15)0.0014 (13)
C220.0527 (18)0.0602 (17)0.0476 (16)0.0029 (14)0.0087 (14)0.0040 (14)
C230.098 (3)0.070 (2)0.067 (2)0.006 (2)0.024 (2)0.0056 (18)
C240.132 (4)0.099 (3)0.093 (3)0.006 (3)0.059 (3)0.014 (2)
C250.104 (3)0.117 (3)0.070 (2)0.009 (3)0.039 (2)0.012 (2)
C260.094 (3)0.080 (2)0.092 (3)0.016 (2)0.030 (2)0.017 (2)
C270.091 (3)0.060 (2)0.079 (2)0.0059 (18)0.031 (2)0.0018 (17)
C280.0542 (18)0.0525 (16)0.0506 (17)0.0058 (14)0.0136 (14)0.0058 (14)
C290.0525 (19)0.069 (2)0.066 (2)0.0002 (15)0.0118 (16)0.0002 (16)
C300.056 (2)0.099 (3)0.084 (3)0.0011 (19)0.0132 (19)0.001 (2)
C310.059 (3)0.141 (4)0.134 (4)0.021 (3)0.007 (3)0.000 (3)
Geometric parameters (Å, º) top
Cl1—C91.713 (3)C14—C151.373 (7)
O1—C191.373 (3)C14—H140.9300
O1—C181.448 (4)C15—C161.370 (6)
O2—C211.211 (4)C15—H150.9300
O3—C281.225 (3)C16—C171.397 (5)
N1—C281.374 (4)C16—H160.9300
N1—C201.434 (3)C17—C181.492 (5)
N1—C11.460 (4)C18—H18A0.9700
N2—C211.332 (4)C18—H18B0.9700
N2—C221.465 (3)C19—C201.387 (4)
N2—H20.8600C22—C231.506 (4)
C1—C21.513 (4)C22—C271.510 (4)
C1—C211.535 (4)C22—H220.9800
C1—H10.9800C23—C241.525 (5)
C2—C31.382 (4)C23—H23A0.9700
C2—C71.407 (4)C23—H23B0.9700
C3—C41.381 (5)C24—C251.498 (6)
C3—H30.9300C24—H24A0.9700
C4—C51.363 (6)C24—H24B0.9700
C4—H40.9300C25—C261.510 (5)
C5—C61.378 (6)C25—H25A0.9700
C5—H50.9300C25—H25B0.9700
C6—C71.396 (4)C26—C271.530 (5)
C6—H60.9300C26—H26A0.9700
C7—C81.478 (4)C26—H26B0.9700
C8—C201.401 (4)C27—H27A0.9700
C8—C91.413 (4)C27—H27B0.9700
C9—C101.364 (5)C28—C291.473 (4)
C10—C111.399 (5)C29—C301.315 (4)
C10—H100.9300C29—H290.9300
C11—C191.397 (4)C30—C311.488 (6)
C11—C121.474 (5)C30—H300.9300
C12—C171.384 (5)C31—H31A0.9600
C12—C131.398 (5)C31—H31B0.9600
C13—C141.392 (6)C31—H31C0.9600
C13—H130.9300
C19—O1—C18114.5 (2)O1—C18—H18B109.2
C28—N1—C20124.6 (2)C17—C18—H18B109.2
C28—N1—C1119.7 (2)H18A—C18—H18B107.9
C20—N1—C1112.5 (2)O1—C19—C20117.1 (2)
C21—N2—C22123.9 (3)O1—C19—C11121.6 (3)
C21—N2—H2118.1C20—C19—C11121.0 (3)
C22—N2—H2118.1C19—C20—C8122.5 (3)
N1—C1—C2108.3 (2)C19—C20—N1119.3 (3)
N1—C1—C21112.6 (2)C8—C20—N1117.6 (3)
C2—C1—C21112.0 (3)O2—C21—N2124.0 (3)
N1—C1—H1107.9O2—C21—C1119.2 (3)
C2—C1—H1107.9N2—C21—C1116.8 (3)
C21—C1—H1107.9N2—C22—C23110.6 (3)
C3—C2—C7120.1 (3)N2—C22—C27112.2 (3)
C3—C2—C1121.7 (3)C23—C22—C27110.2 (3)
C7—C2—C1118.2 (3)N2—C22—H22107.9
C4—C3—C2120.5 (4)C23—C22—H22107.9
C4—C3—H3119.8C27—C22—H22107.9
C2—C3—H3119.8C22—C23—C24110.6 (3)
C5—C4—C3119.9 (4)C22—C23—H23A109.5
C5—C4—H4120.1C24—C23—H23A109.5
C3—C4—H4120.1C22—C23—H23B109.5
C4—C5—C6120.7 (4)C24—C23—H23B109.5
C4—C5—H5119.7H23A—C23—H23B108.1
C6—C5—H5119.7C25—C24—C23111.2 (4)
C5—C6—C7120.8 (4)C25—C24—H24A109.4
C5—C6—H6119.6C23—C24—H24A109.4
C7—C6—H6119.6C25—C24—H24B109.4
C6—C7—C2117.9 (3)C23—C24—H24B109.4
C6—C7—C8124.8 (3)H24A—C24—H24B108.0
C2—C7—C8117.3 (3)C24—C25—C26111.2 (3)
C20—C8—C9115.6 (3)C24—C25—H25A109.4
C20—C8—C7117.7 (3)C26—C25—H25A109.4
C9—C8—C7126.5 (3)C24—C25—H25B109.4
C10—C9—C8121.8 (3)C26—C25—H25B109.4
C10—C9—Cl1115.7 (3)H25A—C25—H25B108.0
C8—C9—Cl1122.4 (3)C25—C26—C27111.5 (3)
C9—C10—C11122.5 (3)C25—C26—H26A109.3
C9—C10—H10118.8C27—C26—H26A109.3
C11—C10—H10118.8C25—C26—H26B109.3
C19—C11—C10116.5 (3)C27—C26—H26B109.3
C19—C11—C12118.2 (3)H26A—C26—H26B108.0
C10—C11—C12124.9 (3)C22—C27—C26110.8 (3)
C17—C12—C13119.6 (3)C22—C27—H27A109.5
C17—C12—C11117.6 (3)C26—C27—H27A109.5
C13—C12—C11122.8 (4)C22—C27—H27B109.5
C14—C13—C12119.0 (5)C26—C27—H27B109.5
C14—C13—H13120.5H27A—C27—H27B108.1
C12—C13—H13120.5O3—C28—N1119.9 (3)
C15—C14—C13121.1 (4)O3—C28—C29122.4 (3)
C15—C14—H14119.4N1—C28—C29117.6 (3)
C13—C14—H14119.4C30—C29—C28121.8 (3)
C16—C15—C14120.0 (4)C30—C29—H29119.1
C16—C15—H15120.0C28—C29—H29119.1
C14—C15—H15120.0C29—C30—C31125.7 (4)
C15—C16—C17120.1 (5)C29—C30—H30117.1
C15—C16—H16120.0C31—C30—H30117.1
C17—C16—H16120.0C30—C31—H31A109.5
C12—C17—C16120.2 (3)C30—C31—H31B109.5
C12—C17—C18118.6 (3)H31A—C31—H31B109.5
C16—C17—C18121.1 (4)C30—C31—H31C109.5
O1—C18—C17111.9 (3)H31A—C31—H31C109.5
O1—C18—H18A109.2H31B—C31—H31C109.5
C17—C18—H18A109.2
C28—N1—C1—C2101.4 (3)C15—C16—C17—C18175.2 (4)
C20—N1—C1—C259.1 (3)C19—O1—C18—C1748.5 (4)
C28—N1—C1—C21134.2 (3)C12—C17—C18—O136.9 (4)
C20—N1—C1—C2165.2 (3)C16—C17—C18—O1146.4 (3)
N1—C1—C2—C3143.1 (3)C18—O1—C19—C20155.8 (3)
C21—C1—C2—C392.2 (4)C18—O1—C19—C1130.0 (4)
N1—C1—C2—C734.5 (4)C10—C11—C19—O1176.0 (3)
C21—C1—C2—C790.3 (3)C12—C11—C19—O12.7 (4)
C7—C2—C3—C41.4 (5)C10—C11—C19—C202.1 (4)
C1—C2—C3—C4176.1 (3)C12—C11—C19—C20171.2 (3)
C2—C3—C4—C52.2 (6)O1—C19—C20—C8174.1 (3)
C3—C4—C5—C62.9 (7)C11—C19—C20—C80.1 (4)
C4—C5—C6—C70.0 (6)O1—C19—C20—N13.0 (4)
C5—C6—C7—C23.5 (5)C11—C19—C20—N1171.1 (3)
C5—C6—C7—C8176.0 (3)C9—C8—C20—C192.0 (4)
C3—C2—C7—C64.2 (5)C7—C8—C20—C19173.2 (3)
C1—C2—C7—C6173.4 (3)C9—C8—C20—N1173.3 (3)
C3—C2—C7—C8175.3 (3)C7—C8—C20—N12.0 (4)
C1—C2—C7—C87.1 (4)C28—N1—C20—C1971.5 (4)
C6—C7—C8—C20153.5 (3)C1—N1—C20—C19129.1 (3)
C2—C7—C8—C2027.0 (4)C28—N1—C20—C8117.0 (3)
C6—C7—C8—C931.8 (5)C1—N1—C20—C842.4 (3)
C2—C7—C8—C9147.6 (3)C22—N2—C21—O210.9 (5)
C20—C8—C9—C101.9 (5)C22—N2—C21—C1171.1 (3)
C7—C8—C9—C10172.9 (3)N1—C1—C21—O2156.4 (3)
C20—C8—C9—Cl1178.5 (2)C2—C1—C21—O234.0 (4)
C7—C8—C9—Cl13.8 (5)N1—C1—C21—N225.5 (4)
C8—C9—C10—C110.2 (5)C2—C1—C21—N2147.8 (3)
Cl1—C9—C10—C11176.7 (3)C21—N2—C22—C23120.5 (3)
C9—C10—C11—C192.2 (5)C21—N2—C22—C27116.1 (3)
C9—C10—C11—C12170.6 (3)N2—C22—C23—C24177.2 (3)
C19—C11—C12—C1715.1 (4)C27—C22—C23—C2458.2 (4)
C10—C11—C12—C17172.2 (3)C22—C23—C24—C2557.6 (5)
C19—C11—C12—C13162.3 (3)C23—C24—C25—C2655.3 (6)
C10—C11—C12—C1310.3 (5)C24—C25—C26—C2754.3 (5)
C17—C12—C13—C141.6 (6)N2—C22—C27—C26179.2 (3)
C11—C12—C13—C14178.9 (3)C23—C22—C27—C2657.0 (4)
C12—C13—C14—C151.5 (7)C25—C26—C27—C2255.2 (5)
C13—C14—C15—C160.1 (7)C20—N1—C28—O3178.4 (3)
C14—C15—C16—C171.6 (7)C1—N1—C28—O320.4 (4)
C13—C12—C17—C160.1 (5)C20—N1—C28—C291.5 (4)
C11—C12—C17—C16177.6 (3)C1—N1—C28—C29156.5 (3)
C13—C12—C17—C18176.9 (3)O3—C28—C29—C309.2 (5)
C11—C12—C17—C185.6 (5)N1—C28—C29—C30167.6 (3)
C15—C16—C17—C121.5 (6)C28—C29—C30—C31174.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.862.412.758 (3)105
C23—H23B···Cl1i0.972.743.473 (4)133
C14—H14···O3ii0.932.583.391 (5)146
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC31H29ClN2O3
Mr513.01
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)13.2616 (8), 13.4515 (7), 14.8338 (9)
β (°) 95.067 (2)
V3)2635.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.35 × 0.32 × 0.20
Data collection
DiffractometerRigaku RAXIS-RAPID/ZJUG
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.930, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
21259, 4884, 2797
Rint0.048
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.197, 1.00
No. of reflections4884
No. of parameters336
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.44

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku Americas and Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.862.412.758 (3)105
C23—H23B···Cl1i0.972.743.473 (4)133
C14—H14···O3ii0.932.583.391 (5)146
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+3/2.
 

Acknowledgements

This work was supported by a research grant from the Natural Science Foundation of China (grant No. 20672092). The authors thank Professor Wei-Min Dai for his valuable suggestion. Mr Jianming Gu of the X-ray crystallography facility of Zhejiang University is acknowledged for his assistance with the crystal structural analysis.

References

First citationDai, W.-M., Shi, J. & Wu, J. (2008). Synlett, pp. 2716–2720.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku Americas and Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J., Nie, L., Luo, J. & Dai, W.-M. (2007). Synlett, pp. 2728–2732.  Google Scholar
First citationXing, X., Wu, J., Feng, G. & Dai, W.-M. (2006). Tetrahedron, 62, 6774–6781.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds