organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o805-o806

10,16-Di­chloro-6,20-dioxa-3,23-di­aza­tetra­cyclo­[23.3.1.07,12.014,19]nona­cosa-1(29),7,9,11,14(19),15,17,25,27-nona­ene-4,22-dione methanol monosolvate

aInstitute of Physics of the ASCR, Na Slovance 2, 182 21 Prague 8, Czech Republic, bInstitue of Macromolecular Chemistry, ASCR v.v.i., Heyrovského nám. 2, 16202 Prague 6, Czech Republic, and cFaculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Prague 6, Czech Republic
*Correspondence e-mail: pojarova@fzu.cz

(Received 6 February 2012; accepted 16 February 2012; online 24 February 2012)

In the title compound, C25H22Cl2N2O4·CH3OH, the macrocyclic mol­ecule adopts a slightly distorted C2-symmetric conformation. The macrocyclic mol­ecules are linked via N—H⋯O hydrogen bonds between the amide groups into chains extending along the [010] direction. The methanol mol­ecules bridge these chains via N—H⋯O and O—H⋯O hydrogen bonds with the formation of a two-dimensional polymeric structure parallel to (001). The methanol mol­ecule is disordered over two positions with the occupancy ratio of 9:1. The disorder of the solvent molecule is caused by weak intermolecular C—H⋯Cl hydrogen bonding.

Related literature

For application of macrocycles, see: Hayvali & Hayvali (2005[Hayvali, M. & Hayvali, Z. (2005). Synth. React. Inorg. Met. Org. Chem. 34, 713-732.]); Kleinpeter et al. (1997[Kleinpeter, E., Starke, I., Strohl, D. & Holdt, H. J. (1997). J. Mol. Struct. 404, 273-290.]); Jaiyu et al. (2007[Jaiyu, A., Rojanathanes, R. & Sukwattanasinitt, M. (2007). Tetrahedron Lett. 48, 1817-1821.]); Christensen et al. (1997[Christensen, A., Jensen, H. S., McKee, V., Mckenzie, C. J. & Munch, M. (1997). Inorg. Chem. 36, 6080-6085.]); Alexander (1995[Alexander, V. (1995). Chem. Rev. 95, 273-342.]). For the synthetic procedure, see: Ertul et al. (2009[Ertul, S., Tombak, A. H., Bayrakci, M. & Merter, O. (2009). Acta Chim. Slov. 56, 878-884.]).

[Scheme 1]

Experimental

Crystal data
  • C25H22Cl2N2O4·CH4O

  • Mr = 517.39

  • Orthorhombic, P b c a

  • a = 21.9905 (3) Å

  • b = 8.1864 (1) Å

  • c = 26.6760 (3) Å

  • V = 4802.29 (10) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.78 mm−1

  • T = 120 K

  • 0.30 × 0.11 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur A Gemini Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.826, Tmax = 1.000

  • 42959 measured reflections

  • 4099 independent reflections

  • 3364 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.082

  • S = 1.03

  • 4099 reflections

  • 326 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O5 0.98 2.31 3.039 (3) 130
N2—H1N2⋯O1i 0.93 2.20 2.860 (2) 128
O5—H1O5⋯O4ii 0.82 2.05 2.789 (3) 150
C26A—H26F⋯Cl2iii 0.96 2.74 3.616 (3) 149
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) -x+2, -y, -z+1; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Polyazalactones together with polyoxalactones and polyethers are studied for their ability to act as multidentate ligands to complex various cations. Polyazalactones can incorporate transition metals into their cavities via an ion-dipole interaction (Hayvali & Hayvali, 2005; Kleinpeter et al., 1997). They are studied for their role in bioprocesses, catalysis, material science, transport and separation (Jaiyu et al., 2007; Christensen et al., 1997; Alexander, 1995). In this paper, we report the crystal structure of a lactam ionophore (Fig.1). The macrocycle consists of three benzene rings, two of them substituted with chlorine atom in para position to O atom. The neighboring molecules are connected via hydrogen bonds between amide groups (Table 1). The crystal contains methanol molecule disordered over two positions with partial occupancies of 0.90 and 0.10. The hydroxyl group of the solvent forms hydrogen bond to the oxygen atom of the amide group (Table 1). The methyl group of the methanol in second position is also weakly bound to the chlorine atoms of neighboring molecule. This weak interaction competes with the stronger hydrogen bond to amide group and causes the solvent disorder.

Related literature top

For application of macrocycles, see: Hayvali & Hayvali (2005); Kleinpeter et al. (1997); Jaiyu et al. (2007); Christensen et al. (1997); Alexander (1995). For the synthetic procedure, see: Ertul et al. (2009).

Experimental top

All chemicals used were purchased from Fluka and used without further purification. The title compound was synthesized according to the method reported by Ertul et al. (2009). Single crystals were prepared by slow evaporation of methanol solution.

Refinement top

Positions of disordered groups were found from electron density maps. The disordered fragments were then placed in appropriate positions, and all distances between neighbouring atoms were restrained to 1.406 (20) Å. Site occupancies were refined for the different parts with the common displacement parameters for corresponding atoms in various fragments. At the end of the refinement, site occupancies were fixed at the values 0.9 and 0.1 and hydrogen atoms were placed in calculated positions. All hydrogen atoms of the macrocyclic molecule were found from electron density difference maps. H atoms attached to C atoms were placed in calculated positions. N—H distances were initially restrained to 1.00 Å with σ=0.02 and then fixed. The isotropic displacement parameters of H atoms were calculated as 1.2Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of the title compound with displacement ellipsoids shown at the 50% probability level. C-bound H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Projection along the b axis with highlighted hydrogen bonds between the molecules. Hydrogen atoms not involved in hydrgen bonding have been omitted.
10,16-Dichloro-6,20-dioxa-3,23- diazatetracyclo[23.3.1.07,12.014,19]nonacosa- 1(29),7,9,11,14 (19),15,17,25,27-nonaene-4,22-dione methanol monosolvate top
Crystal data top
C25H22Cl2N2O4·CH4ODx = 1.431 Mg m3
Mr = 517.39Melting point = 316–318 K
Orthorhombic, PbcaCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ac 2abCell parameters from 6415 reflections
a = 21.9905 (3) Åθ = 3.3–67.1°
b = 8.1864 (1) ŵ = 2.78 mm1
c = 26.6760 (3) ÅT = 120 K
V = 4802.29 (10) Å3Prism, colourless
Z = 80.30 × 0.11 × 0.08 mm
F(000) = 2160
Data collection top
Oxford Diffraction Xcalibur A Gemini Ultra
diffractometer
4099 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source3364 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.070
Detector resolution: 10.3784 pixels mm-1θmax = 65.1°, θmin = 3.3°
ω scanh = 2225
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 99
Tmin = 0.826, Tmax = 1.000l = 2931
42959 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0358P)2 + 2.1383P]
where P = (Fo2 + 2Fc2)/3
4099 reflections(Δ/σ)max = 0.002
326 parametersΔρmax = 0.20 e Å3
4 restraintsΔρmin = 0.21 e Å3
Crystal data top
C25H22Cl2N2O4·CH4OV = 4802.29 (10) Å3
Mr = 517.39Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 21.9905 (3) ŵ = 2.78 mm1
b = 8.1864 (1) ÅT = 120 K
c = 26.6760 (3) Å0.30 × 0.11 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur A Gemini Ultra
diffractometer
4099 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3364 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 1.000Rint = 0.070
42959 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0334 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
4099 reflectionsΔρmin = 0.21 e Å3
326 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Positions of disordered groups were found from electron density maps. The disordered fragments were then placed in appropriate positions, and all distances between neighbouring atoms were fixed. Site occupancies were refined for the different parts with the same thermal parameters for same atoms in various fragments. At the end of the refinement, site occupancies were fixed at values 0.90 and 0.10 and hydrogen atoms were placed into calculated positions. All hydrogen atoms could be found from maps of difference electron density, but those, attached to carbon atoms, were placed into calculated positions. The distance between N and H atoms were restrained to 1.00 Å with σ=0.02. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.11069 (2)0.02416 (7)0.213524 (18)0.03911 (14)
Cl20.84287 (2)0.21013 (7)0.147714 (18)0.03856 (14)
O10.70542 (6)0.38705 (18)0.40933 (5)0.0367 (3)
O20.80594 (5)0.19883 (17)0.32491 (5)0.0305 (3)
O30.96571 (6)0.16498 (18)0.38954 (5)0.0322 (3)
O40.98144 (6)0.1787 (2)0.52219 (5)0.0406 (4)
N10.80833 (7)0.38887 (19)0.40351 (6)0.0277 (3)
H1N20.88700.14360.43910.033*
N20.89913 (7)0.14110 (19)0.47251 (5)0.0262 (3)
H1N10.84390.34250.38620.031*
C10.81828 (9)0.4614 (2)0.45255 (7)0.0315 (4)
H1A0.78530.53660.45970.038*
H1B0.85570.52390.45170.038*
C20.75257 (8)0.3497 (2)0.38745 (7)0.0266 (4)
C30.74788 (8)0.2590 (2)0.33841 (7)0.0265 (4)
H3A0.71950.16900.34170.032*
H3B0.73290.33180.31250.032*
C40.81162 (8)0.1097 (2)0.28177 (6)0.0240 (4)
C50.76696 (8)0.0977 (2)0.24538 (7)0.0267 (4)
H50.73060.15470.24890.032*
C60.77682 (8)0.0000 (2)0.20357 (7)0.0289 (4)
H60.74720.00930.17880.035*
C70.83113 (8)0.0828 (2)0.19935 (7)0.0276 (4)
C80.87611 (8)0.0703 (2)0.23554 (7)0.0255 (4)
H80.91240.12730.23170.031*
C90.86718 (8)0.0266 (2)0.27735 (7)0.0242 (4)
C100.91217 (8)0.0476 (3)0.31990 (7)0.0338 (5)
H10A0.91670.16360.32630.041*
H10B0.89470.00110.34980.041*
C110.97467 (8)0.0239 (2)0.31231 (7)0.0283 (4)
C121.00962 (8)0.0216 (2)0.27119 (7)0.0296 (4)
H120.99360.09270.24740.035*
C131.06813 (8)0.0383 (2)0.26540 (7)0.0298 (4)
C141.09288 (8)0.1440 (3)0.29985 (7)0.0317 (4)
H141.13200.18490.29530.038*
C151.05893 (9)0.1890 (3)0.34134 (7)0.0313 (4)
H151.07530.26040.36490.038*
C161.00041 (8)0.1277 (2)0.34793 (7)0.0275 (4)
C170.99810 (9)0.1964 (3)0.43499 (7)0.0345 (5)
H17A1.03300.12430.43700.041*
H17B1.01280.30810.43480.041*
C180.95804 (9)0.1705 (2)0.48030 (7)0.0291 (4)
C190.85686 (9)0.1157 (2)0.51386 (7)0.0287 (4)
H19A0.87410.16320.54400.034*
H19B0.81940.17360.50660.034*
C200.84194 (8)0.0621 (2)0.52404 (7)0.0261 (4)
C210.82821 (8)0.1118 (3)0.57256 (7)0.0307 (4)
H210.82970.03680.59870.037*
C220.81235 (9)0.2726 (3)0.58206 (7)0.0350 (5)
H220.80370.30520.61470.042*
C230.80922 (8)0.3850 (3)0.54350 (8)0.0321 (4)
H230.79850.49270.55030.039*
C240.82213 (8)0.3373 (2)0.49450 (7)0.0271 (4)
C250.83856 (8)0.1760 (2)0.48543 (7)0.0264 (4)
H250.84750.14350.45280.032*
O50.94522 (11)0.3414 (4)0.40875 (11)0.0418 (7)0.90
H1O50.95450.29310.43460.050*0.90
C260.99892 (15)0.3791 (5)0.38117 (9)0.0415 (7)0.90
H26A0.99040.46520.35780.050*0.90
H26B1.01230.28380.36330.050*0.90
H26C1.03030.41380.40390.050*0.90
O5A0.9587 (14)0.374 (5)0.4090 (12)0.0418 (7)0.10
H2O50.96340.29050.42540.050*0.10
C26A0.9961 (18)0.367 (6)0.3651 (11)0.0415 (7)0.10
H26D0.98880.46250.34490.050*0.10
H26E0.98630.27110.34620.050*0.10
H26F1.03810.36420.37480.050*0.10
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0270 (2)0.0524 (3)0.0380 (3)0.0081 (2)0.00832 (19)0.0091 (2)
Cl20.0337 (3)0.0480 (3)0.0339 (3)0.0041 (2)0.00026 (19)0.0116 (2)
O10.0250 (7)0.0434 (9)0.0417 (8)0.0047 (6)0.0079 (6)0.0067 (7)
O20.0183 (6)0.0437 (8)0.0294 (7)0.0064 (6)0.0010 (5)0.0059 (6)
O30.0221 (6)0.0499 (9)0.0245 (6)0.0021 (6)0.0020 (5)0.0013 (6)
O40.0343 (8)0.0595 (10)0.0279 (7)0.0096 (7)0.0066 (6)0.0019 (7)
N10.0236 (8)0.0284 (8)0.0311 (8)0.0029 (7)0.0014 (6)0.0015 (7)
N20.0254 (8)0.0302 (9)0.0230 (7)0.0009 (7)0.0009 (6)0.0013 (6)
C10.0290 (10)0.0283 (10)0.0372 (11)0.0017 (8)0.0014 (8)0.0044 (8)
C20.0242 (9)0.0240 (10)0.0315 (9)0.0042 (8)0.0035 (8)0.0059 (8)
C30.0185 (8)0.0298 (10)0.0313 (9)0.0057 (8)0.0024 (7)0.0050 (8)
C40.0216 (9)0.0264 (9)0.0241 (9)0.0010 (8)0.0028 (7)0.0051 (7)
C50.0184 (9)0.0314 (10)0.0302 (10)0.0002 (8)0.0002 (7)0.0092 (8)
C60.0232 (9)0.0359 (11)0.0276 (10)0.0049 (8)0.0033 (7)0.0064 (8)
C70.0261 (9)0.0306 (10)0.0260 (9)0.0053 (8)0.0020 (7)0.0013 (8)
C80.0208 (9)0.0279 (10)0.0277 (9)0.0002 (8)0.0029 (7)0.0043 (8)
C90.0194 (8)0.0284 (10)0.0247 (9)0.0012 (8)0.0021 (7)0.0058 (7)
C100.0218 (9)0.0515 (13)0.0280 (10)0.0097 (9)0.0010 (8)0.0040 (9)
C110.0196 (9)0.0398 (11)0.0256 (9)0.0026 (8)0.0024 (7)0.0082 (8)
C120.0233 (9)0.0364 (11)0.0290 (9)0.0024 (8)0.0018 (8)0.0056 (8)
C130.0212 (9)0.0383 (11)0.0300 (10)0.0042 (8)0.0019 (7)0.0109 (8)
C140.0186 (9)0.0406 (12)0.0359 (10)0.0022 (8)0.0019 (8)0.0131 (9)
C150.0248 (10)0.0374 (11)0.0317 (10)0.0055 (8)0.0048 (8)0.0076 (8)
C160.0207 (9)0.0356 (11)0.0262 (9)0.0002 (8)0.0017 (7)0.0074 (8)
C170.0294 (10)0.0463 (13)0.0278 (10)0.0091 (9)0.0037 (8)0.0014 (9)
C180.0291 (10)0.0313 (11)0.0271 (10)0.0028 (8)0.0027 (8)0.0004 (8)
C190.0264 (9)0.0326 (11)0.0270 (9)0.0017 (8)0.0027 (7)0.0020 (8)
C200.0177 (8)0.0335 (10)0.0271 (9)0.0020 (8)0.0015 (7)0.0035 (8)
C210.0236 (9)0.0434 (12)0.0251 (9)0.0008 (9)0.0002 (7)0.0004 (8)
C220.0286 (10)0.0494 (13)0.0271 (10)0.0025 (9)0.0009 (8)0.0109 (9)
C230.0235 (9)0.0346 (11)0.0383 (11)0.0034 (9)0.0017 (8)0.0098 (9)
C240.0176 (9)0.0334 (11)0.0301 (10)0.0008 (8)0.0022 (7)0.0048 (8)
C250.0215 (9)0.0334 (11)0.0245 (9)0.0007 (8)0.0011 (7)0.0047 (8)
O50.0243 (15)0.0620 (19)0.0390 (8)0.0036 (10)0.0010 (10)0.0116 (10)
C260.0367 (13)0.0549 (17)0.0330 (17)0.0057 (12)0.0024 (16)0.0023 (19)
O5A0.0243 (15)0.0620 (19)0.0390 (8)0.0036 (10)0.0010 (10)0.0116 (10)
C26A0.0367 (13)0.0549 (17)0.0330 (17)0.0057 (12)0.0024 (16)0.0023 (19)
Geometric parameters (Å, º) top
Cl1—C131.7470 (19)C11—C161.395 (3)
Cl2—C71.7466 (19)C12—C131.386 (3)
O1—C21.229 (2)C12—H120.9300
O2—C41.368 (2)C13—C141.375 (3)
O2—C31.415 (2)C14—C151.385 (3)
O3—C161.381 (2)C14—H140.9300
O3—C171.430 (2)C15—C161.392 (3)
O4—C181.232 (2)C15—H150.9300
N1—C21.338 (2)C17—C181.511 (3)
N1—C11.453 (2)C17—H17A0.9700
N1—H1N10.9840C17—H17B0.9700
N2—C181.334 (2)C19—C201.517 (3)
N2—C191.458 (2)C19—H19A0.9700
N2—H1N20.9295C19—H19B0.9700
C1—C241.514 (3)C20—C211.390 (3)
C1—H1A0.9700C20—C251.391 (3)
C1—H1B0.9700C21—C221.385 (3)
C2—C31.507 (3)C21—H210.9300
C3—H3A0.9700C22—C231.382 (3)
C3—H3B0.9700C22—H220.9300
C4—C51.384 (3)C23—C241.394 (3)
C4—C91.404 (3)C23—H230.9300
C5—C61.389 (3)C24—C251.391 (3)
C5—H50.9300C25—H250.9300
C6—C71.378 (3)O5—C261.425 (3)
C6—H60.9300O5—H1O50.8200
C7—C81.386 (3)C26—H26A0.9600
C8—C91.383 (3)C26—H26B0.9600
C8—H80.9300C26—H26C0.9600
C9—C101.516 (3)O5A—C26A1.430 (19)
C10—C111.508 (3)O5A—H2O50.8200
C10—H10A0.9700C26A—H26D0.9600
C10—H10B0.9700C26A—H26E0.9600
C11—C121.390 (3)C26A—H26F0.9600
C4—O2—C3118.82 (14)C14—C13—C12121.06 (18)
C16—O3—C17116.49 (14)C14—C13—Cl1120.10 (14)
C2—N1—C1121.63 (16)C12—C13—Cl1118.83 (16)
C2—N1—H1N1119.0C13—C14—C15119.22 (17)
C1—N1—H1N1117.4C13—C14—H14120.4
C18—N2—C19121.82 (15)C15—C14—H14120.4
C18—N2—H1N2115.1C14—C15—C16120.21 (19)
C19—N2—H1N2123.0C14—C15—H15119.9
N1—C1—C24113.56 (16)C16—C15—H15119.9
N1—C1—H1A108.9O3—C16—C15122.18 (17)
C24—C1—H1A108.9O3—C16—C11117.25 (16)
N1—C1—H1B108.9C15—C16—C11120.58 (18)
C24—C1—H1B108.9O3—C17—C18111.27 (15)
H1A—C1—H1B107.7O3—C17—H17A109.4
O1—C2—N1124.17 (18)C18—C17—H17A109.4
O1—C2—C3118.49 (17)O3—C17—H17B109.4
N1—C2—C3117.30 (16)C18—C17—H17B109.4
O2—C3—C2109.29 (15)H17A—C17—H17B108.0
O2—C3—H3A109.8O4—C18—N2123.83 (18)
C2—C3—H3A109.8O4—C18—C17118.33 (17)
O2—C3—H3B109.8N2—C18—C17117.84 (16)
C2—C3—H3B109.8N2—C19—C20114.22 (15)
H3A—C3—H3B108.3N2—C19—H19A108.7
O2—C4—C5124.25 (16)C20—C19—H19A108.7
O2—C4—C9114.12 (15)N2—C19—H19B108.7
C5—C4—C9121.62 (17)C20—C19—H19B108.7
C4—C5—C6119.53 (17)H19A—C19—H19B107.6
C4—C5—H5120.2C21—C20—C25118.80 (18)
C6—C5—H5120.2C21—C20—C19119.64 (17)
C7—C6—C5118.96 (17)C25—C20—C19121.47 (16)
C7—C6—H6120.5C22—C21—C20120.21 (19)
C5—C6—H6120.5C22—C21—H21119.9
C6—C7—C8121.69 (18)C20—C21—H21119.9
C6—C7—Cl2119.10 (14)C23—C22—C21120.62 (18)
C8—C7—Cl2119.19 (15)C23—C22—H22119.7
C9—C8—C7120.19 (17)C21—C22—H22119.7
C9—C8—H8119.9C22—C23—C24120.08 (19)
C7—C8—H8119.9C22—C23—H23120.0
C8—C9—C4118.01 (16)C24—C23—H23120.0
C8—C9—C10125.23 (16)C25—C24—C23118.84 (18)
C4—C9—C10116.75 (16)C25—C24—C1121.56 (17)
C11—C10—C9116.76 (16)C23—C24—C1119.60 (18)
C11—C10—H10A108.1C24—C25—C20121.43 (17)
C9—C10—H10A108.1C24—C25—H25119.3
C11—C10—H10B108.1C20—C25—H25119.3
C9—C10—H10B108.1C26—O5—H1O5109.5
H10A—C10—H10B107.3C26A—O5A—H2O5109.5
C12—C11—C16118.45 (17)O5A—C26A—H26D109.5
C12—C11—C10120.39 (18)O5A—C26A—H26E109.5
C16—C11—C10121.00 (17)H26D—C26A—H26E109.5
C13—C12—C11120.43 (19)O5A—C26A—H26F109.5
C13—C12—H12119.8H26D—C26A—H26F109.5
C11—C12—H12119.8H26E—C26A—H26F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O50.982.313.039 (3)130
N2—H1N2···O1i0.932.202.860 (2)128
O5—H1O5···O4ii0.822.052.789 (3)150
C26A—H26F···Cl2iii0.962.743.616 (3)149
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+2, y, z+1; (iii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H22Cl2N2O4·CH4O
Mr517.39
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)21.9905 (3), 8.1864 (1), 26.6760 (3)
V3)4802.29 (10)
Z8
Radiation typeCu Kα
µ (mm1)2.78
Crystal size (mm)0.30 × 0.11 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur A Gemini Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.826, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
42959, 4099, 3364
Rint0.070
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.082, 1.03
No. of reflections4099
No. of parameters326
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O50.982.313.039 (3)130
N2—H1N2···O1i0.932.202.860 (2)128
O5—H1O5···O4ii0.822.052.789 (3)150
C26A—H26F···Cl2iii0.962.743.616 (3)149
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+2, y, z+1; (iii) x+2, y+1/2, z+1/2.
 

Acknowledgements

This study was financially supported by the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics, the project Praemium Academiae of the Academy of Science of the Czech Republic, the Grant Agency of the Faculty of Environmental Sciences, Czech University of Life Sciences, Prague (project No. 42900/1312/3114 `Environmental Aspects of Sustainable Development of Society'), and the Czech Ministry of Education, Youth and Sports (Project MSM 6046137307).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAlexander, V. (1995). Chem. Rev. 95, 273–342.  CrossRef CAS Web of Science Google Scholar
First citationChristensen, A., Jensen, H. S., McKee, V., Mckenzie, C. J. & Munch, M. (1997). Inorg. Chem. 36, 6080–6085.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationErtul, S., Tombak, A. H., Bayrakci, M. & Merter, O. (2009). Acta Chim. Slov. 56, 878–884.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHayvali, M. & Hayvali, Z. (2005). Synth. React. Inorg. Met. Org. Chem. 34, 713–732.  Google Scholar
First citationJaiyu, A., Rojanathanes, R. & Sukwattanasinitt, M. (2007). Tetrahedron Lett. 48, 1817–1821.  Web of Science CrossRef CAS Google Scholar
First citationKleinpeter, E., Starke, I., Strohl, D. & Holdt, H. J. (1997). J. Mol. Struct. 404, 273–290.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o805-o806
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds