organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 2-(1H-benzimidazol-1-yl)acetate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 22 January 2012; accepted 23 January 2012; online 4 February 2012)

In the title compound, C13H16N2O2, the planes of the benzimidazole ring system and the acetate O—C=O fragment make a dihedral angle of 84.5 (3)°. In the crystal, mol­ecules are connected through C—H⋯N hydrogen bonds to form infinite chains in the [-110] direction.

Related literature

For related structures, see: Al-Mohammed et al. (2012[Al-Mohammed, N. N., Alias, Y., Abdullah, Z. & Khaledi, H. (2012). Acta Cryst. E68, o445.]); Fu et al. (2009[Fu, X. & Xu, G. (2009). Acta Cryst. E65, o1535.]); Xu et al. (2008[Xu, G.-H. & Wang, W. (2008). Acta Cryst. E64, o1811.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16N2O2

  • Mr = 232.28

  • Monoclinic, C c

  • a = 5.4204 (2) Å

  • b = 11.3319 (4) Å

  • c = 19.8771 (7) Å

  • β = 96.609 (3)°

  • V = 1212.81 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.19 × 0.13 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.984, Tmax = 0.997

  • 3829 measured reflections

  • 1244 independent reflections

  • 1091 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.076

  • S = 1.04

  • 1244 reflections

  • 157 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N2i 0.95 2.48 3.406 (3) 165
Symmetry code: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound is the condensation product of the reaction of benzimidazole with tert-butyl chloroacetate. The benzimidazole ring make a dihedral angle of 84.5 (3)° with the plane passing through the acetate group, C9/O1/O2. This value is comparable to those calculated for some similar structures (Al-Mohammed et al., 2012; Fu et al., 2009; Xu et al., 2008). The crystal packing structure contains chains in [-1 1 0] direction formed by C3—H3···N2 hydrogen bonds between the adjacent molecules. Intramolecular C—H···O hydrogen bonding also occurs.

Related literature top

For related structures, see: Al-Mohammed et al. (2012); Fu et al. (2009); Xu et al. (2008).

Experimental top

Sodium hydroxide (0.5 g, 125 mmol) was added to a solution of benzimidazole (1.48 g, 125 mmol) in DMF (20 ml), followed by addition of tert-butyl chloroacetate (1.82 ml, 127 mmol). The mixture was refluxed for 1 h. The reaction mass was quenched with cold water (50 ml) and extracted by dichloromethane (3 x 25 ml). The combined organic layers was washed with cold water and brine and dried over anhydrous sodium sulfate. The solvent was evaporated under vacuum and the formed amorphous solid was stirred in n-hexane (30 ml) at room temperature. The solid was filtered, washed with hexane (2 x 20 ml), and recrystallized from ethyl acetate to afford colorless crystals of the title compound (melting point = 367–369 K).

Refinement top

Hydrogen atoms were placed at calculated positions and refined in riding mode with C—H distances of 0.95 (aromatic), 0.98 (methyl) and 0.99 (methylene) Å, and Uiso(H) set to 1.2 (1.5 for methyl) Ueq(carrier atoms). In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
tert-Butyl 2-(1H-benzimidazol-1-yl)acetate top
Crystal data top
C13H16N2O2F(000) = 496
Mr = 232.28Dx = 1.272 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1057 reflections
a = 5.4204 (2) Åθ = 3.6–26.4°
b = 11.3319 (4) ŵ = 0.09 mm1
c = 19.8771 (7) ÅT = 100 K
β = 96.609 (3)°Tablet, colourless
V = 1212.81 (8) Å30.19 × 0.13 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1244 independent reflections
Radiation source: fine-focus sealed tube1091 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 26.5°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.984, Tmax = 0.997k = 1414
3829 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.180P]
where P = (Fo2 + 2Fc2)/3
1244 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.17 e Å3
2 restraintsΔρmin = 0.20 e Å3
Crystal data top
C13H16N2O2V = 1212.81 (8) Å3
Mr = 232.28Z = 4
Monoclinic, CcMo Kα radiation
a = 5.4204 (2) ŵ = 0.09 mm1
b = 11.3319 (4) ÅT = 100 K
c = 19.8771 (7) Å0.19 × 0.13 × 0.04 mm
β = 96.609 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1244 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1091 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.997Rint = 0.036
3829 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
1244 reflectionsΔρmin = 0.20 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0330 (4)0.41863 (16)0.04890 (10)0.0302 (5)
O20.2082 (3)0.59850 (13)0.07085 (9)0.0174 (4)
N10.3020 (3)0.38525 (17)0.05825 (10)0.0193 (5)
N20.3571 (4)0.19170 (18)0.07541 (12)0.0243 (5)
C10.4419 (5)0.2870 (2)0.04255 (14)0.0227 (6)
H10.58710.28720.01080.027*
C20.1057 (4)0.3507 (2)0.10483 (12)0.0183 (5)
C30.0961 (4)0.4127 (2)0.13641 (13)0.0222 (6)
H30.11950.49430.12820.027*
C40.2609 (5)0.3489 (2)0.18058 (14)0.0250 (6)
H40.40140.38790.20350.030*
C50.2268 (5)0.2281 (2)0.19258 (13)0.0228 (6)
H50.34460.18720.22320.027*
C60.0250 (5)0.1677 (2)0.16060 (14)0.0225 (6)
H60.00190.08620.16900.027*
C70.1446 (4)0.2301 (2)0.11554 (13)0.0192 (5)
C80.3234 (4)0.4973 (2)0.02268 (13)0.0183 (5)
H8A0.26710.56170.05440.022*
H8B0.49970.51190.00560.022*
C90.1684 (4)0.4977 (2)0.03638 (13)0.0187 (5)
C100.0928 (4)0.6199 (2)0.13424 (13)0.0200 (5)
C110.1856 (5)0.5282 (2)0.18666 (14)0.0264 (6)
H11A0.11990.45050.17220.040*
H11B0.12930.54870.23030.040*
H11C0.36750.52600.19140.040*
C120.1849 (5)0.7429 (2)0.15475 (15)0.0256 (6)
H12A0.36680.74320.16120.038*
H12B0.12140.76550.19710.038*
H12C0.12570.79920.11910.038*
C130.1878 (5)0.6198 (2)0.11925 (15)0.0271 (6)
H13A0.23800.67430.08190.041*
H13B0.26160.64510.15960.041*
H13C0.24540.54000.10650.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0402 (11)0.0241 (10)0.0279 (11)0.0125 (8)0.0109 (9)0.0047 (9)
O20.0196 (9)0.0158 (8)0.0172 (9)0.0005 (7)0.0035 (7)0.0026 (7)
N10.0221 (11)0.0165 (10)0.0191 (12)0.0029 (8)0.0013 (9)0.0011 (9)
N20.0288 (12)0.0191 (11)0.0239 (12)0.0041 (9)0.0013 (10)0.0012 (10)
C10.0253 (14)0.0225 (13)0.0196 (13)0.0059 (11)0.0001 (11)0.0002 (11)
C20.0214 (13)0.0185 (12)0.0153 (14)0.0003 (10)0.0037 (10)0.0018 (10)
C30.0249 (14)0.0187 (12)0.0224 (14)0.0045 (10)0.0001 (11)0.0023 (11)
C40.0273 (14)0.0250 (14)0.0221 (15)0.0067 (11)0.0008 (12)0.0008 (11)
C50.0266 (14)0.0251 (14)0.0163 (13)0.0001 (11)0.0001 (11)0.0051 (11)
C60.0317 (15)0.0164 (12)0.0197 (14)0.0010 (10)0.0045 (11)0.0024 (10)
C70.0242 (14)0.0186 (12)0.0148 (13)0.0031 (10)0.0022 (10)0.0004 (10)
C80.0205 (12)0.0176 (12)0.0167 (13)0.0013 (10)0.0019 (10)0.0030 (10)
C90.0210 (12)0.0180 (12)0.0163 (13)0.0017 (10)0.0011 (10)0.0007 (10)
C100.0188 (13)0.0264 (13)0.0152 (13)0.0015 (10)0.0036 (10)0.0033 (11)
C110.0268 (14)0.0341 (14)0.0180 (13)0.0007 (12)0.0016 (11)0.0008 (12)
C120.0255 (13)0.0250 (12)0.0273 (15)0.0010 (11)0.0071 (11)0.0092 (12)
C130.0167 (13)0.0394 (15)0.0255 (15)0.0004 (11)0.0031 (11)0.0029 (13)
Geometric parameters (Å, º) top
O1—C91.203 (3)C6—C71.399 (4)
O2—C91.336 (3)C6—H60.9500
O2—C101.490 (3)C8—C91.520 (3)
N1—C11.363 (3)C8—H8A0.9900
N1—C21.384 (3)C8—H8B0.9900
N1—C81.451 (3)C10—C111.516 (4)
N2—C11.317 (3)C10—C131.516 (3)
N2—C71.394 (3)C10—C121.520 (4)
C1—H10.9500C11—H11A0.9800
C2—C31.388 (3)C11—H11B0.9800
C2—C71.402 (3)C11—H11C0.9800
C3—C41.383 (4)C12—H12A0.9800
C3—H30.9500C12—H12B0.9800
C4—C51.406 (4)C12—H12C0.9800
C4—H40.9500C13—H13A0.9800
C5—C61.382 (4)C13—H13B0.9800
C5—H50.9500C13—H13C0.9800
C9—O2—C10120.91 (18)C9—C8—H8B109.4
C1—N1—C2106.6 (2)H8A—C8—H8B108.0
C1—N1—C8126.3 (2)O1—C9—O2126.7 (2)
C2—N1—C8125.84 (19)O1—C9—C8124.2 (2)
C1—N2—C7104.24 (19)O2—C9—C8109.14 (18)
N2—C1—N1113.8 (2)O2—C10—C11109.36 (19)
N2—C1—H1123.1O2—C10—C13110.1 (2)
N1—C1—H1123.1C11—C10—C13112.4 (2)
N1—C2—C3131.6 (2)O2—C10—C12102.64 (19)
N1—C2—C7105.1 (2)C11—C10—C12111.8 (2)
C3—C2—C7123.3 (2)C13—C10—C12110.1 (2)
C4—C3—C2116.1 (2)C10—C11—H11A109.5
C4—C3—H3121.9C10—C11—H11B109.5
C2—C3—H3121.9H11A—C11—H11B109.5
C3—C4—C5122.0 (2)C10—C11—H11C109.5
C3—C4—H4119.0H11A—C11—H11C109.5
C5—C4—H4119.0H11B—C11—H11C109.5
C6—C5—C4121.1 (2)C10—C12—H12A109.5
C6—C5—H5119.5C10—C12—H12B109.5
C4—C5—H5119.5H12A—C12—H12B109.5
C5—C6—C7118.2 (2)C10—C12—H12C109.5
C5—C6—H6120.9H12A—C12—H12C109.5
C7—C6—H6120.9H12B—C12—H12C109.5
N2—C7—C6130.4 (2)C10—C13—H13A109.5
N2—C7—C2110.3 (2)C10—C13—H13B109.5
C6—C7—C2119.4 (2)H13A—C13—H13B109.5
N1—C8—C9111.03 (18)C10—C13—H13C109.5
N1—C8—H8A109.4H13A—C13—H13C109.5
C9—C8—H8A109.4H13B—C13—H13C109.5
N1—C8—H8B109.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O10.982.473.033 (3)116
C13—H13C···O10.982.422.995 (3)117
C3—H3···N2i0.952.483.406 (3)165
Symmetry code: (i) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC13H16N2O2
Mr232.28
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)5.4204 (2), 11.3319 (4), 19.8771 (7)
β (°) 96.609 (3)
V3)1212.81 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.19 × 0.13 × 0.04
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.984, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
3829, 1244, 1091
Rint0.036
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.076, 1.04
No. of reflections1244
No. of parameters157
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N2i0.952.483.406 (3)164.8
Symmetry code: (i) x1/2, y+1/2, z.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP001/2010 A).

References

First citationAl-Mohammed, N. N., Alias, Y., Abdullah, Z. & Khaledi, H. (2012). Acta Cryst. E68, o445.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFu, X. & Xu, G. (2009). Acta Cryst. E65, o1535.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, G.-H. & Wang, W. (2008). Acta Cryst. E64, o1811.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds