organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-6-Methyl-3-(2-methyl­benzyl­­idene)­chroman-2-one

aDepartment of Physics, Sri Balaji Chokkalingam Engineering College, Arni, Thiruvannamalai 632 317, India, bDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, and cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 23 January 2012; accepted 8 February 2012; online 24 February 2012)

In the title compound, C18H16O2, the heterocyclic ring of the chroman-2-one system adopts a slightly distorted screw-boat conformation. The dihedral angle between the least-squares planes of the coumarin ring system and the benzene ring is 67.5 (1)°. The crystal packing features C—H⋯O hydrogen bonds, which link the mol­ecules into centrosymmetric R22(8) dimers, and C—H⋯π inter­actions.

Related literature

For the biological activity of coumarins, see: Sharma et al. (2005[Sharma, S. D., Rajor, H. K., Chopra, S. & Sharma, R. K. (2005). Biometals, 18, 143-154.]); Iqbal et al. (2009[Iqbal, P. F., Bhat, A. R. & Azam, A. (2009). Eur. J. Med. Chem. 44, 2252-2259.]); Siddiqui et al. (2009[Siddiqui, N., Arshad, M. F. & Khan, S. A. (2009). Acta Pol. Pharm. 66, 161-167.]); Vyas et al. (2009[Vyas, K. B., Nimavat, K. S., Jani, G. R. & Hathi, M. V. (2009). Orbital, 1, 183-192.]); Rollinger et al. (2004[Rollinger, J. M., Hornick, A., Langer, T., Stuppner, H. & Prast, H. (2004). J. Med. Chem. 47, 6248-6254.]); Brühlmann et al. (2001[Brühlmann, C., Ooms, F., Carrupt, P.-A., Testa, B., Catto, M., Leonetti, F., Altomare, C. & Carotti, A. (2001). J. Med. Chem. 44, 3195-3198.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For closely related structures, see: Choi & Kim (2010[Choi, K.-S. & Kim, S.-G. (2010). Acta Cryst. E66, o3104.]); Peng et al. (2012[Peng, Z.-Y., Liu, X.-Y., Yang, Y.-L., Xiang, K.-S. & Xiao, Z.-P. (2012). Acta Cryst. E68, o250.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16O2

  • Mr = 264.31

  • Monoclinic, P 21 /c

  • a = 9.1331 (2) Å

  • b = 17.8838 (5) Å

  • c = 9.6443 (3) Å

  • β = 118.056 (1)°

  • V = 1390.14 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.21 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.983, Tmax = 0.987

  • 17986 measured reflections

  • 4246 independent reflections

  • 2882 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.152

  • S = 1.00

  • 4246 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.93 2.53 3.437 (2) 167
C14—H14⋯Cgii 0.93 2.88 3.611 (2) 137
C18—H18ACgiii 0.96 2.74 3.490 (2) 136
Symmetry codes: (i) -x, -y+1, -z+2; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarins are very well known for their biological activity, such as antioxidant (Sharma et al., 2005), antiamoebic (Iqbal et al., 2009), anticonvulsant (Siddiqui et al., 2009), antimicrobial (Vyas et al., 2009) and inhibitions of acetylcholinesterase and monoamine oxidase (Rollinger et al., 2004; Brühlmann et al., 2001). In view of this importance, the crystal structure of the title compound has been carried out and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of of the title compound, with the atom numbering scheme. The pyranone ring adopts a distorted screw-boat conformation as indicated from the puckering parameters (Cremer & Pople, 1975): Q = 0.3229 (15) Å, θ = 72.1 (3)° and ϕ = 154.8 (3)°. The dihedral angle between the least-squares planes of the coumarine ring system (O1/C8–C16) and the benzene ring (C1–C6) is 67.5 (1)°. The geometric parameters of the title molecule agree well with those reported for similar structures (Choi & Kim, 2010; Peng et al., 2012).

The crystal packing (Fig. 2) is stabilized by intermolecular C—H···O hydrogen bonds. The molecules at x, y, z and -x, 1-y, 2-z are linked by C11—H11···O1 hydrogen bonds through cyclic centrosymmetric R22(8) motifs (See Table 1; first entry). The crystal packing (Fig. 3) is further stabilized by C—H···π interactions (See Table 1; second and third entry, Cg is the centroid of the C1–C6 benzene ring).

Related literature top

For the biological activity of coumarins, see: Sharma et al. (2005); Iqbal et al. (2009); Siddiqui et al. (2009); Vyas et al. (2009); Rollinger et al. (2004); Brühlmann et al. (2001). For ring-puckering parameters, see: Cremer & Pople (1975). For closely related structures, see: Choi & Kim (2010); Peng et al. (2012).

Experimental top

A solution of methyl 2-[hydroxy(2-methylphenyl)methyl]prop-2-enoate (0.206 g, 1 mmol) and p-cresol (0.108 g, 1 mmol) in CH2Cl2 solvent was allowed to cool at 0oC. To this solution, concentrated H2SO4 (0.98 g, 1 mmol) was added, and then stirred well at room temperature. After the completion of the reaction, as indicated by TLC, the reaction mixture was quenched with 1 M sodium bicarbonate and then extracted with CH2Cl2. The combined organic layers were washed with brine (2 X 10 ml) and dried over anhydrous sodium sulfate. The organic layer was evaporated and the residue was purified by column chromatography on silicagel (100–200) mesh, using ethylacetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colourless solid (0.169 g, 64.5% yield, m.p. 407–409K). Recrystallization was carried out using ethyl acetate as solvent.

Refinement top

All the H atoms were positioned geometrically, with C–H = 0.93–0.97 Å and constrained to ride on their parent atom, with Uiso(H) =1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing C—H···O intermolecular hydrogen bonds (dotted lines) generating R22(8) centrosymmetric dimer. [Symmetry code: (i) -x, 1-y, 2-z].
[Figure 3] Fig. 3. A view of the C-H···π interactions(dotted lines) in the crystal stucture of the title compound. H atoms not participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (ii) x, 3/2-y, 1/2+z; (iii) 1-x, 1-y, 1-z; (iv) x, 3/2-y, -1/2+z; (v) 1-x, -1/2-y, 3/2-z].
(E)-6-Methyl-3-(2-methylbenzylidene)chroman-2-one top
Crystal data top
C18H16O2F(000) = 560
Mr = 264.31Dx = 1.263 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4254 reflections
a = 9.1331 (2) Åθ = 2.3–30.6°
b = 17.8838 (5) ŵ = 0.08 mm1
c = 9.6443 (3) ÅT = 293 K
β = 118.056 (1)°Block, colourless
V = 1390.14 (7) Å30.21 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4246 independent reflections
Radiation source: fine-focus sealed tube2882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.0 pixels mm-1θmax = 30.6°, θmin = 2.3°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2524
Tmin = 0.983, Tmax = 0.987l = 1313
17986 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0777P)2 + 0.1937P]
where P = (Fo2 + 2Fc2)/3
4246 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C18H16O2V = 1390.14 (7) Å3
Mr = 264.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1331 (2) ŵ = 0.08 mm1
b = 17.8838 (5) ÅT = 293 K
c = 9.6443 (3) Å0.21 × 0.18 × 0.16 mm
β = 118.056 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4246 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2882 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.987Rint = 0.026
17986 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
4246 reflectionsΔρmin = 0.17 e Å3
183 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.53567 (17)0.64217 (8)0.67561 (18)0.0510 (3)
H10.57810.65200.78230.061*
C20.59366 (19)0.68218 (9)0.5898 (2)0.0591 (4)
H20.67410.71880.63810.071*
C30.53207 (19)0.66771 (9)0.4322 (2)0.0600 (4)
H30.56970.69500.37320.072*
C40.41464 (18)0.61275 (9)0.36193 (17)0.0556 (4)
H40.37490.60300.25550.067*
C50.35357 (16)0.57122 (7)0.44610 (15)0.0457 (3)
C60.41463 (15)0.58712 (7)0.60612 (15)0.0426 (3)
C70.35620 (16)0.54362 (7)0.69924 (15)0.0440 (3)
H70.34180.49260.67830.053*
C80.32126 (15)0.56882 (7)0.81078 (15)0.0426 (3)
C90.26659 (17)0.51217 (7)0.88834 (15)0.0470 (3)
C100.12384 (16)0.61012 (7)0.94804 (14)0.0428 (3)
C110.00149 (17)0.62388 (8)0.99062 (16)0.0507 (3)
H110.04610.58481.01900.061*
C120.04862 (17)0.69606 (8)0.99036 (17)0.0506 (3)
H120.13010.70561.02000.061*
C130.01926 (16)0.75525 (8)0.94698 (16)0.0468 (3)
C140.14082 (16)0.73905 (7)0.90318 (16)0.0456 (3)
H140.18660.77800.87240.055*
C150.19582 (15)0.66685 (7)0.90391 (14)0.0407 (3)
C160.33081 (18)0.64851 (7)0.86226 (17)0.0477 (3)
H16A0.32150.68130.77840.057*
H16B0.43790.65730.95280.057*
C170.0374 (2)0.83405 (9)0.9463 (2)0.0661 (4)
H17A0.12470.84610.84350.099*
H17B0.05400.86770.97330.099*
H17C0.07770.83881.02160.099*
C180.22451 (19)0.51259 (9)0.36486 (18)0.0593 (4)
H18A0.26320.46560.41770.089*
H18B0.20340.50800.25790.089*
H18C0.12400.52650.36680.089*
O10.17722 (13)0.53607 (5)0.95982 (12)0.0540 (3)
O20.29341 (16)0.44612 (6)0.89344 (14)0.0657 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0488 (7)0.0557 (8)0.0530 (8)0.0030 (6)0.0276 (6)0.0087 (6)
C20.0545 (8)0.0572 (9)0.0757 (10)0.0044 (6)0.0391 (8)0.0037 (7)
C30.0585 (8)0.0652 (10)0.0695 (10)0.0134 (7)0.0409 (8)0.0153 (8)
C40.0566 (8)0.0666 (9)0.0459 (7)0.0176 (7)0.0260 (7)0.0064 (7)
C50.0444 (6)0.0468 (7)0.0454 (7)0.0118 (5)0.0206 (6)0.0015 (5)
C60.0424 (6)0.0421 (6)0.0455 (7)0.0048 (5)0.0225 (5)0.0027 (5)
C70.0457 (6)0.0388 (6)0.0448 (7)0.0012 (5)0.0190 (5)0.0038 (5)
C80.0449 (6)0.0395 (6)0.0417 (6)0.0049 (5)0.0189 (5)0.0025 (5)
C90.0544 (7)0.0410 (7)0.0426 (7)0.0061 (5)0.0204 (6)0.0018 (5)
C100.0501 (7)0.0405 (7)0.0382 (6)0.0091 (5)0.0211 (5)0.0002 (5)
C110.0533 (7)0.0544 (8)0.0502 (7)0.0131 (6)0.0290 (6)0.0035 (6)
C120.0442 (7)0.0598 (8)0.0527 (8)0.0078 (6)0.0268 (6)0.0023 (6)
C130.0427 (6)0.0479 (7)0.0484 (7)0.0060 (5)0.0202 (6)0.0031 (6)
C140.0494 (7)0.0411 (7)0.0506 (7)0.0103 (5)0.0271 (6)0.0034 (5)
C150.0459 (6)0.0403 (6)0.0389 (6)0.0108 (5)0.0224 (5)0.0048 (5)
C160.0566 (7)0.0412 (7)0.0552 (8)0.0116 (5)0.0344 (6)0.0090 (5)
C170.0584 (9)0.0547 (9)0.0922 (13)0.0011 (7)0.0413 (9)0.0017 (8)
C180.0586 (8)0.0602 (9)0.0509 (8)0.0047 (7)0.0190 (7)0.0121 (7)
O10.0731 (7)0.0412 (5)0.0592 (6)0.0058 (4)0.0407 (5)0.0045 (4)
O20.0869 (8)0.0406 (6)0.0736 (7)0.0014 (5)0.0413 (7)0.0036 (5)
Geometric parameters (Å, º) top
C1—C21.375 (2)C10—C111.3819 (19)
C1—C61.3941 (18)C10—O11.3972 (16)
C1—H10.9300C11—C121.369 (2)
C2—C31.374 (2)C11—H110.9300
C2—H20.9300C12—C131.3871 (19)
C3—C41.375 (2)C12—H120.9300
C3—H30.9300C13—C141.3914 (18)
C4—C51.396 (2)C13—C171.500 (2)
C4—H40.9300C14—C151.3844 (18)
C5—C61.4014 (18)C14—H140.9300
C5—C181.495 (2)C15—C161.5016 (17)
C6—C71.4655 (18)C16—H16A0.9700
C7—C81.3360 (18)C16—H16B0.9700
C7—H70.9300C17—H17A0.9600
C8—C91.4788 (18)C17—H17B0.9600
C8—C161.4981 (17)C17—H17C0.9600
C9—O21.2025 (16)C18—H18A0.9600
C9—O11.3615 (17)C18—H18B0.9600
C10—C151.3804 (16)C18—H18C0.9600
C2—C1—C6121.40 (14)C10—C11—H11120.5
C2—C1—H1119.3C11—C12—C13121.58 (13)
C6—C1—H1119.3C11—C12—H12119.2
C3—C2—C1119.64 (15)C13—C12—H12119.2
C3—C2—H2120.2C12—C13—C14117.79 (13)
C1—C2—H2120.2C12—C13—C17121.07 (13)
C2—C3—C4119.89 (14)C14—C13—C17121.13 (12)
C2—C3—H3120.1C15—C14—C13122.15 (12)
C4—C3—H3120.1C15—C14—H14118.9
C3—C4—C5121.73 (14)C13—C14—H14118.9
C3—C4—H4119.1C10—C15—C14117.57 (12)
C5—C4—H4119.1C10—C15—C16119.47 (12)
C4—C5—C6118.14 (13)C14—C15—C16122.95 (11)
C4—C5—C18120.06 (13)C8—C16—C15111.67 (10)
C6—C5—C18121.79 (13)C8—C16—H16A109.3
C1—C6—C5119.18 (12)C15—C16—H16A109.3
C1—C6—C7121.02 (12)C8—C16—H16B109.3
C5—C6—C7119.74 (12)C15—C16—H16B109.3
C8—C7—C6127.45 (12)H16A—C16—H16B107.9
C8—C7—H7116.3C13—C17—H17A109.5
C6—C7—H7116.3C13—C17—H17B109.5
C7—C8—C9116.20 (12)H17A—C17—H17B109.5
C7—C8—C16126.09 (12)C13—C17—H17C109.5
C9—C8—C16117.71 (11)H17A—C17—H17C109.5
O2—C9—O1116.54 (12)H17B—C17—H17C109.5
O2—C9—C8125.65 (13)C5—C18—H18A109.5
O1—C9—C8117.80 (11)C5—C18—H18B109.5
C15—C10—C11121.98 (13)H18A—C18—H18B109.5
C15—C10—O1121.54 (12)C5—C18—H18C109.5
C11—C10—O1116.40 (11)H18A—C18—H18C109.5
C12—C11—C10118.93 (12)H18B—C18—H18C109.5
C12—C11—H11120.5C9—O1—C10121.72 (10)
C6—C1—C2—C30.3 (2)O1—C10—C11—C12176.16 (12)
C1—C2—C3—C40.8 (2)C10—C11—C12—C130.7 (2)
C2—C3—C4—C50.8 (2)C11—C12—C13—C140.1 (2)
C3—C4—C5—C60.3 (2)C11—C12—C13—C17179.65 (14)
C3—C4—C5—C18179.28 (13)C12—C13—C14—C150.8 (2)
C2—C1—C6—C51.4 (2)C17—C13—C14—C15179.56 (13)
C2—C1—C6—C7178.65 (13)C11—C10—C15—C140.14 (19)
C4—C5—C6—C11.40 (18)O1—C10—C15—C14176.75 (11)
C18—C5—C6—C1179.66 (12)C11—C10—C15—C16178.69 (12)
C4—C5—C6—C7178.68 (12)O1—C10—C15—C162.07 (19)
C18—C5—C6—C72.38 (18)C13—C14—C15—C100.9 (2)
C1—C6—C7—C842.3 (2)C13—C14—C15—C16177.90 (12)
C5—C6—C7—C8140.44 (14)C7—C8—C16—C15144.14 (13)
C6—C7—C8—C9179.09 (12)C9—C8—C16—C1535.18 (17)
C6—C7—C8—C161.6 (2)C10—C15—C16—C823.76 (17)
C7—C8—C9—O221.8 (2)C14—C15—C16—C8157.48 (12)
C16—C8—C9—O2158.81 (14)O2—C9—O1—C10173.36 (12)
C7—C8—C9—O1157.79 (12)C8—C9—O1—C106.27 (18)
C16—C8—C9—O121.60 (17)C15—C10—O1—C918.82 (19)
C15—C10—C11—C120.6 (2)C11—C10—O1—C9164.39 (12)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1-C6 ring
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.533.437 (2)167
C14—H14···Cgii0.932.883.611 (2)137
C18—H18A···Cgiii0.962.743.490 (2)136
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H16O2
Mr264.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.1331 (2), 17.8838 (5), 9.6443 (3)
β (°) 118.056 (1)
V3)1390.14 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.21 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.983, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
17986, 4246, 2882
Rint0.026
(sin θ/λ)max1)0.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.152, 1.00
No. of reflections4246
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.17

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1-C6 ring
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.533.437 (2)167
C14—H14···Cgii0.932.883.611 (2)137
C18—H18A···Cgiii0.962.743.490 (2)136
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: bhakthadoss@yahoo.com.

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBrühlmann, C., Ooms, F., Carrupt, P.-A., Testa, B., Catto, M., Leonetti, F., Altomare, C. & Carotti, A. (2001). J. Med. Chem. 44, 3195–3198.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, K.-S. & Kim, S.-G. (2010). Acta Cryst. E66, o3104.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIqbal, P. F., Bhat, A. R. & Azam, A. (2009). Eur. J. Med. Chem. 44, 2252–2259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeng, Z.-Y., Liu, X.-Y., Yang, Y.-L., Xiang, K.-S. & Xiao, Z.-P. (2012). Acta Cryst. E68, o250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRollinger, J. M., Hornick, A., Langer, T., Stuppner, H. & Prast, H. (2004). J. Med. Chem. 47, 6248–6254.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSharma, S. D., Rajor, H. K., Chopra, S. & Sharma, R. K. (2005). Biometals, 18, 143–154.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, N., Arshad, M. F. & Khan, S. A. (2009). Acta Pol. Pharm. 66, 161–167.  Web of Science PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVyas, K. B., Nimavat, K. S., Jani, G. R. & Hathi, M. V. (2009). Orbital, 1, 183–192.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds