metal-organic compounds
Redetermination of catena-poly[[chlorido(thiourea-κS)copper(I)]-μ-thiourea-κ2S:S] at 100 K
aLaboratoire Privé de Cristallographie (LPC), Kénitra, Morocco.
*Correspondence e-mail: hafid.zouihri@gmail.com
The structure of the polymeric title compound, [CuCl(CH4N2S)2]n, has been redetermined to modern standards of precision with anisotropic and location of the H atoms. The previous structure report [Spofford & Amma (1970). Acta Cryst. B26, 1474–1483] is generally confirmed to higher precision [typical Cu—S bond length s.u. values = 0.005 (old) and 0.001 Å (new)]. The contains two formula units, with both CuI atoms coordinated by one terminal S atom and two bridging S atoms of thiourea ligands. This connectivity leads to polymeric [100] chains in the crystal. If very long contacts to nearby chloride ions [2.8687 (9) and 3.1394 (12) Å] are considered to be bonding, then very distorted CuS3Cl tetrahedral coordination polyhedra arise. The is consolidated by weak intra- and inter-chain N—H⋯S and N—H⋯Cl hydrogen bonds.
Related literature
For the structure of a related thiourea salt, see: Zouihri (2012). For the previous of the title compound, see: Spofford & Amma (1970).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812004448/hb6598sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812004448/hb6598Isup2.hkl
2 mmol of CuCl2 and 1 mmol of (Diaminomethylidene)sulfonium chloride-thiourea (3/2) [Zouihri, 2012] in 5 ml of ethanol were refluxed for 1 h, forming a colorless solution. The solution was allowed to evaporate slowly and colourless prisms were obtained after several days.
All H atoms were located from difference Fourier maps and refined isotrpically, with restained distance N—H = 0.86 (2) A.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. Molecular view of the title compound showing displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. Projection of the title compound along the a axis, H-bonds are represented by dashed lines. |
[CuCl(CH4N2S)2] | F(000) = 1008 |
Mr = 251.24 | Dx = 1.968 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 368 reflections |
a = 5.8043 (2) Å | θ = 1.7–27.2° |
b = 8.1292 (3) Å | µ = 3.32 mm−1 |
c = 35.9657 (12) Å | T = 100 K |
β = 92.326 (2)° | Prism, colourless |
V = 1695.62 (10) Å3 | 0.45 × 0.18 × 0.07 mm |
Z = 8 |
Bruker APEXII CCD detector diffractometer | 4089 independent reflections |
Radiation source: fine-focus sealed tube | 3372 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ω and ϕ scans | θmax = 28.0°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −7→7 |
Tmin = 0.493, Tmax = 0.793 | k = −10→10 |
18106 measured reflections | l = −47→33 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.081 | All H-atom parameters refined |
S = 1.15 | w = 1/[σ2(Fo2) + (0.0226P)2 + 3.6977P] where P = (Fo2 + 2Fc2)/3 |
4089 reflections | (Δ/σ)max = 0.001 |
245 parameters | Δρmax = 0.58 e Å−3 |
16 restraints | Δρmin = −0.85 e Å−3 |
[CuCl(CH4N2S)2] | V = 1695.62 (10) Å3 |
Mr = 251.24 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.8043 (2) Å | µ = 3.32 mm−1 |
b = 8.1292 (3) Å | T = 100 K |
c = 35.9657 (12) Å | 0.45 × 0.18 × 0.07 mm |
β = 92.326 (2)° |
Bruker APEXII CCD detector diffractometer | 4089 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3372 reflections with I > 2σ(I) |
Tmin = 0.493, Tmax = 0.793 | Rint = 0.040 |
18106 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 16 restraints |
wR(F2) = 0.081 | All H-atom parameters refined |
S = 1.15 | Δρmax = 0.58 e Å−3 |
4089 reflections | Δρmin = −0.85 e Å−3 |
245 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.20578 (8) | 0.31958 (6) | 0.100266 (15) | 0.02808 (13) | |
Cu2 | −0.13231 (8) | 0.24956 (6) | 0.157138 (12) | 0.02293 (12) | |
Cl1 | −0.45164 (14) | 0.01524 (10) | 0.18514 (2) | 0.01749 (17) | |
Cl2 | 0.35733 (14) | 0.18063 (12) | 0.02357 (3) | 0.0253 (2) | |
S3 | 0.05347 (13) | 0.07669 (10) | 0.11866 (2) | 0.01369 (17) | |
S4 | 0.06418 (14) | 0.35188 (12) | 0.20688 (3) | 0.0207 (2) | |
S2 | 0.02223 (14) | 0.52774 (12) | 0.06966 (3) | 0.01974 (19) | |
S1 | 0.55003 (14) | 0.38438 (11) | 0.13126 (3) | 0.01895 (19) | |
C4 | −0.1303 (6) | 0.3857 (4) | 0.24079 (10) | 0.0203 (8) | |
C3 | −0.1615 (5) | 0.0262 (4) | 0.08459 (9) | 0.0148 (7) | |
C1 | 0.5411 (6) | 0.5852 (4) | 0.14784 (10) | 0.0183 (7) | |
C2 | 0.2234 (6) | 0.6102 (4) | 0.04098 (10) | 0.0179 (7) | |
N3 | 0.4489 (5) | 0.5983 (5) | 0.04812 (10) | 0.0268 (8) | |
N1 | 0.7193 (6) | 0.6469 (4) | 0.16698 (10) | 0.0277 (8) | |
N7 | −0.3535 (5) | 0.3549 (5) | 0.23575 (10) | 0.0298 (8) | |
N2 | 0.3566 (5) | 0.6769 (4) | 0.14099 (9) | 0.0224 (7) | |
N4 | 0.1543 (5) | 0.6897 (5) | 0.01073 (9) | 0.0259 (7) | |
N6 | −0.3721 (5) | −0.0059 (4) | 0.09504 (9) | 0.0227 (7) | |
N5 | −0.1090 (5) | 0.0156 (4) | 0.04974 (8) | 0.0218 (7) | |
N8 | −0.0560 (6) | 0.4419 (5) | 0.27368 (10) | 0.0295 (8) | |
H5A | 0.026 (4) | 0.043 (5) | 0.0426 (12) | 0.037 (13)* | |
H6A | −0.482 (6) | −0.015 (6) | 0.0781 (11) | 0.049 (15)* | |
H7A | −0.398 (7) | 0.304 (5) | 0.2160 (8) | 0.034 (13)* | |
H8A | −0.148 (6) | 0.478 (6) | 0.2898 (10) | 0.040 (14)* | |
H3A | 0.500 (7) | 0.538 (4) | 0.0666 (8) | 0.023 (11)* | |
H4A | 0.258 (5) | 0.731 (5) | −0.0024 (10) | 0.024 (11)* | |
H5B | −0.207 (6) | −0.017 (5) | 0.0328 (9) | 0.028 (11)* | |
H6B | −0.401 (7) | 0.005 (5) | 0.1181 (6) | 0.027 (12)* | |
H7B | −0.443 (7) | 0.391 (6) | 0.2526 (10) | 0.043 (14)* | |
H8B | 0.082 (4) | 0.477 (6) | 0.2753 (14) | 0.048 (15)* | |
H2B | 0.358 (7) | 0.775 (3) | 0.1496 (11) | 0.025 (12)* | |
H1B | 0.817 (6) | 0.573 (4) | 0.1748 (11) | 0.025 (11)* | |
H4B | 0.016 (4) | 0.692 (5) | 0.0030 (12) | 0.030 (12)* | |
H3B | 0.537 (7) | 0.639 (6) | 0.0320 (10) | 0.041 (14)* | |
H2A | 0.249 (5) | 0.639 (5) | 0.1260 (9) | 0.026 (11)* | |
H1A | 0.715 (8) | 0.743 (3) | 0.1764 (13) | 0.044 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0184 (2) | 0.0208 (2) | 0.0442 (3) | −0.00450 (19) | −0.0103 (2) | 0.0088 (2) |
Cu2 | 0.0198 (2) | 0.0286 (3) | 0.0199 (2) | 0.00834 (19) | −0.00549 (18) | −0.0093 (2) |
Cl1 | 0.0177 (4) | 0.0183 (4) | 0.0164 (4) | 0.0011 (3) | 0.0005 (3) | −0.0003 (3) |
Cl2 | 0.0123 (4) | 0.0327 (5) | 0.0309 (5) | −0.0007 (4) | 0.0013 (3) | 0.0069 (4) |
S3 | 0.0108 (3) | 0.0163 (4) | 0.0139 (4) | 0.0007 (3) | −0.0005 (3) | −0.0006 (3) |
S4 | 0.0119 (4) | 0.0297 (5) | 0.0202 (4) | 0.0024 (3) | −0.0022 (3) | −0.0077 (4) |
S2 | 0.0102 (4) | 0.0267 (5) | 0.0223 (5) | 0.0015 (3) | 0.0006 (3) | 0.0057 (4) |
S1 | 0.0160 (4) | 0.0135 (4) | 0.0266 (5) | 0.0012 (3) | −0.0077 (4) | −0.0010 (3) |
C4 | 0.0162 (16) | 0.0191 (18) | 0.0251 (19) | 0.0030 (14) | −0.0043 (14) | −0.0062 (15) |
C3 | 0.0121 (15) | 0.0167 (17) | 0.0156 (17) | −0.0031 (13) | −0.0002 (13) | −0.0031 (13) |
C1 | 0.0169 (16) | 0.0179 (18) | 0.0200 (18) | −0.0008 (14) | 0.0007 (14) | 0.0027 (14) |
C2 | 0.0138 (15) | 0.0233 (19) | 0.0166 (17) | 0.0016 (14) | −0.0019 (13) | −0.0019 (14) |
N3 | 0.0121 (14) | 0.042 (2) | 0.0262 (19) | −0.0001 (14) | 0.0008 (13) | 0.0125 (16) |
N1 | 0.0277 (17) | 0.0149 (17) | 0.039 (2) | 0.0035 (14) | −0.0143 (15) | −0.0072 (15) |
N7 | 0.0121 (14) | 0.051 (2) | 0.0263 (19) | −0.0026 (15) | 0.0018 (14) | −0.0180 (17) |
N2 | 0.0181 (15) | 0.0173 (16) | 0.0314 (18) | 0.0034 (13) | −0.0036 (13) | −0.0054 (15) |
N4 | 0.0114 (14) | 0.041 (2) | 0.0249 (18) | −0.0017 (14) | −0.0019 (13) | 0.0098 (15) |
N6 | 0.0153 (14) | 0.0362 (19) | 0.0166 (16) | −0.0091 (14) | 0.0006 (13) | −0.0030 (15) |
N5 | 0.0152 (15) | 0.0377 (19) | 0.0123 (15) | −0.0063 (14) | −0.0001 (12) | −0.0044 (13) |
N8 | 0.0185 (16) | 0.046 (2) | 0.0237 (18) | −0.0033 (16) | −0.0016 (14) | −0.0193 (16) |
Cu1—S1 | 2.3091 (9) | C1—N2 | 1.320 (4) |
Cu1—S2 | 2.2617 (10) | C2—N4 | 1.314 (5) |
Cu1—S3 | 2.2728 (10) | C2—N3 | 1.327 (4) |
Cu1—Cl2 | 3.1394 (12) | N3—H3A | 0.867 (19) |
Cu2—S1i | 2.3081 (9) | N3—H3B | 0.853 (19) |
Cu2—S3 | 2.2747 (9) | N1—H1B | 0.862 (19) |
Cu2—S4 | 2.2421 (9) | N1—H1A | 0.855 (19) |
Cu2—Cl1 | 2.8687 (9) | N7—H7A | 0.854 (19) |
Cu1—Cu2 | 2.9470 (7) | N7—H7B | 0.867 (19) |
S3—C3 | 1.761 (3) | N2—H2B | 0.852 (19) |
S4—C4 | 1.717 (4) | N2—H2A | 0.867 (19) |
S2—C2 | 1.725 (4) | N4—H4A | 0.852 (19) |
S1—C1 | 1.739 (4) | N4—H4B | 0.837 (19) |
S1—Cu2ii | 2.3081 (9) | N6—H6A | 0.866 (19) |
C4—N8 | 1.324 (5) | N6—H6B | 0.857 (19) |
C4—N7 | 1.325 (4) | N5—H5A | 0.862 (19) |
C3—N5 | 1.305 (4) | N5—H5B | 0.856 (19) |
C3—N6 | 1.320 (4) | N8—H8A | 0.856 (19) |
C1—N1 | 1.319 (5) | N8—H8B | 0.852 (19) |
Cl2—Cu1—S1 | 103.79 (3) | N5—C3—S3 | 119.8 (2) |
Cl2—Cu1—S2 | 89.13 (4) | N6—C3—S3 | 119.1 (3) |
Cl2—Cu1—S3 | 93.98 (3) | N1—C1—N2 | 119.7 (3) |
S1—Cu1—S2 | 116.46 (4) | N1—C1—S1 | 120.1 (3) |
S1—Cu1—S3 | 113.38 (4) | N2—C1—S1 | 120.1 (3) |
S2—Cu1—S3 | 127.63 (4) | N4—C2—N3 | 117.5 (3) |
Cl1—Cu2—S3 | 97.61 (3) | N4—C2—S2 | 119.7 (3) |
Cl1—Cu2—S4 | 106.33 (3) | N3—C2—S2 | 122.8 (3) |
Cl1—Cu2—S1i | 86.56 (3) | C2—N3—H3A | 120 (3) |
S2—Cu1—S3 | 127.63 (4) | C2—N3—H3B | 117 (3) |
S2—Cu1—S1 | 116.46 (4) | H3A—N3—H3B | 123 (4) |
S3—Cu1—S1 | 113.38 (4) | C1—N1—H1B | 113 (3) |
S2—Cu1—Cu2 | 99.70 (3) | C1—N1—H1A | 122 (3) |
S3—Cu1—Cu2 | 49.63 (2) | H1B—N1—H1A | 122 (4) |
S1—Cu1—Cu2 | 107.25 (3) | C4—N7—H7A | 118 (3) |
S4—Cu2—S3 | 118.44 (3) | C4—N7—H7B | 117 (3) |
S4—Cu2—S1i | 121.18 (4) | H7A—N7—H7B | 125 (4) |
S3—Cu2—S1i | 116.02 (4) | C1—N2—H2B | 118 (3) |
S4—Cu2—Cu1 | 98.66 (3) | C1—N2—H2A | 118 (3) |
S3—Cu2—Cu1 | 49.58 (3) | H2B—N2—H2A | 124 (4) |
S1i—Cu2—Cu1 | 99.90 (3) | C2—N4—H4A | 117 (3) |
C3—S3—Cu1 | 105.83 (12) | C2—N4—H4B | 123 (3) |
C3—S3—Cu2 | 103.14 (11) | H4A—N4—H4B | 120 (4) |
Cu1—S3—Cu2 | 80.79 (3) | C3—N6—H6A | 119 (3) |
C4—S4—Cu2 | 107.36 (12) | C3—N6—H6B | 118 (3) |
C2—S2—Cu1 | 105.36 (12) | H6A—N6—H6B | 122 (4) |
C1—S1—Cu2ii | 110.00 (12) | C3—N5—H5A | 121 (3) |
C1—S1—Cu1 | 110.01 (12) | C3—N5—H5B | 122 (3) |
Cu2ii—S1—Cu1 | 138.40 (4) | H5A—N5—H5B | 117 (4) |
N8—C4—N7 | 117.9 (4) | C4—N8—H8A | 122 (3) |
N8—C4—S4 | 119.4 (3) | C4—N8—H8B | 117 (3) |
N7—C4—S4 | 122.7 (3) | H8A—N8—H8B | 117 (5) |
N5—C3—N6 | 121.0 (3) |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1iii | 0.85 (3) | 2.44 (3) | 3.230 (3) | 154 (4) |
N1—H1B···S4ii | 0.87 (3) | 2.55 (3) | 3.404 (4) | 171 (3) |
N2—H2A···S2 | 0.87 (3) | 2.54 (3) | 3.379 (3) | 164 (3) |
N2—H2B···Cl1iii | 0.86 (3) | 2.56 (3) | 3.344 (3) | 153 (3) |
N3—H3A···S1 | 0.87 (3) | 2.65 (3) | 3.488 (4) | 164 (3) |
N3—H3B···Cl2iv | 0.86 (4) | 2.57 (4) | 3.373 (4) | 156 (4) |
N4—H4A···Cl2iv | 0.85 (3) | 2.49 (3) | 3.309 (3) | 161 (3) |
N4—H4B···Cl2v | 0.84 (3) | 2.55 (3) | 3.340 (3) | 157 (4) |
N5—H5A···Cl2 | 0.86 (3) | 2.35 (3) | 3.197 (3) | 167 (4) |
N5—H5B···Cl2vi | 0.86 (3) | 2.55 (4) | 3.356 (3) | 157 (3) |
N6—H6A···Cl2i | 0.87 (4) | 2.66 (4) | 3.323 (3) | 134 (4) |
N6—H6B···Cl1 | 0.86 (2) | 2.44 (2) | 3.296 (3) | 174 (3) |
N7—H7A···Cl1 | 0.85 (3) | 2.61 (4) | 3.343 (4) | 145 (3) |
N7—H7B···Cl1vii | 0.87 (4) | 2.55 (4) | 3.367 (4) | 157 (3) |
N8—H8A···Cl1vii | 0.86 (4) | 2.54 (4) | 3.326 (4) | 152 (3) |
N8—H8B···Cl1viii | 0.85 (3) | 2.55 (3) | 3.298 (4) | 148 (4) |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) −x+1, −y+1, −z; (v) −x, −y+1, −z; (vi) −x, −y, −z; (vii) −x−1, y+1/2, −z+1/2; (viii) −x, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [CuCl(CH4N2S)2] |
Mr | 251.24 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 5.8043 (2), 8.1292 (3), 35.9657 (12) |
β (°) | 92.326 (2) |
V (Å3) | 1695.62 (10) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 3.32 |
Crystal size (mm) | 0.45 × 0.18 × 0.07 |
Data collection | |
Diffractometer | Bruker APEXII CCD detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.493, 0.793 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18106, 4089, 3372 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.081, 1.15 |
No. of reflections | 4089 |
No. of parameters | 245 |
No. of restraints | 16 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.58, −0.85 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).
Cu1—S1 | 2.3091 (9) | Cu2—S1i | 2.3081 (9) |
Cu1—S2 | 2.2617 (10) | Cu2—S3 | 2.2747 (9) |
Cu1—S3 | 2.2728 (10) | Cu2—S4 | 2.2421 (9) |
Cu1—Cl2 | 3.1394 (12) | Cu2—Cl1 | 2.8687 (9) |
Symmetry code: (i) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1ii | 0.85 (3) | 2.44 (3) | 3.230 (3) | 154 (4) |
N1—H1B···S4iii | 0.87 (3) | 2.55 (3) | 3.404 (4) | 171 (3) |
N2—H2A···S2 | 0.87 (3) | 2.54 (3) | 3.379 (3) | 164 (3) |
N2—H2B···Cl1ii | 0.86 (3) | 2.56 (3) | 3.344 (3) | 153 (3) |
N3—H3A···S1 | 0.87 (3) | 2.65 (3) | 3.488 (4) | 164 (3) |
N3—H3B···Cl2iv | 0.86 (4) | 2.57 (4) | 3.373 (4) | 156 (4) |
N4—H4A···Cl2iv | 0.85 (3) | 2.49 (3) | 3.309 (3) | 161 (3) |
N4—H4B···Cl2v | 0.84 (3) | 2.55 (3) | 3.340 (3) | 157 (4) |
N5—H5A···Cl2 | 0.86 (3) | 2.35 (3) | 3.197 (3) | 167 (4) |
N5—H5B···Cl2vi | 0.86 (3) | 2.55 (4) | 3.356 (3) | 157 (3) |
N6—H6A···Cl2i | 0.87 (4) | 2.66 (4) | 3.323 (3) | 134 (4) |
N6—H6B···Cl1 | 0.86 (2) | 2.44 (2) | 3.296 (3) | 174 (3) |
N7—H7A···Cl1 | 0.85 (3) | 2.61 (4) | 3.343 (4) | 145 (3) |
N7—H7B···Cl1vii | 0.87 (4) | 2.55 (4) | 3.367 (4) | 157 (3) |
N8—H8A···Cl1vii | 0.86 (4) | 2.54 (4) | 3.326 (4) | 152 (3) |
N8—H8B···Cl1viii | 0.85 (3) | 2.55 (3) | 3.298 (4) | 148 (4) |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) −x+1, −y+1, −z; (v) −x, −y+1, −z; (vi) −x, −y, −z; (vii) −x−1, y+1/2, −z+1/2; (viii) −x, y+1/2, −z+1/2. |
Acknowledgements
The author thanks the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
References
Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spofford, W. A. & Amma, E. L. (1970). Acta Cryst. B26, 1474–1483. CSD CrossRef IUCr Journals Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zouihri, H. (2012). Acta Cryst. E68, o257. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In a former paper, we reported the crystal structure of (Diaminomethylidene)sulfonium chloride-thiourea (3/2) [Zouihri, 2012]. In this paper, we report the synthesis and the structure of the title compound. It was previously described by Spofford & Amma (1970).
The asymmetric unit of the title compound is shown in Fig. 1. The CuI ions have distorted tetrahedral coordination geometries formed by two bridging thiourea ligands, one terminal thiourea ligand and one chloride ion (Cu—S and Cu—Cl distances in the range of 2.2618 (10) Å to 3.1392 (12) Å) generating parallel one-dimensional polymeric chains propagating in the a axis direction.
In the crystal structure, there are two different types of hydrogen bonds (Table 1, Fig. 2). Intra-chain N—H···S and N—H···Cl interactions appear to influence the conformation of the helical chains while inter-chain N—H···S and N—H···Cl interactions crosslink the chains.