metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m260-m261

Redetermination of catena-poly[[chlorido­(thio­urea-κS)copper(I)]-μ-thio­urea-κ2S:S] at 100 K

aLaboratoire Privé de Cristallographie (LPC), Kénitra, Morocco.
*Correspondence e-mail: hafid.zouihri@gmail.com

(Received 8 January 2012; accepted 2 February 2012; online 10 February 2012)

The structure of the polymeric title compound, [CuCl(CH4N2S)2]n, has been redetermined to modern standards of precision with anisotropic refinement and location of the H atoms. The previous structure report [Spofford & Amma (1970[Spofford, W. A. & Amma, E. L. (1970). Acta Cryst. B26, 1474-1483.]). Acta Cryst. B26, 1474–1483] is generally confirmed to higher precision [typical Cu—S bond length s.u. values = 0.005 (old) and 0.001 Å (new)]. The asymmetric unit contains two formula units, with both CuI atoms coordinated by one terminal S atom and two bridging S atoms of thio­urea ligands. This connectivity leads to polymeric [100] chains in the crystal. If very long contacts to nearby chloride ions [2.8687 (9) and 3.1394 (12) Å] are considered to be bonding, then very distorted CuS3Cl tetra­hedral coordination polyhedra arise. The crystal structure is consolidated by weak intra- and inter-chain N—H⋯S and N—H⋯Cl hydrogen bonds.

Related literature

For the structure of a related thio­urea salt, see: Zouihri (2012[Zouihri, H. (2012). Acta Cryst. E68, o257.]). For the previous structure determination of the title compound, see: Spofford & Amma (1970[Spofford, W. A. & Amma, E. L. (1970). Acta Cryst. B26, 1474-1483.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl(CH4N2S)2]

  • Mr = 251.24

  • Monoclinic, P 21 /c

  • a = 5.8043 (2) Å

  • b = 8.1292 (3) Å

  • c = 35.9657 (12) Å

  • β = 92.326 (2)°

  • V = 1695.62 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.32 mm−1

  • T = 100 K

  • 0.45 × 0.18 × 0.07 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.493, Tmax = 0.793

  • 18106 measured reflections

  • 4089 independent reflections

  • 3372 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.081

  • S = 1.15

  • 4089 reflections

  • 245 parameters

  • 16 restraints

  • All H-atom parameters refined

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—S1 2.3091 (9)
Cu1—S2 2.2617 (10)
Cu1—S3 2.2728 (10)
Cu1—Cl2 3.1394 (12)
Cu2—S1i 2.3081 (9)
Cu2—S3 2.2747 (9)
Cu2—S4 2.2421 (9)
Cu2—Cl1 2.8687 (9)
Symmetry code: (i) x-1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1ii 0.85 (3) 2.44 (3) 3.230 (3) 154 (4)
N1—H1B⋯S4iii 0.87 (3) 2.55 (3) 3.404 (4) 171 (3)
N2—H2A⋯S2 0.87 (3) 2.54 (3) 3.379 (3) 164 (3)
N2—H2B⋯Cl1ii 0.86 (3) 2.56 (3) 3.344 (3) 153 (3)
N3—H3A⋯S1 0.87 (3) 2.65 (3) 3.488 (4) 164 (3)
N3—H3B⋯Cl2iv 0.86 (4) 2.57 (4) 3.373 (4) 156 (4)
N4—H4A⋯Cl2iv 0.85 (3) 2.49 (3) 3.309 (3) 161 (3)
N4—H4B⋯Cl2v 0.84 (3) 2.55 (3) 3.340 (3) 157 (4)
N5—H5A⋯Cl2 0.86 (3) 2.35 (3) 3.197 (3) 167 (4)
N5—H5B⋯Cl2vi 0.86 (3) 2.55 (4) 3.356 (3) 157 (3)
N6—H6A⋯Cl2i 0.87 (4) 2.66 (4) 3.323 (3) 134 (4)
N6—H6B⋯Cl1 0.86 (2) 2.44 (2) 3.296 (3) 174 (3)
N7—H7A⋯Cl1 0.85 (3) 2.61 (4) 3.343 (4) 145 (3)
N7—H7B⋯Cl1vii 0.87 (4) 2.55 (4) 3.367 (4) 157 (3)
N8—H8A⋯Cl1vii 0.86 (4) 2.54 (4) 3.326 (4) 152 (3)
N8—H8B⋯Cl1viii 0.85 (3) 2.55 (3) 3.298 (4) 148 (4)
Symmetry codes: (i) x-1, y, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) -x+1, -y+1, -z; (v) -x, -y+1, -z; (vi) -x, -y, -z; (vii) [-x-1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In a former paper, we reported the crystal structure of (Diaminomethylidene)sulfonium chloride-thiourea (3/2) [Zouihri, 2012]. In this paper, we report the synthesis and the structure of the title compound. It was previously described by Spofford & Amma (1970).

The asymmetric unit of the title compound is shown in Fig. 1. The CuI ions have distorted tetrahedral coordination geometries formed by two bridging thiourea ligands, one terminal thiourea ligand and one chloride ion (Cu—S and Cu—Cl distances in the range of 2.2618 (10) Å to 3.1392 (12) Å) generating parallel one-dimensional polymeric chains propagating in the a axis direction.

In the crystal structure, there are two different types of hydrogen bonds (Table 1, Fig. 2). Intra-chain N—H···S and N—H···Cl interactions appear to influence the conformation of the helical chains while inter-chain N—H···S and N—H···Cl interactions crosslink the chains.

Related literature top

For the structure of a related thiourea salt, see: Zouihri (2012). For the previous structure determination of the title compound, see: Spofford & Amma (1970).

Experimental top

2 mmol of CuCl2 and 1 mmol of (Diaminomethylidene)sulfonium chloride-thiourea (3/2) [Zouihri, 2012] in 5 ml of ethanol were refluxed for 1 h, forming a colorless solution. The solution was allowed to evaporate slowly and colourless prisms were obtained after several days.

Refinement top

All H atoms were located from difference Fourier maps and refined isotrpically, with restained distance N—H = 0.86 (2) A.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Projection of the title compound along the a axis, H-bonds are represented by dashed lines.
catena-poly[[chlorido(thiourea-κS)copper(I)]-µ-thiourea- κ2S:S] top
Crystal data top
[CuCl(CH4N2S)2]F(000) = 1008
Mr = 251.24Dx = 1.968 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 368 reflections
a = 5.8043 (2) Åθ = 1.7–27.2°
b = 8.1292 (3) ŵ = 3.32 mm1
c = 35.9657 (12) ÅT = 100 K
β = 92.326 (2)°Prism, colourless
V = 1695.62 (10) Å30.45 × 0.18 × 0.07 mm
Z = 8
Data collection top
Bruker APEXII CCD detector
diffractometer
4089 independent reflections
Radiation source: fine-focus sealed tube3372 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω and ϕ scansθmax = 28.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.493, Tmax = 0.793k = 1010
18106 measured reflectionsl = 4733
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081All H-atom parameters refined
S = 1.15 w = 1/[σ2(Fo2) + (0.0226P)2 + 3.6977P]
where P = (Fo2 + 2Fc2)/3
4089 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.58 e Å3
16 restraintsΔρmin = 0.85 e Å3
Crystal data top
[CuCl(CH4N2S)2]V = 1695.62 (10) Å3
Mr = 251.24Z = 8
Monoclinic, P21/cMo Kα radiation
a = 5.8043 (2) ŵ = 3.32 mm1
b = 8.1292 (3) ÅT = 100 K
c = 35.9657 (12) Å0.45 × 0.18 × 0.07 mm
β = 92.326 (2)°
Data collection top
Bruker APEXII CCD detector
diffractometer
4089 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3372 reflections with I > 2σ(I)
Tmin = 0.493, Tmax = 0.793Rint = 0.040
18106 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04316 restraints
wR(F2) = 0.081All H-atom parameters refined
S = 1.15Δρmax = 0.58 e Å3
4089 reflectionsΔρmin = 0.85 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.20578 (8)0.31958 (6)0.100266 (15)0.02808 (13)
Cu20.13231 (8)0.24956 (6)0.157138 (12)0.02293 (12)
