organic compounds
10,16-Dichloro-6,20-dioxa-3,23-diazatetracyclo[23.3.1.07,12.014,19]nonacosa-1(29),7,9,11,14(19),15,17,25,27-nonaene-4,22-dione methanol monosolvate
aInstitute of Physics of the ASCR, Na Slovance 2, 182 21 Prague 8, Czech Republic, bInstitue of Macromolecular Chemistry, ASCR v.v.i., Heyrovského nám. 2, 16202 Prague 6, Czech Republic, and cFaculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Prague 6, Czech Republic
*Correspondence e-mail: pojarova@fzu.cz
In the title compound, C25H22Cl2N2O4·CH3OH, the macrocyclic molecule adopts a slightly distorted C2-symmetric conformation. The macrocyclic molecules are linked via N—H⋯O hydrogen bonds between the amide groups into chains extending along the [010] direction. The methanol molecules bridge these chains via N—H⋯O and O—H⋯O hydrogen bonds with the formation of a two-dimensional polymeric structure parallel to (001). The methanol molecule is disordered over two positions with the occupancy ratio of 9:1. The disorder of the solvent molecule is caused by weak intermolecular C—H⋯Cl hydrogen bonding.
Related literature
For application of macrocycles, see: Hayvali & Hayvali (2005); Kleinpeter et al. (1997); Jaiyu et al. (2007); Christensen et al. (1997); Alexander (1995). For the synthetic procedure, see: Ertul et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812007052/gk2457sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812007052/gk2457Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812007052/gk2457Isup3.cml
All chemicals used were purchased from Fluka and used without further purification. The title compound was synthesized according to the method reported by Ertul et al. (2009). Single crystals were prepared by slow evaporation of methanol solution.
Positions of disordered groups were found from electron density maps. The disordered fragments were then placed in appropriate positions, and all distances between neighbouring atoms were restrained to 1.406 (20) Å. Site occupancies were refined for the different parts with the common displacement parameters for corresponding atoms in various fragments. At the end of the σ=0.02 and then fixed. The isotropic displacement parameters of H atoms were calculated as 1.2Ueq of the parent atom.
site occupancies were fixed at the values 0.9 and 0.1 and hydrogen atoms were placed in calculated positions. All hydrogen atoms of the macrocyclic molecule were found from electron density difference maps. H atoms attached to C atoms were placed in calculated positions. N—H distances were initially restrained to 1.00 Å withData collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).C25H22Cl2N2O4·CH4O | Dx = 1.431 Mg m−3 |
Mr = 517.39 | Melting point = 316–318 K |
Orthorhombic, Pbca | Cu Kα radiation, λ = 1.5418 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 6415 reflections |
a = 21.9905 (3) Å | θ = 3.3–67.1° |
b = 8.1864 (1) Å | µ = 2.78 mm−1 |
c = 26.6760 (3) Å | T = 120 K |
V = 4802.29 (10) Å3 | Prism, colourless |
Z = 8 | 0.30 × 0.11 × 0.08 mm |
F(000) = 2160 |
Oxford Diffraction Xcalibur A Gemini Ultra diffractometer | 4099 independent reflections |
Radiation source: Enhance Ultra (Cu) X-ray Source | 3364 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.070 |
Detector resolution: 10.3784 pixels mm-1 | θmax = 65.1°, θmin = 3.3° |
ω scan | h = −22→25 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −9→9 |
Tmin = 0.826, Tmax = 1.000 | l = −29→31 |
42959 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0358P)2 + 2.1383P] where P = (Fo2 + 2Fc2)/3 |
4099 reflections | (Δ/σ)max = 0.002 |
326 parameters | Δρmax = 0.20 e Å−3 |
4 restraints | Δρmin = −0.21 e Å−3 |
C25H22Cl2N2O4·CH4O | V = 4802.29 (10) Å3 |
Mr = 517.39 | Z = 8 |
Orthorhombic, Pbca | Cu Kα radiation |
a = 21.9905 (3) Å | µ = 2.78 mm−1 |
b = 8.1864 (1) Å | T = 120 K |
c = 26.6760 (3) Å | 0.30 × 0.11 × 0.08 mm |
Oxford Diffraction Xcalibur A Gemini Ultra diffractometer | 4099 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 3364 reflections with I > 2σ(I) |
Tmin = 0.826, Tmax = 1.000 | Rint = 0.070 |
42959 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 4 restraints |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.20 e Å−3 |
4099 reflections | Δρmin = −0.21 e Å−3 |
326 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Positions of disordered groups were found from electron density maps. The disordered fragments were then placed in appropriate positions, and all distances between neighbouring atoms were fixed. Site occupancies were refined for the different parts with the same thermal parameters for same atoms in various fragments. At the end of the refinement, site occupancies were fixed at values 0.90 and 0.10 and hydrogen atoms were placed into calculated positions. All hydrogen atoms could be found from maps of difference electron density, but those, attached to carbon atoms, were placed into calculated positions. The distance between N and H atoms were restrained to 1.00 Å with σ=0.02. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 1.11069 (2) | 0.02416 (7) | 0.213524 (18) | 0.03911 (14) | |
Cl2 | 0.84287 (2) | −0.21013 (7) | 0.147714 (18) | 0.03856 (14) | |
O1 | 0.70542 (6) | 0.38705 (18) | 0.40933 (5) | 0.0367 (3) | |
O2 | 0.80594 (5) | 0.19883 (17) | 0.32491 (5) | 0.0305 (3) | |
O3 | 0.96571 (6) | −0.16498 (18) | 0.38954 (5) | 0.0322 (3) | |
O4 | 0.98144 (6) | −0.1787 (2) | 0.52219 (5) | 0.0406 (4) | |
N1 | 0.80833 (7) | 0.38887 (19) | 0.40351 (6) | 0.0277 (3) | |
H1N2 | 0.8870 | −0.1436 | 0.4391 | 0.033* | |
N2 | 0.89913 (7) | −0.14110 (19) | 0.47251 (5) | 0.0262 (3) | |
H1N1 | 0.8439 | 0.3425 | 0.3862 | 0.031* | |
C1 | 0.81828 (9) | 0.4614 (2) | 0.45255 (7) | 0.0315 (4) | |
H1A | 0.7853 | 0.5366 | 0.4597 | 0.038* | |
H1B | 0.8557 | 0.5239 | 0.4517 | 0.038* | |
C2 | 0.75257 (8) | 0.3497 (2) | 0.38745 (7) | 0.0266 (4) | |
C3 | 0.74788 (8) | 0.2590 (2) | 0.33841 (7) | 0.0265 (4) | |
H3A | 0.7195 | 0.1690 | 0.3417 | 0.032* | |
H3B | 0.7329 | 0.3318 | 0.3125 | 0.032* | |
C4 | 0.81162 (8) | 0.1097 (2) | 0.28177 (6) | 0.0240 (4) | |
C5 | 0.76696 (8) | 0.0977 (2) | 0.24538 (7) | 0.0267 (4) | |
H5 | 0.7306 | 0.1547 | 0.2489 | 0.032* | |
C6 | 0.77682 (8) | 0.0000 (2) | 0.20357 (7) | 0.0289 (4) | |
H6 | 0.7472 | −0.0093 | 0.1788 | 0.035* | |
C7 | 0.83113 (8) | −0.0828 (2) | 0.19935 (7) | 0.0276 (4) | |
C8 | 0.87611 (8) | −0.0703 (2) | 0.23554 (7) | 0.0255 (4) | |
H8 | 0.9124 | −0.1273 | 0.2317 | 0.031* | |
C9 | 0.86718 (8) | 0.0266 (2) | 0.27735 (7) | 0.0242 (4) | |
C10 | 0.91217 (8) | 0.0476 (3) | 0.31990 (7) | 0.0338 (5) | |
H10A | 0.9167 | 0.1636 | 0.3263 | 0.041* | |
H10B | 0.8947 | −0.0011 | 0.3498 | 0.041* | |
C11 | 0.97467 (8) | −0.0239 (2) | 0.31231 (7) | 0.0283 (4) | |
C12 | 1.00962 (8) | 0.0216 (2) | 0.27119 (7) | 0.0296 (4) | |
H12 | 0.9936 | 0.0927 | 0.2474 | 0.035* | |
C13 | 1.06813 (8) | −0.0383 (2) | 0.26540 (7) | 0.0298 (4) | |
C14 | 1.09288 (8) | −0.1440 (3) | 0.29985 (7) | 0.0317 (4) | |
H14 | 1.1320 | −0.1849 | 0.2953 | 0.038* | |
C15 | 1.05893 (9) | −0.1890 (3) | 0.34134 (7) | 0.0313 (4) | |
H15 | 1.0753 | −0.2604 | 0.3649 | 0.038* | |
C16 | 1.00041 (8) | −0.1277 (2) | 0.34793 (7) | 0.0275 (4) | |
C17 | 0.99810 (9) | −0.1964 (3) | 0.43499 (7) | 0.0345 (5) | |
H17A | 1.0330 | −0.1243 | 0.4370 | 0.041* | |
H17B | 1.0128 | −0.3081 | 0.4348 | 0.041* | |
C18 | 0.95804 (9) | −0.1705 (2) | 0.48030 (7) | 0.0291 (4) | |
C19 | 0.85686 (9) | −0.1157 (2) | 0.51386 (7) | 0.0287 (4) | |
H19A | 0.8741 | −0.1632 | 0.5440 | 0.034* | |
H19B | 0.8194 | −0.1736 | 0.5066 | 0.034* | |
C20 | 0.84194 (8) | 0.0621 (2) | 0.52404 (7) | 0.0261 (4) | |
C21 | 0.82821 (8) | 0.1118 (3) | 0.57256 (7) | 0.0307 (4) | |
H21 | 0.8297 | 0.0368 | 0.5987 | 0.037* | |
C22 | 0.81235 (9) | 0.2726 (3) | 0.58206 (7) | 0.0350 (5) | |
H22 | 0.8037 | 0.3052 | 0.6147 | 0.042* | |
C23 | 0.80922 (8) | 0.3850 (3) | 0.54350 (8) | 0.0321 (4) | |
H23 | 0.7985 | 0.4927 | 0.5503 | 0.039* | |
C24 | 0.82213 (8) | 0.3373 (2) | 0.49450 (7) | 0.0271 (4) | |
C25 | 0.83856 (8) | 0.1760 (2) | 0.48543 (7) | 0.0264 (4) | |
H25 | 0.8475 | 0.1435 | 0.4528 | 0.032* | |
O5 | 0.94522 (11) | 0.3414 (4) | 0.40875 (11) | 0.0418 (7) | 0.90 |
H1O5 | 0.9545 | 0.2931 | 0.4346 | 0.050* | 0.90 |
C26 | 0.99892 (15) | 0.3791 (5) | 0.38117 (9) | 0.0415 (7) | 0.90 |
H26A | 0.9904 | 0.4652 | 0.3578 | 0.050* | 0.90 |
H26B | 1.0123 | 0.2838 | 0.3633 | 0.050* | 0.90 |
H26C | 1.0303 | 0.4138 | 0.4039 | 0.050* | 0.90 |
O5A | 0.9587 (14) | 0.374 (5) | 0.4090 (12) | 0.0418 (7) | 0.10 |
H2O5 | 0.9634 | 0.2905 | 0.4254 | 0.050* | 0.10 |
C26A | 0.9961 (18) | 0.367 (6) | 0.3651 (11) | 0.0415 (7) | 0.10 |
H26D | 0.9888 | 0.4625 | 0.3449 | 0.050* | 0.10 |
H26E | 0.9863 | 0.2711 | 0.3462 | 0.050* | 0.10 |
H26F | 1.0381 | 0.3642 | 0.3748 | 0.050* | 0.10 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0270 (2) | 0.0524 (3) | 0.0380 (3) | −0.0081 (2) | 0.00832 (19) | −0.0091 (2) |
Cl2 | 0.0337 (3) | 0.0480 (3) | 0.0339 (3) | −0.0041 (2) | 0.00026 (19) | −0.0116 (2) |
O1 | 0.0250 (7) | 0.0434 (9) | 0.0417 (8) | 0.0047 (6) | 0.0079 (6) | −0.0067 (7) |
O2 | 0.0183 (6) | 0.0437 (8) | 0.0294 (7) | 0.0064 (6) | 0.0010 (5) | −0.0059 (6) |
O3 | 0.0221 (6) | 0.0499 (9) | 0.0245 (6) | 0.0021 (6) | −0.0020 (5) | −0.0013 (6) |
O4 | 0.0343 (8) | 0.0595 (10) | 0.0279 (7) | 0.0096 (7) | −0.0066 (6) | 0.0019 (7) |
N1 | 0.0236 (8) | 0.0284 (8) | 0.0311 (8) | 0.0029 (7) | 0.0014 (6) | 0.0015 (7) |
N2 | 0.0254 (8) | 0.0302 (9) | 0.0230 (7) | 0.0009 (7) | −0.0009 (6) | −0.0013 (6) |
C1 | 0.0290 (10) | 0.0283 (10) | 0.0372 (11) | 0.0017 (8) | −0.0014 (8) | −0.0044 (8) |
C2 | 0.0242 (9) | 0.0240 (10) | 0.0315 (9) | 0.0042 (8) | 0.0035 (8) | 0.0059 (8) |
C3 | 0.0185 (8) | 0.0298 (10) | 0.0313 (9) | 0.0057 (8) | 0.0024 (7) | 0.0050 (8) |
C4 | 0.0216 (9) | 0.0264 (9) | 0.0241 (9) | −0.0010 (8) | 0.0028 (7) | 0.0051 (7) |
C5 | 0.0184 (9) | 0.0314 (10) | 0.0302 (10) | 0.0002 (8) | 0.0002 (7) | 0.0092 (8) |
C6 | 0.0232 (9) | 0.0359 (11) | 0.0276 (10) | −0.0049 (8) | −0.0033 (7) | 0.0064 (8) |
C7 | 0.0261 (9) | 0.0306 (10) | 0.0260 (9) | −0.0053 (8) | 0.0020 (7) | 0.0013 (8) |
C8 | 0.0208 (9) | 0.0279 (10) | 0.0277 (9) | −0.0002 (8) | 0.0029 (7) | 0.0043 (8) |
C9 | 0.0194 (8) | 0.0284 (10) | 0.0247 (9) | −0.0012 (8) | 0.0021 (7) | 0.0058 (7) |
C10 | 0.0218 (9) | 0.0515 (13) | 0.0280 (10) | 0.0097 (9) | −0.0010 (8) | −0.0040 (9) |
C11 | 0.0196 (9) | 0.0398 (11) | 0.0256 (9) | 0.0026 (8) | −0.0024 (7) | −0.0082 (8) |
C12 | 0.0233 (9) | 0.0364 (11) | 0.0290 (9) | 0.0024 (8) | −0.0018 (8) | −0.0056 (8) |
C13 | 0.0212 (9) | 0.0383 (11) | 0.0300 (10) | −0.0042 (8) | 0.0019 (7) | −0.0109 (8) |
C14 | 0.0186 (9) | 0.0406 (12) | 0.0359 (10) | 0.0022 (8) | −0.0019 (8) | −0.0131 (9) |
C15 | 0.0248 (10) | 0.0374 (11) | 0.0317 (10) | 0.0055 (8) | −0.0048 (8) | −0.0076 (8) |
C16 | 0.0207 (9) | 0.0356 (11) | 0.0262 (9) | −0.0002 (8) | −0.0017 (7) | −0.0074 (8) |
C17 | 0.0294 (10) | 0.0463 (13) | 0.0278 (10) | 0.0091 (9) | −0.0037 (8) | −0.0014 (9) |
C18 | 0.0291 (10) | 0.0313 (11) | 0.0271 (10) | 0.0028 (8) | −0.0027 (8) | 0.0004 (8) |
C19 | 0.0264 (9) | 0.0326 (11) | 0.0270 (9) | −0.0017 (8) | 0.0027 (7) | 0.0020 (8) |
C20 | 0.0177 (8) | 0.0335 (10) | 0.0271 (9) | −0.0020 (8) | −0.0015 (7) | −0.0035 (8) |
C21 | 0.0236 (9) | 0.0434 (12) | 0.0251 (9) | −0.0008 (9) | −0.0002 (7) | 0.0004 (8) |
C22 | 0.0286 (10) | 0.0494 (13) | 0.0271 (10) | 0.0025 (9) | 0.0009 (8) | −0.0109 (9) |
C23 | 0.0235 (9) | 0.0346 (11) | 0.0383 (11) | 0.0034 (9) | −0.0017 (8) | −0.0098 (9) |
C24 | 0.0176 (9) | 0.0334 (11) | 0.0301 (10) | −0.0008 (8) | −0.0022 (7) | −0.0048 (8) |
C25 | 0.0215 (9) | 0.0334 (11) | 0.0245 (9) | −0.0007 (8) | 0.0011 (7) | −0.0047 (8) |
O5 | 0.0243 (15) | 0.0620 (19) | 0.0390 (8) | 0.0036 (10) | −0.0010 (10) | 0.0116 (10) |
C26 | 0.0367 (13) | 0.0549 (17) | 0.0330 (17) | −0.0057 (12) | −0.0024 (16) | 0.0023 (19) |
O5A | 0.0243 (15) | 0.0620 (19) | 0.0390 (8) | 0.0036 (10) | −0.0010 (10) | 0.0116 (10) |
C26A | 0.0367 (13) | 0.0549 (17) | 0.0330 (17) | −0.0057 (12) | −0.0024 (16) | 0.0023 (19) |
Cl1—C13 | 1.7470 (19) | C11—C16 | 1.395 (3) |
Cl2—C7 | 1.7466 (19) | C12—C13 | 1.386 (3) |
O1—C2 | 1.229 (2) | C12—H12 | 0.9300 |
O2—C4 | 1.368 (2) | C13—C14 | 1.375 (3) |
O2—C3 | 1.415 (2) | C14—C15 | 1.385 (3) |
O3—C16 | 1.381 (2) | C14—H14 | 0.9300 |
O3—C17 | 1.430 (2) | C15—C16 | 1.392 (3) |
O4—C18 | 1.232 (2) | C15—H15 | 0.9300 |
N1—C2 | 1.338 (2) | C17—C18 | 1.511 (3) |
N1—C1 | 1.453 (2) | C17—H17A | 0.9700 |
N1—H1N1 | 0.9840 | C17—H17B | 0.9700 |
N2—C18 | 1.334 (2) | C19—C20 | 1.517 (3) |
N2—C19 | 1.458 (2) | C19—H19A | 0.9700 |
N2—H1N2 | 0.9295 | C19—H19B | 0.9700 |
C1—C24 | 1.514 (3) | C20—C21 | 1.390 (3) |
C1—H1A | 0.9700 | C20—C25 | 1.391 (3) |
C1—H1B | 0.9700 | C21—C22 | 1.385 (3) |
C2—C3 | 1.507 (3) | C21—H21 | 0.9300 |
C3—H3A | 0.9700 | C22—C23 | 1.382 (3) |
C3—H3B | 0.9700 | C22—H22 | 0.9300 |
C4—C5 | 1.384 (3) | C23—C24 | 1.394 (3) |
C4—C9 | 1.404 (3) | C23—H23 | 0.9300 |
C5—C6 | 1.389 (3) | C24—C25 | 1.391 (3) |
C5—H5 | 0.9300 | C25—H25 | 0.9300 |
C6—C7 | 1.378 (3) | O5—C26 | 1.425 (3) |
C6—H6 | 0.9300 | O5—H1O5 | 0.8200 |
C7—C8 | 1.386 (3) | C26—H26A | 0.9600 |
C8—C9 | 1.383 (3) | C26—H26B | 0.9600 |
C8—H8 | 0.9300 | C26—H26C | 0.9600 |
C9—C10 | 1.516 (3) | O5A—C26A | 1.430 (19) |
C10—C11 | 1.508 (3) | O5A—H2O5 | 0.8200 |
C10—H10A | 0.9700 | C26A—H26D | 0.9600 |
C10—H10B | 0.9700 | C26A—H26E | 0.9600 |
C11—C12 | 1.390 (3) | C26A—H26F | 0.9600 |
C4—O2—C3 | 118.82 (14) | C14—C13—C12 | 121.06 (18) |
C16—O3—C17 | 116.49 (14) | C14—C13—Cl1 | 120.10 (14) |
C2—N1—C1 | 121.63 (16) | C12—C13—Cl1 | 118.83 (16) |
C2—N1—H1N1 | 119.0 | C13—C14—C15 | 119.22 (17) |
C1—N1—H1N1 | 117.4 | C13—C14—H14 | 120.4 |
C18—N2—C19 | 121.82 (15) | C15—C14—H14 | 120.4 |
C18—N2—H1N2 | 115.1 | C14—C15—C16 | 120.21 (19) |
C19—N2—H1N2 | 123.0 | C14—C15—H15 | 119.9 |
N1—C1—C24 | 113.56 (16) | C16—C15—H15 | 119.9 |
N1—C1—H1A | 108.9 | O3—C16—C15 | 122.18 (17) |
C24—C1—H1A | 108.9 | O3—C16—C11 | 117.25 (16) |
N1—C1—H1B | 108.9 | C15—C16—C11 | 120.58 (18) |
C24—C1—H1B | 108.9 | O3—C17—C18 | 111.27 (15) |
H1A—C1—H1B | 107.7 | O3—C17—H17A | 109.4 |
O1—C2—N1 | 124.17 (18) | C18—C17—H17A | 109.4 |
O1—C2—C3 | 118.49 (17) | O3—C17—H17B | 109.4 |
N1—C2—C3 | 117.30 (16) | C18—C17—H17B | 109.4 |
O2—C3—C2 | 109.29 (15) | H17A—C17—H17B | 108.0 |
O2—C3—H3A | 109.8 | O4—C18—N2 | 123.83 (18) |
C2—C3—H3A | 109.8 | O4—C18—C17 | 118.33 (17) |
O2—C3—H3B | 109.8 | N2—C18—C17 | 117.84 (16) |
C2—C3—H3B | 109.8 | N2—C19—C20 | 114.22 (15) |
H3A—C3—H3B | 108.3 | N2—C19—H19A | 108.7 |
O2—C4—C5 | 124.25 (16) | C20—C19—H19A | 108.7 |
O2—C4—C9 | 114.12 (15) | N2—C19—H19B | 108.7 |
C5—C4—C9 | 121.62 (17) | C20—C19—H19B | 108.7 |
C4—C5—C6 | 119.53 (17) | H19A—C19—H19B | 107.6 |
C4—C5—H5 | 120.2 | C21—C20—C25 | 118.80 (18) |
C6—C5—H5 | 120.2 | C21—C20—C19 | 119.64 (17) |
C7—C6—C5 | 118.96 (17) | C25—C20—C19 | 121.47 (16) |
C7—C6—H6 | 120.5 | C22—C21—C20 | 120.21 (19) |
C5—C6—H6 | 120.5 | C22—C21—H21 | 119.9 |
C6—C7—C8 | 121.69 (18) | C20—C21—H21 | 119.9 |
C6—C7—Cl2 | 119.10 (14) | C23—C22—C21 | 120.62 (18) |
C8—C7—Cl2 | 119.19 (15) | C23—C22—H22 | 119.7 |
C9—C8—C7 | 120.19 (17) | C21—C22—H22 | 119.7 |
C9—C8—H8 | 119.9 | C22—C23—C24 | 120.08 (19) |
C7—C8—H8 | 119.9 | C22—C23—H23 | 120.0 |
C8—C9—C4 | 118.01 (16) | C24—C23—H23 | 120.0 |
C8—C9—C10 | 125.23 (16) | C25—C24—C23 | 118.84 (18) |
C4—C9—C10 | 116.75 (16) | C25—C24—C1 | 121.56 (17) |
C11—C10—C9 | 116.76 (16) | C23—C24—C1 | 119.60 (18) |
C11—C10—H10A | 108.1 | C24—C25—C20 | 121.43 (17) |
C9—C10—H10A | 108.1 | C24—C25—H25 | 119.3 |
C11—C10—H10B | 108.1 | C20—C25—H25 | 119.3 |
C9—C10—H10B | 108.1 | C26—O5—H1O5 | 109.5 |
H10A—C10—H10B | 107.3 | C26A—O5A—H2O5 | 109.5 |
C12—C11—C16 | 118.45 (17) | O5A—C26A—H26D | 109.5 |
C12—C11—C10 | 120.39 (18) | O5A—C26A—H26E | 109.5 |
C16—C11—C10 | 121.00 (17) | H26D—C26A—H26E | 109.5 |
C13—C12—C11 | 120.43 (19) | O5A—C26A—H26F | 109.5 |
C13—C12—H12 | 119.8 | H26D—C26A—H26F | 109.5 |
C11—C12—H12 | 119.8 | H26E—C26A—H26F | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O5 | 0.98 | 2.31 | 3.039 (3) | 130 |
N2—H1N2···O1i | 0.93 | 2.20 | 2.860 (2) | 128 |
O5—H1O5···O4ii | 0.82 | 2.05 | 2.789 (3) | 150 |
C26A—H26F···Cl2iii | 0.96 | 2.74 | 3.616 (3) | 149 |
Symmetry codes: (i) −x+3/2, y−1/2, z; (ii) −x+2, −y, −z+1; (iii) −x+2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C25H22Cl2N2O4·CH4O |
Mr | 517.39 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 120 |
a, b, c (Å) | 21.9905 (3), 8.1864 (1), 26.6760 (3) |
V (Å3) | 4802.29 (10) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 2.78 |
Crystal size (mm) | 0.30 × 0.11 × 0.08 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur A Gemini Ultra diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.826, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 42959, 4099, 3364 |
Rint | 0.070 |
(sin θ/λ)max (Å−1) | 0.588 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.082, 1.03 |
No. of reflections | 4099 |
No. of parameters | 326 |
No. of restraints | 4 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.21 |
Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O5 | 0.98 | 2.31 | 3.039 (3) | 130 |
N2—H1N2···O1i | 0.93 | 2.20 | 2.860 (2) | 128 |
O5—H1O5···O4ii | 0.82 | 2.05 | 2.789 (3) | 150 |
C26A—H26F···Cl2iii | 0.96 | 2.74 | 3.616 (3) | 149 |
Symmetry codes: (i) −x+3/2, y−1/2, z; (ii) −x+2, −y, −z+1; (iii) −x+2, y+1/2, −z+1/2. |
Acknowledgements
This study was financially supported by the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics, the project Praemium Academiae of the Academy of Science of the Czech Republic, the Grant Agency of the Faculty of Environmental Sciences, Czech University of Life Sciences, Prague (project No. 42900/1312/3114 `Environmental Aspects of Sustainable Development of Society'), and the Czech Ministry of Education, Youth and Sports (Project MSM 6046137307).
References
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England. Google Scholar
Alexander, V. (1995). Chem. Rev. 95, 273–342. CrossRef CAS Web of Science Google Scholar
Christensen, A., Jensen, H. S., McKee, V., Mckenzie, C. J. & Munch, M. (1997). Inorg. Chem. 36, 6080–6085. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ertul, S., Tombak, A. H., Bayrakci, M. & Merter, O. (2009). Acta Chim. Slov. 56, 878–884. CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hayvali, M. & Hayvali, Z. (2005). Synth. React. Inorg. Met. Org. Chem. 34, 713–732. Google Scholar
Jaiyu, A., Rojanathanes, R. & Sukwattanasinitt, M. (2007). Tetrahedron Lett. 48, 1817–1821. Web of Science CrossRef CAS Google Scholar
Kleinpeter, E., Starke, I., Strohl, D. & Holdt, H. J. (1997). J. Mol. Struct. 404, 273–290. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Polyazalactones together with polyoxalactones and polyethers are studied for their ability to act as multidentate ligands to complex various cations. Polyazalactones can incorporate transition metals into their cavities via an ion-dipole interaction (Hayvali & Hayvali, 2005; Kleinpeter et al., 1997). They are studied for their role in bioprocesses, catalysis, material science, transport and separation (Jaiyu et al., 2007; Christensen et al., 1997; Alexander, 1995). In this paper, we report the crystal structure of a lactam ionophore (Fig.1). The macrocycle consists of three benzene rings, two of them substituted with chlorine atom in para position to O atom. The neighboring molecules are connected via hydrogen bonds between amide groups (Table 1). The crystal contains methanol molecule disordered over two positions with partial occupancies of 0.90 and 0.10. The hydroxyl group of the solvent forms hydrogen bond to the oxygen atom of the amide group (Table 1). The methyl group of the methanol in second position is also weakly bound to the chlorine atoms of neighboring molecule. This weak interaction competes with the stronger hydrogen bond to amide group and causes the solvent disorder.