organic compounds
Clarithromycin monohydrate: a synchrotron X-ray powder study
aGraduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan, and bIndustrial Application Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-gun, Hyogo 679-5198, Japan
*Correspondence e-mail: noguchis@u-shizuoka-ken.ac.jp
In the 38H69NO13·H2O, the water molecule behaves as a proton donor and is hydrogen bonded to the hydroxy O atom of the CAM cladinose ring. The hydroxy O atom also behaves as a proton donor, forming an intermolecular hydrogen bond with one of the hydroxy groups of the 14-membered aglycone ring. The CAM molecules are linked through these hydrogen bonds into chains running parallel to the c axis.
of the title compound, clarithromycin (CAM) monohydrate, CRelated literature
For background to the title compound, see Avrutov et al. (2003); Noguchi, Fujiki et al. (2012). For information relating to the pharmaceutical properties of CAM, see: Yajima et al. (1999, 2002); Fujiki et al. (2011); Liu et al. (1999). For related structures, see: Noguchi, Miura et al. (2012; form I, anhydrate); Jin et al. (2011; form 0, ethanol solvate); Stephenson et al. (1997; form II, anhydrate); Liang & Yao (2008; form III, acetonitrile solvate); Parvez et al. (2000; hydrochloride salt); Iwasaki et al. (1993; methanol solvate).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: local software (Osaka et al., 2010; Takata et al., 2002); cell EXPO2009 (Altomare et al., 2009) and RIETAN-FP (Izumi & Momma, 2007); data reduction: local software (Takata et al., 2002); program(s) used to solve structure: CCP4 (Collaborative Computational Project, Number 4, 1994); program(s) used to refine structure: CCP4, RIETAN-FP and Jmol (Hanson, 2010); molecular graphics: CCP4MG (McNicholas et al., 2011); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812005090/hb6588sup1.cif
contains datablocks global, I. DOI:Rietveld powder data: contains datablock I. DOI: 10.1107/S1600536812005090/hb6588Isup2.rtv
Supporting information file. DOI: 10.1107/S1600536812005090/hb6588Isup3.cml
Powders of CAM form I were prepared as described (Noguchi, Miura et al., 2012) and were converted to form IV by storing at greater than 90%
overnight in a hermetic glass container at 297 K. was measured by digital AD-5683 (A&D, Tokyo, Japan). The powders of form IV thus obtained were enclosed in a 0.3 mm Lindemann glass capillary. The powder diffraction data were collected at SPring-8 BL19B2 (Osaka et al., 2010; Takata et al., 2002). The sample was rotated at 1 r min-1 to reduce the possible preferential orientation and was kept at 298 K.The determination of cell parameters and
and the extraction of the Bragg peak intensities from the powder diffraction data were carried out using EXPO2009. The initial structure was determined by the method using MOLREP implemented in CCP4. The search model employed was form 0 of the CAM (Jin et al., 2011). All H atoms were excluded from the model and the isotropic atomic displacement parameters were fixed at a value of 0.089 Å2. Reflections between 12.1 and 2.50 Å d-spacings were used for the calculation. The structure solution of the was refined using REFMAC implemented in CCP4. The bond lengths and bond angles were restrained to those of the form 0 The crystallographic factor converged at 0.245. In the difference Fourier map, the positive spherical density was found at a distance of approximately 2.7 Å from the hydroxy O12 atom of the CAM cladinose ring. The O atom of the water molecule was placed at this density and the model was further refined, resulting in the convergence of the factor at 0.201. This partially refined structure provided the starting model for The geometry of the CAM molecule was restrained as described above. H atoms were placed at their theoretical positions using EXPO2009 and Jmol and were refined as riding. The overall atomic displacement parameter was applied to all atoms including H atoms, and was refined isotropically. The observed and Rietveld refined calculated powder patterns are shown in Fig. 3. The r.m.s differences of the bond lengths and angles from their target values were 0.023 Å and 2.7 °, respectively.Data collection: local software (Osaka et al., 2010; Takata et al., 2002); cell
EXPO2009 (Altomare et al., 2009) and RIETAN-FP (Izumi & Momma, 2007); data reduction: local software (Takata et al., 2002); program(s) used to solve structure: CCP4 (Collaborative Computational Project, Number 4, 1994); program(s) used to refine structure: CCP4 (Collaborative Computational Project, Number 4, 1994) and RIETAN-FP (Izumi & Momma, 2007); molecular graphics: CCP4MG (McNicholas et al., 2011); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of CAM with atoms represented as spheres of arbitrary radii. C, N, and O atoms are shown in yellow, blue and red, respectively. H atoms have been omitted for clarity. Hydrogen bonding between CAM and a water molecule is indicated by a dashed line. | |
Fig. 2. Packing view of CAM. The molecular chains generated by hydrogen bonding between CAM molecules along the c axis are coloured as in Fig. 1. [Symmetry code: (i) x, y, z - 1, (ii) x, y, z + 1.] Molecules of symmetry codes (iii) x + 1/2, -y + 1/2, -z + 1, (iv) -x + 1/2, -y + 1, z + 1/2, and (v) -x + 1, y + 1/2, -z + 1/2 are shown in light green, light blue and cyan, respectively. | |
Fig. 3. The final Rietveld plot. The experimental diffraction profile is indicated by red crosses. The calculated diffraction and difference profiles are depicted as solid green and blue lines, respectively. The vertical green bars correspond to the positions of the Bragg peaks. |
C38H69NO13·H2O | F(000) = 1672.00 |
Mr = 765.97 | Dx = 1.142 Mg m−3 |
Orthorhombic, P212121 | Synchrotron radiation, λ = 1.3000 Å |
Hall symbol: P 2ac 2ab | µ = 0.41 mm−1 |
a = 15.6999 (2) Å | T = 298 K |
b = 18.8817 (2) Å | Particle morphology: powder |
c = 15.0267 (2) Å | white |
V = 4454.53 (9) Å3 | cylinder, 3.0 × 0.3 mm |
Z = 4 | Specimen preparation: Prepared at 298 K and 101 kPa |
BL-19B2 Debye–Scherrer camera diffractometer | Data collection mode: transmission |
Radiation source: synchrotron, SPring-8 BL19B2 | Scan method: Stationary detector |
Si(111) monochromator | 2θfixed = 65 |
Specimen mounting: capilary |
Least-squares matrix: selected elements only | Profile function: split pseudo-Voigt function |
Rp = 0.038 | 188 parameters |
Rwp = 0.052 | 96 restraints |
Rexp = 0.016 | 0 constraints |
RBragg = 0.059 | H-atom parameters not refined |
R(F) = 0.076 | Weighting scheme based on measured s.u.'s 1/[Yi] |
R(F2) = 0.07617 | (Δ/σ)max = 0.011 |
χ2 = 11.020 | Background function: Legendre polynomials |
6201 data points |
C38H69NO13·H2O | V = 4454.53 (9) Å3 |
Mr = 765.97 | Z = 4 |
Orthorhombic, P212121 | Synchrotron radiation, λ = 1.3000 Å |
a = 15.6999 (2) Å | µ = 0.41 mm−1 |
b = 18.8817 (2) Å | T = 298 K |
c = 15.0267 (2) Å | cylinder, 3.0 × 0.3 mm |
BL-19B2 Debye–Scherrer camera diffractometer | Scan method: Stationary detector |
Specimen mounting: capilary | 2θfixed = 65 |
Data collection mode: transmission |
Rp = 0.038 | χ2 = 11.020 |
Rwp = 0.052 | 6201 data points |
Rexp = 0.016 | 188 parameters |
RBragg = 0.059 | 96 restraints |
R(F) = 0.076 | H-atom parameters not refined |
R(F2) = 0.07617 |
x | y | z | Uiso*/Ueq | ||
O1 | 0.024 (1) | 0.1102 (8) | 0.205 (1) | 0.066 (5)* | |
C1 | 0.154 (2) | −0.074 (2) | 0.101 (2) | 0.066 (5)* | |
O2 | 0.108 (2) | 0.1127 (9) | 0.327 (1) | 0.066 (5)* | |
C2 | 0.217 (3) | −0.007 (2) | −0.026 (1) | 0.066 (5)* | |
O3 | 0.256 (1) | 0.079 (1) | 0.220 (2) | 0.066 (5)* | |
C3 | 0.156 (1) | 0.0568 (7) | 0.095 (1) | 0.066 (5)* | |
O4 | 0.051 (1) | 0.356 (1) | 0.609 (1) | 0.066 (5)* | |
C4 | 0.168 (1) | 0.065 (1) | 0.197 (1) | 0.066 (5)* | |
O5 | 0.166 (1) | 0.286 (1) | 0.638 (1) | 0.066 (5)* | |
C5 | 0.107 (1) | 0.119 (1) | 0.236 (1) | 0.066 (5)* | |
O6 | 0.089 (1) | 0.239 (1) | 0.8636 (9) | 0.066 (5)* | |
C6 | 0.0191 (8) | 0.1221 (7) | 0.111 (1) | 0.066 (5)* | |
O7 | −0.0338 (9) | 0.2408 (9) | 0.740 (2) | 0.066 (5)* | |
C7 | 0.064 (1) | 0.062 (1) | 0.068 (1) | 0.066 (5)* | |
O8 | −0.1207 (9) | 0.122 (1) | 0.670 (1) | 0.066 (5)* | |
C8 | −0.073 (1) | 0.117 (1) | 0.092 (2) | 0.066 (5)* | |
O9 | −0.032 (2) | 0.210 (1) | 0.484 (2) | 0.066 (5)* | |
C9 | 0.079 (1) | 0.176 (1) | 0.374 (1) | 0.066 (5)* | |
C10 | 0.150 (1) | 0.221 (1) | 0.422 (1) | 0.066 (5)* | |
C11 | 0.236 (1) | 0.213 (1) | 0.372 (2) | 0.066 (5)* | |
C12 | 0.121 (1) | 0.297 (1) | 0.419 (1) | 0.066 (5)* | |
C13 | 0.165 (1) | 0.341 (1) | 0.495 (1) | 0.066 (5)* | |
C14 | 0.170 (2) | 0.420 (1) | 0.473 (2) | 0.066 (5)* | |
C15 | 0.118 (1) | 0.329 (1) | 0.586 (1) | 0.066 (5)* | |
C16 | 0.1654 (9) | 0.2915 (7) | 0.737 (1) | 0.066 (5)* | |
C17 | 0.133 (1) | 0.3633 (7) | 0.763 (1) | 0.066 (5)* | |
C18 | 0.207 (2) | 0.411 (1) | 0.784 (3) | 0.066 (5)* | |
C19 | 0.1174 (8) | 0.2269 (6) | 0.7706 (8) | 0.066 (5)* | |
C20 | 0.179 (1) | 0.1663 (7) | 0.777 (2) | 0.066 (5)* | |
C21 | 0.0398 (9) | 0.205 (1) | 0.709 (1) | 0.066 (5)* | |
C22 | 0.0214 (9) | 0.1267 (8) | 0.708 (2) | 0.066 (5)* | |
C23 | −0.005 (2) | 0.095 (2) | 0.797 (2) | 0.066 (5)* | |
C24 | −0.0497 (8) | 0.109 (1) | 0.645 (1) | 0.066 (5)* | |
C25 | −0.028 (1) | 0.0617 (8) | 0.564 (1) | 0.066 (5)* | |
C26 | 0.012 (2) | −0.008 (1) | 0.599 (2) | 0.066 (5)* | |
C27 | 0.036 (1) | 0.095 (1) | 0.502 (2) | 0.066 (5)* | |
C28 | 0.003 (2) | 0.1505 (9) | 0.434 (1) | 0.066 (5)* | |
C29 | −0.060 (1) | 0.113 (2) | 0.371 (2) | 0.066 (5)* | |
N1 | 0.198 (1) | −0.0086 (9) | 0.071 (1) | 0.066 (5)* | |
C30 | −0.108 (2) | 0.245 (2) | 0.457 (3) | 0.066 (5)* | |
C31 | 0.096 (1) | 0.3798 (7) | 0.282 (1) | 0.066 (5)* | |
C32 | 0.147 (2) | 0.4097 (8) | 0.204 (2) | 0.066 (5)* | |
C33 | 0.144 (2) | 0.3696 (9) | 0.113 (2) | 0.066 (5)* | |
C34 | 0.181 (3) | 0.418 (2) | 0.044 (2) | 0.066 (5)* | |
C35 | 0.259 (2) | 0.288 (1) | 0.164 (2) | 0.066 (5)* | |
C36 | 0.050 (1) | 0.355 (2) | 0.089 (2) | 0.066 (5)* | |
C37 | 0.0039 (9) | 0.319 (2) | 0.166 (2) | 0.066 (5)* | |
C38 | −0.088 (1) | 0.309 (2) | 0.147 (2) | 0.066 (5)* | |
O10 | 0.148 (1) | 0.326 (1) | 0.322 (1) | 0.066 (5)* | |
O11 | 0.189 (1) | 0.301 (1) | 0.109 (2) | 0.066 (5)* | |
O12 | 0.040 (2) | 0.310 (1) | 0.013 (2) | 0.066 (5)* | |
O13 | 0.013 (1) | 0.357 (1) | 0.251 (1) | 0.066 (5)* | |
O14 | −0.108 (2) | 0.328 (1) | −0.069 (2) | 0.066 (5)* | |
H1 | 0.18752 | −0.11445 | 0.08465 | 0.066* | |
H2 | 0.14803 | −0.0724 | 0.16457 | 0.066* | |
H3 | 0.09936 | −0.07653 | 0.07354 | 0.066* | |
H4 | 0.16522 | −0.00535 | −0.0587 | 0.066* | |
H5 | 0.25191 | 0.03289 | −0.03953 | 0.066* | |
H6 | 0.24771 | −0.05005 | −0.04139 | 0.066* | |
H7 | 0.18159 | 0.09522 | 0.06236 | 0.066* | |
H8 | 0.15338 | 0.02044 | 0.2234 | 0.066* | |
H9 | 0.12561 | 0.16482 | 0.21795 | 0.066* | |
H10 | 0.04357 | 0.16609 | 0.09204 | 0.066* | |
H11 | 0.06159 | 0.06938 | 0.00406 | 0.066* | |
H12 | 0.03573 | 0.01907 | 0.08252 | 0.066* | |
H13 | −0.10242 | 0.15481 | 0.12278 | 0.066* | |
H14 | −0.08217 | 0.12197 | 0.02935 | 0.066* | |
H15 | −0.0944 | 0.07245 | 0.11207 | 0.066* | |
H16 | 0.05924 | 0.21174 | 0.33347 | 0.066* | |
H17 | 0.15866 | 0.20417 | 0.48194 | 0.066* | |
H18 | 0.22516 | 0.21423 | 0.30905 | 0.066* | |
H19 | 0.27191 | 0.25247 | 0.38771 | 0.066* | |
H20 | 0.26242 | 0.16985 | 0.38811 | 0.066* | |
H21 | 0.0607 | 0.30225 | 0.42837 | 0.066* | |
H22 | 0.22166 | 0.32306 | 0.50104 | 0.066* | |
H23 | 0.11338 | 0.43968 | 0.46883 | 0.066* | |
H24 | 0.20102 | 0.4445 | 0.51848 | 0.066* | |
H25 | 0.19835 | 0.42629 | 0.41672 | 0.066* | |
H26 | 0.22007 | 0.28954 | 0.76484 | 0.066* | |
H27 | 0.10026 | 0.38318 | 0.71559 | 0.066* | |
H28 | 0.09815 | 0.35908 | 0.81542 | 0.066* | |
H29 | 0.23905 | 0.41951 | 0.73017 | 0.066* | |
H30 | 0.18542 | 0.45621 | 0.8051 | 0.066* | |
H31 | 0.24274 | 0.39006 | 0.82833 | 0.066* | |
H32 | 0.14917 | 0.12451 | 0.79505 | 0.066* | |
H33 | 0.20586 | 0.15915 | 0.72105 | 0.066* | |
H34 | 0.22166 | 0.17769 | 0.8214 | 0.066* | |
H35 | 0.05522 | 0.21868 | 0.64964 | 0.066* | |
H36 | 0.07503 | 0.10624 | 0.6907 | 0.066* | |
H37 | −0.06312 | 0.10794 | 0.80989 | 0.066* | |
H38 | 0.00025 | 0.0447 | 0.79565 | 0.066* | |
H39 | 0.03108 | 0.11387 | 0.8437 | 0.066* | |
H40 | −0.08013 | 0.05386 | 0.53219 | 0.066* | |
H41 | −0.02796 | −0.03231 | 0.6374 | 0.066* | |
H42 | 0.02733 | −0.03813 | 0.55089 | 0.066* | |
H43 | 0.06242 | 0.00286 | 0.63387 | 0.066* | |
H44 | 0.07815 | 0.118 | 0.53798 | 0.066* | |
H45 | 0.06197 | 0.05736 | 0.4687 | 0.066* | |
H46 | −0.08548 | 0.14665 | 0.33188 | 0.066* | |
H47 | −0.03038 | 0.07754 | 0.33667 | 0.066* | |
H48 | −0.10369 | 0.09003 | 0.40568 | 0.066* | |
H49 | −0.14675 | 0.21036 | 0.43356 | 0.066* | |
H50 | −0.1328 | 0.26788 | 0.5073 | 0.066* | |
H51 | −0.09414 | 0.27884 | 0.41213 | 0.066* | |
H52 | 0.08197 | 0.41389 | 0.32742 | 0.066* | |
H53 | 0.12529 | 0.457 | 0.19385 | 0.066* | |
H54 | 0.20452 | 0.41209 | 0.22314 | 0.066* | |
H55 | 0.24159 | 0.42459 | 0.05703 | 0.066* | |
H56 | 0.17631 | 0.39594 | −0.01318 | 0.066* | |
H57 | 0.15325 | 0.46267 | 0.04479 | 0.066* | |
H58 | 0.24994 | 0.30659 | 0.22227 | 0.066* | |
H59 | 0.27045 | 0.23838 | 0.1669 | 0.066* | |
H60 | 0.30803 | 0.31141 | 0.13802 | 0.066* | |
H61 | 0.02618 | 0.40102 | 0.07467 | 0.066* | |
H62 | 0.03089 | 0.27317 | 0.17169 | 0.066* | |
H63 | −0.09586 | 0.27116 | 0.10468 | 0.066* | |
H64 | −0.11828 | 0.29764 | 0.20071 | 0.066* | |
H65 | −0.11127 | 0.35198 | 0.12218 | 0.066* | |
H66 | 0.28701 | 0.06779 | 0.17828 | 0.066* | |
H67 | 0.04599 | 0.26422 | 0.86513 | 0.066* | |
H68 | −0.07662 | 0.21661 | 0.73170 | 0.066* | |
H69 | 0.07204 | 0.27540 | 0.01797 | 0.066* | |
H70 | −0.05854 | 0.31967 | −0.03228 | 0.066* | |
H71 | −0.09198 | 0.31147 | −0.12651 | 0.066* |
O1—C5 | 1.39 (2) | C5—H9 | 0.96 |
O1—C6 | 1.43 (2) | O6—H67 | 0.82 |
C1—N1 | 1.49 (4) | C6—H10 | 0.96 |
O2—C5 | 1.37 (2) | O7—H68 | 0.82 |
O2—C9 | 1.46 (3) | C7—H12 | 0.96 |
C2—N1 | 1.49 (2) | C7—H11 | 0.96 |
O3—C4 | 1.45 (2) | C8—H14 | 0.96 |
C3—N1 | 1.45 (2) | C8—H13 | 0.96 |
C3—C7 | 1.50 (2) | C8—H15 | 0.96 |
C3—C4 | 1.55 (2) | C9—H16 | 0.96 |
O4—C15 | 1.22 (2) | C10—H17 | 0.96 |
C4—C5 | 1.52 (2) | C11—H20 | 0.96 |
O5—C15 | 1.36 (2) | C11—H19 | 0.96 |
O5—C16 | 1.49 (2) | C11—H18 | 0.96 |
O6—C19 | 1.485 (18) | C12—H21 | 0.96 |
C6—C8 | 1.48 (2) | C13—H22 | 0.96 |
C6—C7 | 1.48 (2) | C14—H25 | 0.96 |
O7—C21 | 1.42 (2) | C14—H24 | 0.96 |
O8—C24 | 1.20 (2) | C14—H23 | 0.96 |
O9—C30 | 1.42 (4) | C16—H26 | 0.96 |
O9—C28 | 1.46 (3) | C17—H27 | 0.96 |
C9—C28 | 1.57 (3) | C17—H28 | 0.96 |
C9—C10 | 1.58 (2) | C18—H31 | 0.96 |
C10—C12 | 1.51 (3) | C18—H30 | 0.96 |
C10—C11 | 1.55 (3) | C18—H29 | 0.96 |
C12—C13 | 1.57 (2) | C20—H33 | 0.96 |
C13—C14 | 1.53 (3) | C20—H32 | 0.96 |
C13—C15 | 1.57 (2) | C20—H34 | 0.96 |
C16—C17 | 1.500 (19) | C21—H35 | 0.96 |
C16—C19 | 1.520 (18) | C22—H36 | 0.96 |
C17—C18 | 1.50 (3) | C23—H38 | 0.96 |
C19—C20 | 1.501 (19) | C23—H37 | 0.96 |
C19—C21 | 1.585 (19) | C23—H39 | 0.96 |
C21—C22 | 1.51 (2) | C25—H40 | 0.96 |
C22—C24 | 1.50 (3) | C26—H42 | 0.96 |
C22—C23 | 1.52 (4) | C26—H43 | 0.96 |
C24—C25 | 1.55 (2) | C26—H41 | 0.96 |
C25—C27 | 1.51 (3) | C27—H44 | 0.96 |
C25—C26 | 1.55 (3) | C27—H45 | 0.96 |
C27—C28 | 1.55 (3) | C29—H46 | 0.96 |
C28—C29 | 1.54 (4) | C29—H47 | 0.96 |
C31—O10 | 1.44 (2) | C29—H48 | 0.96 |
C31—O13 | 1.45 (2) | C30—H50 | 0.96 |
C31—C32 | 1.53 (3) | C30—H51 | 0.96 |
C32—C33 | 1.56 (4) | C30—H49 | 0.96 |
C33—O11 | 1.48 (3) | C31—H52 | 0.96 |
C33—C34 | 1.50 (4) | C32—H54 | 0.96 |
C33—C36 | 1.54 (4) | C32—H53 | 0.96 |
C35—O11 | 1.40 (4) | C34—H57 | 0.96 |
C36—O12 | 1.43 (4) | C34—H56 | 0.96 |
C36—C37 | 1.53 (4) | C34—H55 | 0.98 |
C37—O13 | 1.47 (4) | C35—H58 | 0.96 |
C37—C38 | 1.48 (2) | C35—H59 | 0.96 |
C1—H1 | 0.96 | C35—H60 | 0.96 |
C1—H3 | 0.96 | C36—H61 | 0.96 |
C1—H2 | 0.96 | C37—H62 | 0.96 |
C2—H4 | 0.96 | C38—H64 | 0.96 |
C2—H5 | 0.96 | C38—H65 | 0.96 |
C2—H6 | 0.96 | C38—H63 | 0.96 |
O3—H66 | 0.82 | O12—H69 | 0.82 |
C3—H7 | 0.96 | O14—H70 | 0.96 |
C4—H8 | 0.96 | O14—H71 | 0.96 |
C5—O1—C6 | 111.2 (13) | H15—C8—C6 | 109.3 |
C5—O2—C9 | 114.0 (16) | C28—O9—H51 | 114.2 |
N1—C3—C7 | 115.3 (13) | H16—C9—O2 | 111.4 |
N1—C3—C4 | 106.0 (13) | H16—C9—C28 | 109.9 |
C7—C3—C4 | 112.1 (13) | H17—C10—C12 | 112.2 |
O3—C4—C5 | 112.8 (16) | H17—C10—C11 | 107.7 |
O3—C4—C3 | 111.7 (16) | H17—C10—C9 | 111.0 |
C5—C4—C3 | 111.8 (13) | C11—C10—H16 | 107.1 |
C15—O5—C16 | 122.0 (15) | H20—C11—H19 | 109.8 |
O2—C5—O1 | 109.5 (18) | H20—C11—H18 | 111.0 |
O2—C5—C4 | 108.6 (16) | H20—C11—C10 | 109.8 |
O1—C5—C4 | 112.4 (14) | H19—C11—H18 | 109.0 |
O1—C6—C8 | 103.5 (16) | H19—C11—C10 | 109.0 |
O1—C6—C7 | 106.5 (12) | H18—C11—C10 | 109.3 |
C8—C6—C7 | 109.3 (14) | H21—C12—C10 | 112.4 |
C6—C7—C3 | 112.9 (13) | H21—C12—C13 | 106.1 |
C30—O9—C28 | 122 (3) | H21—C12—O10 | 110.8 |
O2—C9—C28 | 105.3 (16) | H22—C13—C14 | 109.0 |
O2—C9—C10 | 116.2 (17) | H22—C13—C15 | 108.2 |
C28—C9—C10 | 116.1 (13) | H22—C13—C12 | 107.1 |
C12—C10—C11 | 109.9 (14) | H25—C14—H24 | 110.0 |
C12—C10—C9 | 106.6 (13) | H25—C14—H23 | 109.2 |
C11—C10—C9 | 109.9 (14) | H25—C14—C13 | 109.6 |
C10—C12—C13 | 110.4 (13) | H24—C14—H23 | 109.1 |
C10—C12—O10 | 105.7 (13) | H24—C14—C13 | 109.5 |
C13—C12—O10 | 111.2 (14) | H23—C14—C13 | 109.3 |
C14—C13—C15 | 110.7 (17) | H26—C16—O5 | 115.5 |
C14—C13—C12 | 112.4 (16) | H26—C16—C17 | 102.6 |
C15—C13—C12 | 110.5 (13) | H26—C16—C19 | 105.4 |
O4—C15—O5 | 124.5 (16) | H27—C17—H28 | 109.1 |
O4—C15—C13 | 126.3 (16) | H27—C17—C18 | 109.7 |
O5—C15—C13 | 109.1 (14) | H27—C17—C16 | 109.9 |
O5—C16—C17 | 109.0 (13) | H28—C17—C18 | 108.6 |
O5—C16—C19 | 106.2 (12) | H28—C17—C16 | 109.4 |
C17—C16—C19 | 118.1 (12) | H28—C17—H26 | 109.2 |
C18—C17—C16 | 109.5 (15) | H31—C18—H30 | 110.0 |
O6—C19—C20 | 104.5 (15) | H31—C18—H29 | 109.6 |
O6—C19—C16 | 109.8 (12) | H31—C18—C17 | 110.2 |
O6—C19—C21 | 111.0 (11) | H30—C18—H29 | 108.5 |
C20—C19—C16 | 108.3 (11) | H30—C18—C17 | 109.6 |
C20—C19—C21 | 109.5 (13) | H29—C18—C17 | 108.9 |
C16—C19—C21 | 113.4 (11) | C16—C19—H67 | 104.0 |
O7—C21—C22 | 108.4 (13) | H33—C20—H32 | 110.3 |
O7—C21—C19 | 108.1 (15) | H33—C20—H34 | 109.5 |
C22—C21—C19 | 114.2 (14) | H33—C20—C19 | 109.5 |
C24—C22—C21 | 111.6 (16) | H32—C20—H34 | 109.3 |
C24—C22—C23 | 105.3 (16) | H32—C20—C19 | 109.4 |
C21—C22—C23 | 115 (2) | H34—C20—C19 | 108.9 |
O8—C24—C22 | 116.6 (16) | H35—C21—O7 | 113.0 |
O8—C24—C25 | 124.6 (15) | H35—C21—C22 | 107.0 |
C22—C24—C25 | 117.4 (13) | H35—C21—C19 | 106.5 |
C27—C25—C24 | 113.1 (14) | H35—C21—H68 | 112.6 |
C27—C25—C26 | 107.1 (16) | H68—C21—H36 | 113.9 |
C24—C25—C26 | 108.2 (15) | H36—C22—C24 | 113.0 |
C25—C27—C28 | 117.8 (16) | H36—C22—C21 | 103.2 |
O9—C28—C29 | 115 (3) | H36—C22—C23 | 108.8 |
O9—C28—C27 | 107.9 (17) | H38—C23—H37 | 110.1 |
O9—C28—C9 | 110.2 (17) | H38—C23—H39 | 109.5 |
C29—C28—C27 | 108.0 (19) | H38—C23—C22 | 109.8 |
C29—C28—C9 | 106.0 (14) | H37—C23—H39 | 109.0 |
C27—C28—C9 | 109 (2) | H37—C23—C22 | 109.3 |
C3—N1—C2 | 108.6 (19) | H39—C23—C22 | 109.0 |
C3—N1—C1 | 115.0 (18) | H40—C25—C27 | 108.6 |
C2—N1—C1 | 114 (2) | H40—C25—C24 | 107.1 |
O10—C31—O13 | 115.8 (14) | H40—C25—C26 | 112.5 |
O10—C31—C32 | 106.6 (15) | H42—C26—H43 | 110.0 |
O13—C31—C32 | 109.5 (16) | H42—C26—H41 | 109.9 |
C31—C32—C33 | 118.4 (17) | H42—C26—C25 | 110.5 |
O11—C33—C34 | 109 (3) | H43—C26—H41 | 108.1 |
O11—C33—C36 | 107 (2) | H43—C26—C25 | 109.0 |
O11—C33—C32 | 117 (2) | H41—C26—C25 | 109.3 |
C34—C33—C36 | 109 (3) | H44—C27—H45 | 109.4 |
C34—C33—C32 | 107.3 (19) | H44—C27—C25 | 107.1 |
C36—C33—C32 | 109 (2) | H44—C27—C28 | 107.9 |
O12—C36—C37 | 107 (3) | H45—C27—C25 | 106.6 |
O12—C36—C33 | 113 (2) | H45—C27—C28 | 107.5 |
C37—C36—C33 | 111 (2) | H46—C29—H47 | 110.0 |
O13—C37—C38 | 109 (2) | H46—C29—H48 | 109.5 |
O13—C37—C36 | 113 (3) | H46—C29—C28 | 109.3 |
C38—C37—C36 | 112 (2) | H47—C29—H48 | 109.4 |
C31—O10—C12 | 118.0 (13) | H47—C29—C28 | 109.6 |
C35—O11—C33 | 120 (2) | H48—C29—C28 | 109.1 |
C31—O13—C37 | 120.7 (14) | H50—C30—H51 | 110.6 |
H1—C1—H3 | 110.1 | H50—C30—H49 | 109.6 |
H1—C1—H2 | 109.6 | H50—C30—O9 | 109.3 |
H1—C1—N1 | 109.5 | H51—C30—H49 | 109.6 |
H3—C1—H2 | 109.5 | H51—C30—O9 | 108.9 |
H3—C1—N1 | 109.3 | H49—C30—O9 | 108.7 |
H2—C1—N1 | 108.8 | H52—C31—O10 | 107.6 |
H4—C2—H5 | 110.2 | H52—C31—O13 | 103.1 |
H4—C2—H6 | 109.0 | H52—C31—C32 | 114.4 |
H4—C2—N1 | 110.3 | H54—C32—H53 | 109.6 |
H5—C2—H6 | 108.4 | H54—C32—C31 | 106.8 |
H5—C2—N1 | 110.0 | H54—C32—C33 | 108.1 |
H6—C2—N1 | 108.8 | H53—C32—C31 | 106.4 |
H66—O3—C4 | 110.0 | H53—C32—C33 | 107.5 |
H66—O3—H8 | 111.6 | H57—C34—H56 | 111.2 |
H7—C3—N1 | 108.6 | H57—C34—H55 | 109.4 |
H7—C3—C7 | 102.0 | H57—C34—C33 | 110.3 |
H7—C3—C4 | 112.3 | H56—C34—H55 | 108.4 |
H8—C4—O3 | 106.6 | H56—C34—C33 | 109.0 |
H8—C4—C5 | 106.2 | H55—C34—C33 | 108.3 |
H8—C4—C3 | 107.4 | H58—C35—H59 | 110.7 |
H8—C4—H66 | 108.7 | H58—C35—H60 | 108.8 |
H9—C5—O2 | 110.6 | H58—C35—O11 | 110.8 |
H9—C5—O1 | 106.9 | H59—C35—H60 | 108.8 |
H9—C5—C4 | 107.9 | H59—C35—O11 | 110.0 |
O1—C5—H8 | 101.8 | H60—C35—O11 | 107.7 |
H67—O6—C19 | 111.0 | H61—C36—O12 | 108.6 |
H10—C6—O1 | 114.5 | H61—C36—C37 | 112.7 |
H10—C6—C8 | 112.5 | H61—C36—C33 | 105.1 |
H10—C6—C7 | 109.4 | H62—C37—O13 | 108.1 |
H68—O7—C21 | 110.8 | H62—C37—C38 | 109.4 |
H68—O7—H35 | 110.4 | H62—C37—C36 | 105.2 |
H12—C7—H11 | 109.5 | H64—C38—H63 | 109.3 |
H12—C7—C6 | 109.0 | H64—C38—H65 | 109.3 |
H12—C7—C3 | 108.7 | H64—C38—C37 | 110.3 |
H11—C7—C6 | 108.5 | H63—C38—H65 | 108.9 |
H11—C7—C3 | 108.6 | H63—C38—C37 | 109.7 |
C6—C7—H7 | 103.0 | H65—C38—C37 | 109.3 |
H14—C8—H13 | 109.6 | C33—O11—H60 | 111.0 |
H14—C8—H15 | 109.5 | H69—O12—C36 | 109.7 |
H14—C8—C6 | 109.5 | C36—O12—H70 | 110.3 |
H13—C8—H15 | 109.5 | C31—O13—H62 | 107.2 |
H13—C8—C6 | 109.4 | H70—O14—H71 | 104.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H67···O7 | 0.83 | 2.30 | 2.68 (3) | 108 |
O7—H68···O8 | 0.82 | 2.13 | 2.83 (3) | 143 |
O12—H69···O11 | 0.83 | 2.34 | 2.75 (4) | 111 |
O6—H67···O12i | 0.83 | 2.39 | 2.73 (3) | 105 |
O12—H69···O6ii | 0.83 | 2.43 | 2.73 (3) | 102 |
O14—H70···O12 | 0.97 | 1.70 | 2.65 (4) | 168 |
O14—H71···O7ii | 0.95 | 2.58 | 3.51 (4) | 166 |
Symmetry codes: (i) x, y, z+1; (ii) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | C38H69NO13·H2O |
Mr | 765.97 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 298 |
a, b, c (Å) | 15.6999 (2), 18.8817 (2), 15.0267 (2) |
V (Å3) | 4454.53 (9) |
Z | 4 |
Radiation type | Synchrotron, λ = 1.3000 Å |
µ (mm−1) | 0.41 |
Specimen shape, size (mm) | Cylinder, 3.0 × 0.3 |
Data collection | |
Diffractometer | BL-19B2 Debye–Scherrer camera diffractometer |
Specimen mounting | Capilary |
Data collection mode | Transmission |
Scan method | Stationary detector |
2θ values (°) | 2θfixed = 65 |
Refinement | |
R factors and goodness of fit | Rp = 0.038, Rwp = 0.052, Rexp = 0.016, RBragg = 0.059, R(F) = 0.076, R(F2) = 0.07617, χ2 = 11.020 |
No. of data points | 6201 |
No. of parameters | 188 |
No. of restraints | 96 |
H-atom treatment | H-atom parameters not refined |
Computer programs: local software (Osaka et al., 2010; Takata et al., 2002), EXPO2009 (Altomare et al., 2009) and RIETAN-FP (Izumi & Momma, 2007), local software (Takata et al., 2002), CCP4 (Collaborative Computational Project, Number 4, 1994) and RIETAN-FP (Izumi & Momma, 2007), CCP4MG (McNicholas et al., 2011), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H67···O7 | 0.83 | 2.30 | 2.68 (3) | 108 |
O7—H68···O8 | 0.82 | 2.13 | 2.83 (3) | 143 |
O12—H69···O11 | 0.83 | 2.34 | 2.75 (4) | 111 |
O6—H67···O12i | 0.83 | 2.39 | 2.73 (3) | 105 |
O12—H69···O6ii | 0.83 | 2.43 | 2.73 (3) | 102 |
O14—H70···O12 | 0.97 | 1.70 | 2.65 (4) | 168 |
O14—H71···O7ii | 0.95 | 2.58 | 3.51 (4) | 166 |
Symmetry codes: (i) x, y, z+1; (ii) x, y, z−1. |
Acknowledgements
This study was partly supported by a grant from the Pharmaceutical and Medical Device Regulatory Science Society of Japan. The synchrotron radiation experiment at BL19B2 was performed under the approval of the Japan Synchrotron Radiation Research Institute (JASRI; proposal Nos. 2011B1791 and 2011B1912).
References
Altomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A. & Rizzi, R. (2009). J. Appl. Cryst. 42, 1197–1202. Web of Science CrossRef CAS IUCr Journals Google Scholar
Avrutov, I., Lifshitz, I., Borochovitz, R., Masarwa, B. & Schwartz, E. (2003). US Patent No. 6599884. Google Scholar
Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760–763. CrossRef IUCr Journals Google Scholar
Fujiki, S., Iwao, Y., Kobayashi, M., Miyagishima, A. & Itai, S. (2011). Chem. Pharm. Bull. 59, 553–558. CrossRef CAS PubMed Google Scholar
Hanson, R. M. (2010). J. Appl. Cryst. 43, 1250–1260. Web of Science CrossRef CAS IUCr Journals Google Scholar
Iwasaki, H., Sugawara, Y., Adachi, T., Morimoto, S. & Watanabe, Y. (1993). Acta Cryst. C49, 1227–1230. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Izumi, F. & Momma, K. (2007). Solid State Phenom. 130, 15–20. CrossRef CAS Google Scholar
Jin, Z. M., Ma, L. L., Wei, W. X., Lin, C. S. & Li, W. Z. (2011). J. Struct. Chem. 50, 185–189. Web of Science CrossRef Google Scholar
Liang, J. H. & Yao, G. W. (2008). J. Chem. Crystallogr. 38, 61–64. Web of Science CSD CrossRef CAS Google Scholar
Liu, J.-H., Riley, D. A. & Spanton, S. G. (1999). US Patent No. 5 858 986. Google Scholar
McNicholas, S., Potterton, E., Wilson, K. S. & Noble, M. E. M. (2011). Acta Cryst. D67, 386–394. Web of Science CrossRef CAS IUCr Journals Google Scholar
Noguchi, S., Fujiki, S., Iwao, Y., Miura, K. & Itai, S. (2012). In preparation. Google Scholar
Noguchi, S., Miura, K., Fujiki, S., Iwao, Y. & Itai, S. (2012). Acta Cryst. C68, o41–o44. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Osaka, K., Matsumoto, T., Miura, K., Sato, M., Hirosawa, I. & Watanabe, Y. (2010). AIP Conf. Proc. 1234, 9–12. CrossRef Google Scholar
Parvez, M., Arayne, M. S., Sabri, R. & Sultana, N. (2000). Acta Cryst. C56, e398–e399. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Stephenson, G. A., Stowell, J. G., Toma, P. H., Pfeiffer, R. R. & Byrn, S. R. (1997). J. Pharm. Sci. 86, 1239–1244. Web of Science CSD CrossRef CAS PubMed Google Scholar
Takata, M., Nishibori, E., Kato, K., Kubota, Y., Kuroiwa, Y. & Sakata, M. (2002). Adv. X-ray Anal. 45, 377–384. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yajima, T., Umeki, N. & Itai, S. (1999). Chem. Pharm. Bull. 47, 220–225. Web of Science CrossRef PubMed CAS Google Scholar
Yajima, T., Umeki, N. & Itai, S. (2002). Chem. Pharm. Bull. 50, 147–152. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
CAM is a macrolide antibiotic containing a 14-membered ring. Current clinical formulations of CAM use crystals of the stable anhydrate form II in the treatment of infections caused by bacteria (Yajima et al., 1999, 2002; Fujiki et al., 2011). Another anhydrate crystal form of CAM, metastable form I, has a dissolution rate three times greater than that of form II (Liu et al., 1999), indicating its potential use for a new drug formulation. We recently found that CAM form I spontaneously transforms to CAM monohydrate form IV when stored under high-humidity conditions at room temperature (Noguchi, Fujiki et al., 2012). Although existence of form IV has been documented in the literature (Avrutov et al., 2003), its structure remains unknown. As form IV is believed to be a possible impurity of form I, crystallographic characterization of form IV is necessary to enable a new drug formulation using form I to progress into practical use. We report here the crystal structure of form IV as determined by synchrotron powder X-ray diffraction analysis. The asymmetric unit of form IV contains one CAM molecule and one water molecule. The O14 atom of the water molecule behaves as a proton donor and is hydrogen-bonded to the hydroxy O12 atom of the CAM cladinose ring. Furthermore, the hydroxy O12 atom acts as a proton acceptor, forming an intermolecular hydrogen bond with the hydroxy O6i atom of CAM aglycone ring (symmetry code in Table 1). Through this intermolecular O6i—O12 hydrogen bonding interaction, CAM molecules are linked into chains running parallel to the c axis, as shown in Fig. 2.