Cl10.45164 (14)0.01524 (10)0.18514 (2)0.01749 (17)
Cl20.35733 (14)0.18063 (12)0.02357 (3)0.0253 (2)
S30.05347 (13)0.07669 (10)0.11866 (2)0.01369 (17)
S40.06418 (14)0.35188 (12)0.20688 (3)0.0207 (2)
S20.02223 (14)0.52774 (12)0.06966 (3)0.01974 (19)
S10.55003 (14)0.38438 (11)0.13126 (3)0.01895 (19)
C40.1303 (6)0.3857 (4)0.24079 (10)0.0203 (8)
C30.1615 (5)0.0262 (4)0.08459 (9)0.0148 (7)
C10.5411 (6)0.5852 (4)0.14784 (10)0.0183 (7)
C20.2234 (6)0.6102 (4)0.04098 (10)0.0179 (7)
N30.4489 (5)0.5983 (5)0.04812 (10)0.0268 (8)
N10.7193 (6)0.6469 (4)0.16698 (10)0.0277 (8)
N70.3535 (5)0.3549 (5)0.23575 (10)0.0298 (8)
N20.3566 (5)0.6769 (4)0.14099 (9)0.0224 (7)
N40.1543 (5)0.6897 (5)0.01073 (9)0.0259 (7)
N60.3721 (5)0.0059 (4)0.09504 (9)0.0227 (7)
N50.1090 (5)0.0156 (4)0.04974 (8)0.0218 (7)
N80.0560 (6)0.4419 (5)0.27368 (10)0.0295 (8)
H5A0.026 (4)0.043 (5)0.0426 (12)0.037 (13)*
H6A0.482 (6)0.015 (6)0.0781 (11)0.049 (15)*
H7A0.398 (7)0.304 (5)0.2160 (8)0.034 (13)*
H8A0.148 (6)0.478 (6)0.2898 (10)0.040 (14)*
H3A0.500 (7)0.538 (4)0.0666 (8)0.023 (11)*
H4A0.258 (5)0.731 (5)0.0024 (10)0.024 (11)*
H5B0.207 (6)0.017 (5)0.0328 (9)0.028 (11)*
H6B0.401 (7)0.005 (5)0.1181 (6)0.027 (12)*
H7B0.443 (7)0.391 (6)0.2526 (10)0.043 (14)*
H8B0.082 (4)0.477 (6)0.2753 (14)0.048 (15)*
H2B0.358 (7)0.775 (3)0.1496 (11)0.025 (12)*
H1B0.817 (6)0.573 (4)0.1748 (11)0.025 (11)*
H4B0.016 (4)0.692 (5)0.0030 (12)0.030 (12)*
H3B0.537 (7)0.639 (6)0.0320 (10)0.041 (14)*
H2A0.249 (5)0.639 (5)0.1260 (9)0.026 (11)*
H1A0.715 (8)0.743 (3)0.1764 (13)0.044 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0184 (2)0.0208 (2)0.0442 (3)0.00450 (19)0.0103 (2)0.0088 (2)
Cu20.0198 (2)0.0286 (3)0.0199 (2)0.00834 (19)0.00549 (18)0.0093 (2)
Cl10.0177 (4)0.0183 (4)0.0164 (4)0.0011 (3)0.0005 (3)0.0003 (3)
Cl20.0123 (4)0.0327 (5)0.0309 (5)0.0007 (4)0.0013 (3)0.0069 (4)
S30.0108 (3)0.0163 (4)0.0139 (4)0.0007 (3)0.0005 (3)0.0006 (3)
S40.0119 (4)0.0297 (5)0.0202 (4)0.0024 (3)0.0022 (3)0.0077 (4)
S20.0102 (4)0.0267 (5)0.0223 (5)0.0015 (3)0.0006 (3)0.0057 (4)
S10.0160 (4)0.0135 (4)0.0266 (5)0.0012 (3)0.0077 (4)0.0010 (3)
C40.0162 (16)0.0191 (18)0.0251 (19)0.0030 (14)0.0043 (14)0.0062 (15)
C30.0121 (15)0.0167 (17)0.0156 (17)0.0031 (13)0.0002 (13)0.0031 (13)
C10.0169 (16)0.0179 (18)0.0200 (18)0.0008 (14)0.0007 (14)0.0027 (14)
C20.0138 (15)0.0233 (19)0.0166 (17)0.0016 (14)0.0019 (13)0.0019 (14)
N30.0121 (14)0.042 (2)0.0262 (19)0.0001 (14)0.0008 (13)0.0125 (16)
N10.0277 (17)0.0149 (17)0.039 (2)0.0035 (14)0.0143 (15)0.0072 (15)
N70.0121 (14)0.051 (2)0.0263 (19)0.0026 (15)0.0018 (14)0.0180 (17)
N20.0181 (15)0.0173 (16)0.0314 (18)0.0034 (13)0.0036 (13)0.0054 (15)
N40.0114 (14)0.041 (2)0.0249 (18)0.0017 (14)0.0019 (13)0.0098 (15)
N60.0153 (14)0.0362 (19)0.0166 (16)0.0091 (14)0.0006 (13)0.0030 (15)
N50.0152 (15)0.0377 (19)0.0123 (15)0.0063 (14)0.0001 (12)0.0044 (13)
N80.0185 (16)0.046 (2)0.0237 (18)0.0033 (16)0.0016 (14)0.0193 (16)
Geometric parameters (Å, º) top
Cu1—S12.3091 (9)C1—N21.320 (4)
Cu1—S22.2617 (10)C2—N41.314 (5)
Cu1—S32.2728 (10)C2—N31.327 (4)
Cu1—Cl23.1394 (12)N3—H3A0.867 (19)
Cu2—S1i2.3081 (9)N3—H3B0.853 (19)
Cu2—S32.2747 (9)N1—H1B0.862 (19)
Cu2—S42.2421 (9)N1—H1A0.855 (19)
Cu2—Cl12.8687 (9)N7—H7A0.854 (19)
Cu1—Cu22.9470 (7)N7—H7B0.867 (19)
S3—C31.761 (3)N2—H2B0.852 (19)
S4—C41.717 (4)N2—H2A0.867 (19)
S2—C21.725 (4)N4—H4A0.852 (19)
S1—C11.739 (4)N4—H4B0.837 (19)
S1—Cu2ii2.3081 (9)N6—H6A0.866 (19)
C4—N81.324 (5)N6—H6B0.857 (19)
C4—N71.325 (4)N5—H5A0.862 (19)
C3—N51.305 (4)N5—H5B0.856 (19)
C3—N61.320 (4)N8—H8A0.856 (19)
C1—N11.319 (5)N8—H8B0.852 (19)
Cl2—Cu1—S1103.79 (3)N5—C3—S3119.8 (2)
Cl2—Cu1—S289.13 (4)N6—C3—S3119.1 (3)
Cl2—Cu1—S393.98 (3)N1—C1—N2119.7 (3)
S1—Cu1—S2116.46 (4)N1—C1—S1120.1 (3)
S1—Cu1—S3113.38 (4)N2—C1—S1120.1 (3)
S2—Cu1—S3127.63 (4)N4—C2—N3117.5 (3)
Cl1—Cu2—S397.61 (3)N4—C2—S2119.7 (3)
Cl1—Cu2—S4106.33 (3)N3—C2—S2122.8 (3)
Cl1—Cu2—S1i86.56 (3)C2—N3—H3A120 (3)
S2—Cu1—S3127.63 (4)C2—N3—H3B117 (3)
S2—Cu1—S1116.46 (4)H3A—N3—H3B123 (4)
S3—Cu1—S1113.38 (4)C1—N1—H1B113 (3)
S2—Cu1—Cu299.70 (3)C1—N1—H1A122 (3)
S3—Cu1—Cu249.63 (2)H1B—N1—H1A122 (4)
S1—Cu1—Cu2107.25 (3)C4—N7—H7A118 (3)
S4—Cu2—S3118.44 (3)C4—N7—H7B117 (3)
S4—Cu2—S1i121.18 (4)H7A—N7—H7B125 (4)
S3—Cu2—S1i116.02 (4)C1—N2—H2B118 (3)
S4—Cu2—Cu198.66 (3)C1—N2—H2A118 (3)
S3—Cu2—Cu149.58 (3)H2B—N2—H2A124 (4)
S1i—Cu2—Cu199.90 (3)C2—N4—H4A117 (3)
C3—S3—Cu1105.83 (12)C2—N4—H4B123 (3)
C3—S3—Cu2103.14 (11)H4A—N4—H4B120 (4)
Cu1—S3—Cu280.79 (3)C3—N6—H6A119 (3)
C4—S4—Cu2107.36 (12)C3—N6—H6B118 (3)
C2—S2—Cu1105.36 (12)H6A—N6—H6B122 (4)
C1—S1—Cu2ii110.00 (12)C3—N5—H5A121 (3)
C1—S1—Cu1110.01 (12)C3—N5—H5B122 (3)
Cu2ii—S1—Cu1138.40 (4)H5A—N5—H5B117 (4)
N8—C4—N7117.9 (4)C4—N8—H8A122 (3)
N8—C4—S4119.4 (3)C4—N8—H8B117 (3)
N7—C4—S4122.7 (3)H8A—N8—H8B117 (5)
N5—C3—N6121.0 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1iii0.85 (3)2.44 (3)3.230 (3)154 (4)
N1—H1B···S4ii0.87 (3)2.55 (3)3.404 (4)171 (3)
N2—H2A···S20.87 (3)2.54 (3)3.379 (3)164 (3)
N2—H2B···Cl1iii0.86 (3)2.56 (3)3.344 (3)153 (3)
N3—H3A···S10.87 (3)2.65 (3)3.488 (4)164 (3)
N3—H3B···Cl2iv0.86 (4)2.57 (4)3.373 (4)156 (4)
N4—H4A···Cl2iv0.85 (3)2.49 (3)3.309 (3)161 (3)
N4—H4B···Cl2v0.84 (3)2.55 (3)3.340 (3)157 (4)
N5—H5A···Cl20.86 (3)2.35 (3)3.197 (3)167 (4)
N5—H5B···Cl2vi0.86 (3)2.55 (4)3.356 (3)157 (3)
N6—H6A···Cl2i0.87 (4)2.66 (4)3.323 (3)134 (4)
N6—H6B···Cl10.86 (2)2.44 (2)3.296 (3)174 (3)
N7—H7A···Cl10.85 (3)2.61 (4)3.343 (4)145 (3)
N7—H7B···Cl1vii0.87 (4)2.55 (4)3.367 (4)157 (3)
N8—H8A···Cl1vii0.86 (4)2.54 (4)3.326 (4)152 (3)
N8—H8B···Cl1viii0.85 (3)2.55 (3)3.298 (4)148 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x, y, z; (vii) x1, y+1/2, z+1/2; (viii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CuCl(CH4N2S)2]
Mr251.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.8043 (2), 8.1292 (3), 35.9657 (12)
β (°) 92.326 (2)
V3)1695.62 (10)
Z8
Radiation typeMo Kα
µ (mm1)3.32
Crystal size (mm)0.45 × 0.18 × 0.07
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.493, 0.793
No. of measured, independent and
observed [I > 2σ(I)] reflections
18106, 4089, 3372
Rint0.040
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.081, 1.15
No. of reflections4089
No. of parameters245
No. of restraints16
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.58, 0.85

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—S12.3091 (9)Cu2—S1i2.3081 (9)
Cu1—S22.2617 (10)Cu2—S32.2747 (9)
Cu1—S32.2728 (10)Cu2—S42.2421 (9)
Cu1—Cl23.1394 (12)Cu2—Cl12.8687 (9)
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1ii0.85 (3)2.44 (3)3.230 (3)154 (4)
N1—H1B···S4iii0.87 (3)2.55 (3)3.404 (4)171 (3)
N2—H2A···S20.87 (3)2.54 (3)3.379 (3)164 (3)
N2—H2B···Cl1ii0.86 (3)2.56 (3)3.344 (3)153 (3)
N3—H3A···S10.87 (3)2.65 (3)3.488 (4)164 (3)
N3—H3B···Cl2iv0.86 (4)2.57 (4)3.373 (4)156 (4)
N4—H4A···Cl2iv0.85 (3)2.49 (3)3.309 (3)161 (3)
N4—H4B···Cl2v0.84 (3)2.55 (3)3.340 (3)157 (4)
N5—H5A···Cl20.86 (3)2.35 (3)3.197 (3)167 (4)
N5—H5B···Cl2vi0.86 (3)2.55 (4)3.356 (3)157 (3)
N6—H6A···Cl2i0.87 (4)2.66 (4)3.323 (3)134 (4)
N6—H6B···Cl10.86 (2)2.44 (2)3.296 (3)174 (3)
N7—H7A···Cl10.85 (3)2.61 (4)3.343 (4)145 (3)
N7—H7B···Cl1vii0.87 (4)2.55 (4)3.367 (4)157 (3)
N8—H8A···Cl1vii0.86 (4)2.54 (4)3.326 (4)152 (3)
N8—H8B···Cl1viii0.85 (3)2.55 (3)3.298 (4)148 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x, y, z; (vii) x1, y+1/2, z+1/2; (viii) x, y+1/2, z+1/2.
 

Acknowledgements

The author thanks the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpofford, W. A. & Amma, E. L. (1970). Acta Cryst. B26, 1474–1483.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZouihri, H. (2012). Acta Cryst. E68, o257.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m260-m261
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds