organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro­anilinium tetra­fluoro­borate 18-crown-6 clathrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chemcrystal66@yahoo.com.cn

(Received 25 December 2011; accepted 12 February 2012; online 17 February 2012)

In the title compound, C6H7ClN+·BF4·C12H24O6, the complete cation is generated by crystallographic mirror symmetry, with two C atoms and the N and Cl atoms lying on the mirror plane. The complete crown ether is also generated by mirror symmetry, as is the anion (in which the B and two F atoms lie on the mirror plane). The –NH3+ group of the cation inserts into the crown-ether ring and forms bifurcated N—H⋯(O,O) hydrogen bonds. The H atoms of the –NH3+ group were modelled as disordered across the mirror plane.

Related literature

For the ferroelectric properties of related compounds, see: Fu et al. (2011[Fu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011). Adv. Mater. 23, 5658-5662.])

[Scheme 1]

Experimental

Crystal data
  • C6H7ClN+·BF4·C12H24O6

  • Mr = 479.70

  • Orthorhombic, P n m a

  • a = 15.619 (3) Å

  • b = 11.374 (2) Å

  • c = 12.956 (3) Å

  • V = 2301.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.10 × 0.03 × 0.03 mm

Data collection
  • Rigaku Mercury2 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 22855 measured reflections

  • 2772 independent reflections

  • 1466 reflections with I > 2σ(I)

  • Rint = 0.112

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.176

  • S = 1.04

  • 2772 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.89 2.12 2.897 (3) 146
N1—H1A⋯O3 0.89 2.24 2.927 (3) 134
N1—H1B⋯O3i 0.89 2.25 2.927 (3) 133
N1—H1B⋯O4 0.89 2.10 2.891 (4) 147
N1—H1C⋯O1 0.89 2.21 2.865 (4) 130
N1—H1C⋯O2i 0.89 2.10 2.897 (3) 148
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

With the purpose of obtaining phase transition crystals of amino compounds, various amines have been studied and we have elaborated a series of new materials with this organic molecules (Fu et al. 2011). In this study, we describe the crystal structure of the title compound.

The asymmetric unit is composed of one organic cation, one BF4- anion and one crown ether (Fig.1). The 4-chloroanilium cation and macrocyclic ether mlecule are associated vis hydrogen bonding with the -NH3+ group forming bifurcated bonds with all six O atoms of 18-crown-6 molecule. Despite the disorder in the amino group, it is clear that in each orientation the cation forms three bifurcated hydrogen bonds. These H-bonding interactions link the cation and 18-crown-6 ether molecule into a 1:1 complex, [(C6H7ClN).(18-rown-6)]+ (Table 1 and Fig.2).

Related literature top

For the ferroelectric properties of related compounds, see: Fu et al. (2011)

Experimental top

18-Crown-6 (3 mmol), HBF4 (5 mmol) and the organic amine (3 mmol) were dissolved in water/EtOH (1:1 v/v) solution. The solvent was slowly evaporated in air affording colourless block-shaped crystals of the title compound.

The dielectric constant of title compound as a function of temperature indicates that the permittivity is basically temperature-independent, suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, below the melting point (405 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomaly observed (dielectric constant ranging from 4.1 to 8.1).

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C–H = 0.93 Å (Caromatic) or 0.97 Å (Cmethylene).

The positional parameters of the H atoms (N1) were intially refined freely, subsequently restrained using a distance of N–H = 0.89 (2) Å, and in the final refinements treated in riding motion of their parent nitrogen atom with Uiso(H)=1.5Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the H-bonding interactions. H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity.
4-Chloroanilinium tetrafluoroborate 1,4,7,10,13,16-hexaoxacyclooctadecane top
Crystal data top
C6H7ClN+·BF4·C12H24O6F(000) = 1008
Mr = 479.70Dx = 1.384 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 2772 reflections
a = 15.619 (3) Åθ = 3.1–27.5°
b = 11.374 (2) ŵ = 0.23 mm1
c = 12.956 (3) ÅT = 298 K
V = 2301.6 (8) Å3Block, colorless
Z = 40.10 × 0.03 × 0.03 mm
Data collection top
Rigaku Mercury2 CCD
diffractometer
2772 independent reflections
Radiation source: fine-focus sealed tube1466 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.112
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD profile fitting scansh = 2020
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.910, Tmax = 1.000l = 1616
22855 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.8791P]
where P = (Fo2 + 2Fc2)/3
2772 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C6H7ClN+·BF4·C12H24O6V = 2301.6 (8) Å3
Mr = 479.70Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 15.619 (3) ŵ = 0.23 mm1
b = 11.374 (2) ÅT = 298 K
c = 12.956 (3) Å0.10 × 0.03 × 0.03 mm
Data collection top
Rigaku Mercury2 CCD
diffractometer
2772 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1466 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.112
22855 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
2772 reflectionsΔρmin = 0.26 e Å3
155 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.00491 (9)0.25000.01849 (12)0.1019 (6)
O40.54013 (18)0.25000.1542 (2)0.0496 (7)
O20.69794 (13)0.04251 (17)0.40917 (15)0.0561 (6)
N10.6932 (2)0.25000.2796 (2)0.0430 (8)
H1A0.68060.17650.29750.064*0.50
H1B0.64950.28110.24510.064*0.50
H1C0.70330.29240.33600.064*0.50
O10.78267 (19)0.25000.4727 (2)0.0574 (8)
O30.60482 (13)0.03256 (17)0.22269 (15)0.0518 (6)
C70.7692 (2)0.25000.2142 (3)0.0397 (9)
C50.5276 (2)0.0445 (3)0.1647 (2)0.0555 (8)
H5A0.47970.05630.21100.067*
H5B0.51730.02660.12510.067*
C80.8049 (2)0.1449 (3)0.1844 (2)0.0533 (8)
H8A0.78020.07430.20480.064*
C30.6806 (2)0.0649 (3)0.3568 (3)0.0588 (9)
H3A0.67780.12910.40600.071*
H3B0.72590.08160.30770.071*
C60.5358 (2)0.1464 (3)0.0940 (2)0.0548 (8)
H6A0.58710.13860.05250.066*
H6B0.48680.14980.04810.066*
C40.5972 (2)0.0534 (3)0.3018 (2)0.0600 (9)
H4A0.58130.12850.27190.072*
H4B0.55290.03040.35010.072*
C20.7766 (2)0.0415 (3)0.4644 (3)0.0642 (9)
H2A0.82420.04410.41640.077*
H2B0.78110.03000.50480.077*
C100.9133 (3)0.25000.0942 (3)0.0620 (13)
C10.7793 (2)0.1455 (3)0.5335 (3)0.0698 (10)
H1D0.72870.14680.57700.084*
H1E0.82930.14120.57770.084*
C90.8773 (2)0.1450 (3)0.1244 (2)0.0633 (9)
H9A0.90200.07430.10420.076*
F30.02293 (17)0.25000.6646 (2)0.0761 (8)
F20.16106 (19)0.25000.6182 (3)0.0941 (10)
F10.12000 (15)0.1503 (2)0.7597 (2)0.1066 (8)
B10.1052 (3)0.25000.7028 (5)0.0574 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0634 (9)0.1501 (15)0.0924 (11)0.0000.0263 (8)0.000
O40.0613 (18)0.0453 (17)0.0421 (16)0.0000.0095 (13)0.000
O20.0553 (13)0.0470 (13)0.0660 (14)0.0079 (10)0.0087 (11)0.0063 (10)
N10.046 (2)0.0414 (18)0.0417 (18)0.0000.0073 (15)0.000
O10.068 (2)0.063 (2)0.0418 (16)0.0000.0087 (14)0.000
O30.0574 (13)0.0414 (11)0.0567 (12)0.0060 (9)0.0027 (10)0.0042 (10)
C70.041 (2)0.044 (2)0.034 (2)0.0000.0091 (17)0.000
C50.057 (2)0.0509 (19)0.058 (2)0.0101 (15)0.0079 (15)0.0093 (15)
C80.062 (2)0.0459 (18)0.0525 (18)0.0046 (15)0.0009 (16)0.0024 (14)
C30.072 (2)0.0397 (18)0.065 (2)0.0078 (15)0.0068 (18)0.0125 (16)
C60.061 (2)0.056 (2)0.0470 (17)0.0014 (15)0.0079 (14)0.0113 (15)
C40.071 (2)0.0425 (19)0.067 (2)0.0060 (15)0.0026 (18)0.0035 (16)
C20.061 (2)0.067 (2)0.064 (2)0.0090 (17)0.0110 (17)0.0142 (18)
C100.044 (3)0.098 (4)0.044 (3)0.0000.005 (2)0.000
C10.070 (2)0.090 (3)0.0490 (19)0.0054 (19)0.0131 (17)0.017 (2)
C90.065 (2)0.070 (2)0.0550 (19)0.0169 (18)0.0026 (17)0.0039 (18)
F30.0625 (18)0.0647 (18)0.101 (2)0.0000.0047 (15)0.000
F20.075 (2)0.102 (2)0.105 (2)0.0000.0133 (18)0.000
F10.0994 (17)0.0917 (17)0.1288 (19)0.0004 (13)0.0163 (15)0.0429 (16)
B10.049 (3)0.043 (3)0.080 (4)0.0000.006 (3)0.000
Geometric parameters (Å, º) top
Cl1—C101.735 (5)C3—C41.490 (4)
O4—C61.415 (3)C3—H3A0.9700
O4—C6i1.415 (3)C3—H3B0.9700
O2—C21.421 (4)C6—H6A0.9700
O2—C31.424 (4)C6—H6B0.9700
N1—C71.457 (5)C4—H4A0.9700
N1—H1A0.8900C4—H4B0.9700
N1—H1B0.8900C2—C11.484 (4)
N1—H1C0.8900C2—H2A0.9700
O1—C1i1.427 (3)C2—H2B0.9700
O1—C11.427 (3)C10—C9i1.376 (4)
O3—C41.422 (3)C10—C91.376 (4)
O3—C51.427 (3)C1—H1D0.9700
C7—C81.375 (3)C1—H1E0.9700
C7—C8i1.375 (3)C9—H9A0.9300
C5—C61.482 (4)F3—B11.377 (6)
C5—H5A0.9700F2—B11.401 (6)
C5—H5B0.9700F1—B11.372 (4)
C8—C91.371 (4)B1—F1i1.372 (4)
C8—H8A0.9300
C6—O4—C6i112.8 (3)C5—C6—H6B110.0
C2—O2—C3113.4 (2)H6A—C6—H6B108.4
C7—N1—H1A109.5O3—C4—C3109.4 (2)
C7—N1—H1B109.5O3—C4—H4A109.8
H1A—N1—H1B109.5C3—C4—H4A109.8
C7—N1—H1C109.5O3—C4—H4B109.8
H1A—N1—H1C109.5C3—C4—H4B109.8
H1B—N1—H1C109.5H4A—C4—H4B108.2
C1i—O1—C1112.8 (3)O2—C2—C1108.8 (3)
C4—O3—C5112.0 (2)O2—C2—H2A109.9
C8—C7—C8i120.8 (4)C1—C2—H2A109.9
C8—C7—N1119.62 (19)O2—C2—H2B109.9
C8i—C7—N1119.62 (19)C1—C2—H2B109.9
O3—C5—C6109.1 (2)H2A—C2—H2B108.3
O3—C5—H5A109.9C9i—C10—C9120.3 (4)
C6—C5—H5A109.9C9i—C10—Cl1119.8 (2)
O3—C5—H5B109.9C9—C10—Cl1119.8 (2)
C6—C5—H5B109.9O1—C1—C2109.3 (2)
H5A—C5—H5B108.3O1—C1—H1D109.8
C9—C8—C7119.6 (3)C2—C1—H1D109.8
C9—C8—H8A120.2O1—C1—H1E109.8
C7—C8—H8A120.2C2—C1—H1E109.8
O2—C3—C4108.6 (2)H1D—C1—H1E108.3
O2—C3—H3A110.0C8—C9—C10119.9 (3)
C4—C3—H3A110.0C8—C9—H9A120.1
O2—C3—H3B110.0C10—C9—H9A120.1
C4—C3—H3B110.0F1i—B1—F1111.5 (5)
H3A—C3—H3B108.3F1i—B1—F3110.5 (3)
O4—C6—C5108.4 (2)F1—B1—F3110.5 (3)
O4—C6—H6A110.0F1i—B1—F2108.4 (3)
C5—C6—H6A110.0F1—B1—F2108.4 (3)
O4—C6—H6B110.0F3—B1—F2107.5 (4)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.892.122.897 (3)146
N1—H1A···O30.892.242.927 (3)134
N1—H1B···O3i0.892.252.927 (3)133
N1—H1B···O40.892.102.891 (4)147
N1—H1C···O10.892.212.865 (4)130
N1—H1C···O2i0.892.102.897 (3)148
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC6H7ClN+·BF4·C12H24O6
Mr479.70
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)15.619 (3), 11.374 (2), 12.956 (3)
V3)2301.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.10 × 0.03 × 0.03
Data collection
DiffractometerRigaku Mercury2 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
22855, 2772, 1466
Rint0.112
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.176, 1.04
No. of reflections2772
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.26

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.892.122.897 (3)146
N1—H1A···O30.892.242.927 (3)134
N1—H1B···O3i0.892.252.927 (3)133
N1—H1B···O40.892.102.891 (4)147
N1—H1C···O10.892.212.865 (4)130
N1—H1C···O2i0.892.102.897 (3)148
Symmetry code: (i) x, y+1/2, z.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University, China.

References

First citationFu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011). Adv. Mater. 23, 5658–5662.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds