organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o664-o665

2-(2,4,5-Trimeth­­oxy­phen­yl)-2,3-di­hydro­quinolin-4(1H)-one

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bResearch Unit of Natural Products Utilization, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 10 January 2012; accepted 23 January 2012; online 10 February 2012)

In the title aza-flavanone, C18H19NO4, an intra­molecular cyclization product of chalcone, the central heterocyclic ring is in an envelope conformation and the dihedral angle between the benzene rings is 51.03 (10)°. The meth­oxy groups at the ortho and para positions are slightly twisted from the benzene ring to which they are bound [C—O—C—C = 21.9 (3) and −171.93 (18)°, respectively], whereas the meth­oxy group at the meta position is almost coplanar [C—O—C—C = 3.5 (3)°]. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds and weak C—H⋯O inter­actions into chains along the [001] direction. Weak C—H⋯π inter­actions also occur.

Related literature

For background to the syntheses and properties of aza-flavanones, see: Göker et al. (2005[Göker, H., Boykin, D. W. & Yildiz, S. (2005). Bioorg. Med. Chem. 13, 1707-1714.]); Xia et al. (1998[Xia, Y., Yang, Z.-Y., Xia, P., Bastow, K. F., Tachibana, Y., Kuo, S.-C., Hamel, T. H. & Lee, K.-H. (1998). J. Med. Chem. 41, 1155-1162.]). For ring conformations, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19NO4

  • Mr = 313.34

  • Monoclinic, P 21 /c

  • a = 10.7354 (11) Å

  • b = 17.1525 (16) Å

  • c = 8.6471 (8) Å

  • β = 102.981 (2)°

  • V = 1551.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.41 × 0.16 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.994

  • 13335 measured reflections

  • 4511 independent reflections

  • 2751 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.156

  • S = 1.03

  • 4511 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O3i 0.90 (3) 2.32 (3) 3.156 (2) 155 (3)
C2—H2A⋯O4i 0.95 2.59 3.439 (3) 150
C16—H16B⋯O3ii 0.98 2.58 3.459 (3) 150
C8—H8BCg1iii 0.99 2.74 3.698 (2) 164
C16—H16CCg1iv 0.98 2.68 3.518 (3) 144
C17—H17CCg2ii 0.98 2.76 3.560 (3) 140
C18—H18CCg2i 0.98 2.75 3.574 (3) 142
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Aza-flavanone or 2-aryl-2,3-dihydroquinolin-4(1H)-one, a synthesized analogue of flavanone, can be achieved by intramolecular cyclization of a chalcone derivative in basic medium (Xia et al., 1998). They are also found to exhibit antibacterial, antifungal (Göker et al., 2005) and anticancer activities (Xia et al., 1998). In the course of our research on medicinal chemistry, we have synthesized the title aza-flavanone (I) in order to study its biological activity.

The total molecule of (I) is twisted (Fig. 1). The dihedral angle between two benzene rings is 51.03 (10)°. The N-atom containing central ring is in an envelope conformation with the puckered C9 atom having the maximum deviation of 0.352 (2) Å, and the puckering parameter Q = 0.502 (2) Å, θ = 124.5 (2)° and ϕ = 110.8 (3)° (Cremer & Pople, 1975). The three methoxy groups of the 2,4,5-trimethoxyphenyl unit have two different orientations: the two methoxy groups at ortho (at atom C11) and para (at atom C13) positions are slightly twisted from the attached benzene ring with torsion angles C16—O2—C11—C12 = 21.9 (3)° and C17—O3—C13—C14 = -171.93 (18)°, whereas the third one at meta (at atom C14) position is co-planar with the torsion angle of C18—O4—C14—C15 = 3.5 (3)°. These angle values also indicated that the methyl group at para position points towards the ortho-methoxy but points away from the meta-methoxy due to the steric effect.

In the crystal (Fig. 2), the molecules are linked by N—H···O hydrogen bonds and weak C—H···O interactions (Table 1) into chains along the c axis. C—H···π interactions (Table 1) also occur.

Related literature top

For background to the syntheses and properties of aza-flavanones, see: Göker et al. (2005); Xia et al. (1998). For ring conformations, see Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Experimental top

To a 50 ml round-bottom flask filled with 2,4,5-trimethoxybenzaldehyde (0.50 g, 2.55 mmol), EtOH (20 ml) and 2-aminoacetophenone (0.31 ml, 2.55 mmol) were sequentially added at room temperature. After stirring for a while, 5 ml of 30% NaOH (aq) was added slowly and was then further stirred for 2 h. A pale yellow precipitate was formed and collected by filtration yielding the title compound (I) (1.26 g, 75% yield), which was further recrystallized in EtOH to obtain yellow needles of (I) after several days, m.p. 419–420 K.

Refinement top

Amide H atom was located in a Fourier difference map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å for aromatic, 1.00 for CH, 0.99 Å for CH2 and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Partial packing diagram of the title compound viewed approximately along the b axis, showing chains running along the c axis. Hydrogen bonds are shown as dashed lines.
2-(2,4,5-Trimethoxyphenyl)-2,3-dihydroquinolin-4(1H)-one top
Crystal data top
C18H19NO4F(000) = 664
Mr = 313.34Dx = 1.341 Mg m3
Monoclinic, P21/cMelting point = 419–420 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.7354 (11) ÅCell parameters from 4511 reflections
b = 17.1525 (16) Åθ = 2.0–30.0°
c = 8.6471 (8) ŵ = 0.10 mm1
β = 102.981 (2)°T = 100 K
V = 1551.6 (3) Å3Needle, yellow
Z = 40.41 × 0.16 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
4511 independent reflections
Radiation source: sealed tube2751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1215
Tmin = 0.962, Tmax = 0.994k = 2024
13335 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.8134P]
where P = (Fo2 + 2Fc2)/3
4511 reflections(Δ/σ)max = 0.001
215 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C18H19NO4V = 1551.6 (3) Å3
Mr = 313.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7354 (11) ŵ = 0.10 mm1
b = 17.1525 (16) ÅT = 100 K
c = 8.6471 (8) Å0.41 × 0.16 × 0.06 mm
β = 102.981 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4511 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2751 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.994Rint = 0.062
13335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.38 e Å3
4511 reflectionsΔρmin = 0.30 e Å3
215 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37635 (19)0.62888 (9)0.70678 (18)0.0317 (4)
O20.04382 (17)0.43778 (8)0.70161 (18)0.0258 (4)
O30.06325 (15)0.15459 (8)0.69306 (16)0.0186 (3)
O40.25884 (15)0.16149 (8)0.56105 (17)0.0190 (3)
N10.2864 (2)0.44806 (10)0.3926 (2)0.0188 (4)
C10.3224 (2)0.51866 (11)0.3388 (2)0.0169 (4)
C20.3287 (2)0.52803 (12)0.1791 (3)0.0200 (5)
H2A0.31270.48470.10910.024*
C30.3577 (2)0.59951 (13)0.1230 (3)0.0227 (5)
H3A0.36020.60500.01440.027*
C40.3837 (2)0.66416 (13)0.2242 (3)0.0261 (5)
H4A0.40230.71350.18470.031*
C50.3817 (2)0.65508 (13)0.3821 (3)0.0253 (5)
H5A0.40080.69840.45170.030*
C60.3519 (2)0.58298 (12)0.4419 (2)0.0193 (5)
C70.3519 (2)0.57481 (12)0.6125 (3)0.0210 (5)
C80.3224 (2)0.49397 (12)0.6637 (2)0.0206 (5)
H8A0.28540.49770.75850.025*
H8B0.40250.46340.69290.025*
C90.2289 (2)0.45255 (11)0.5313 (2)0.0185 (4)
H9A0.15010.48540.50170.022*
C100.1895 (2)0.37290 (11)0.5803 (2)0.0169 (4)
C110.0934 (2)0.36814 (11)0.6637 (2)0.0197 (5)
C120.0477 (2)0.29603 (11)0.7021 (2)0.0188 (5)
H12A0.02070.29360.75520.023*
C130.1030 (2)0.22825 (11)0.6622 (2)0.0169 (4)
C140.2058 (2)0.23196 (11)0.5876 (2)0.0159 (4)
C150.2472 (2)0.30401 (11)0.5455 (2)0.0173 (4)
H15A0.31560.30650.49250.021*
C160.0213 (3)0.43603 (13)0.8271 (3)0.0270 (5)
H16A0.04560.48920.84990.041*
H16B0.03490.41390.92210.041*
H16C0.09830.40380.79610.041*
C170.0519 (2)0.14953 (12)0.7498 (3)0.0246 (5)
H17A0.07270.09460.76260.037*
H17B0.12200.17430.67320.037*
H17C0.03990.17620.85230.037*
C180.3688 (2)0.16518 (12)0.4928 (3)0.0213 (5)
H18A0.40070.11230.48250.032*
H18B0.43570.19620.56150.032*
H18C0.34500.18950.38770.032*
H1N10.241 (3)0.4165 (16)0.317 (3)0.037 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0502 (13)0.0223 (8)0.0222 (8)0.0092 (8)0.0077 (8)0.0045 (6)
O20.0385 (11)0.0150 (7)0.0295 (9)0.0050 (7)0.0196 (8)0.0012 (6)
O30.0240 (9)0.0132 (7)0.0206 (7)0.0036 (6)0.0093 (7)0.0000 (6)
O40.0218 (9)0.0126 (7)0.0237 (8)0.0007 (6)0.0077 (7)0.0000 (6)
N10.0262 (11)0.0151 (8)0.0161 (9)0.0046 (7)0.0070 (8)0.0002 (7)
C10.0160 (11)0.0151 (9)0.0205 (10)0.0004 (8)0.0062 (9)0.0006 (8)
C20.0206 (12)0.0191 (10)0.0222 (11)0.0015 (8)0.0088 (9)0.0025 (8)
C30.0228 (13)0.0263 (11)0.0213 (11)0.0021 (9)0.0094 (10)0.0012 (9)
C40.0332 (15)0.0187 (10)0.0289 (12)0.0064 (10)0.0124 (11)0.0016 (9)
C50.0318 (15)0.0188 (10)0.0270 (12)0.0078 (9)0.0101 (11)0.0022 (9)
C60.0213 (12)0.0169 (10)0.0201 (10)0.0030 (8)0.0055 (9)0.0007 (8)
C70.0230 (13)0.0193 (10)0.0212 (11)0.0037 (9)0.0059 (9)0.0008 (8)
C80.0276 (13)0.0180 (10)0.0158 (10)0.0007 (9)0.0040 (9)0.0006 (8)
C90.0234 (13)0.0145 (9)0.0187 (10)0.0005 (8)0.0070 (9)0.0012 (7)
C100.0214 (12)0.0134 (9)0.0160 (9)0.0009 (8)0.0043 (9)0.0006 (7)
C110.0266 (13)0.0141 (9)0.0184 (10)0.0009 (8)0.0051 (9)0.0009 (8)
C120.0223 (13)0.0181 (10)0.0174 (10)0.0010 (8)0.0077 (9)0.0017 (8)
C130.0235 (12)0.0134 (9)0.0129 (9)0.0023 (8)0.0018 (8)0.0014 (7)
C140.0212 (12)0.0129 (9)0.0128 (9)0.0012 (8)0.0019 (8)0.0013 (7)
C150.0194 (12)0.0164 (9)0.0165 (10)0.0004 (8)0.0044 (9)0.0016 (8)
C160.0357 (15)0.0231 (11)0.0262 (12)0.0103 (10)0.0154 (11)0.0034 (9)
C170.0275 (14)0.0198 (11)0.0294 (12)0.0029 (9)0.0125 (10)0.0019 (9)
C180.0224 (13)0.0192 (10)0.0250 (11)0.0013 (9)0.0111 (10)0.0000 (8)
Geometric parameters (Å, º) top
O1—C71.224 (2)C8—C91.519 (3)
O2—C111.377 (2)C8—H8A0.9900
O2—C161.417 (3)C8—H8B0.9900
O3—C131.379 (2)C9—C101.518 (3)
O3—C171.432 (3)C9—H9A1.0000
O4—C141.377 (2)C10—C111.387 (3)
O4—C181.435 (3)C10—C151.398 (3)
N1—C11.383 (3)C11—C121.398 (3)
N1—C91.470 (3)C12—C131.384 (3)
N1—H1N10.90 (3)C12—H12A0.9500
C1—C21.407 (3)C13—C141.400 (3)
C1—C61.409 (3)C14—C151.389 (3)
C2—C31.380 (3)C15—H15A0.9500
C2—H2A0.9500C16—H16A0.9800
C3—C41.401 (3)C16—H16B0.9800
C3—H3A0.9500C16—H16C0.9800
C4—C51.379 (3)C17—H17A0.9800
C4—H4A0.9500C17—H17B0.9800
C5—C61.405 (3)C17—H17C0.9800
C5—H5A0.9500C18—H18A0.9800
C6—C71.482 (3)C18—H18B0.9800
C7—C81.511 (3)C18—H18C0.9800
C11—O2—C16116.60 (16)C8—C9—H9A107.9
C13—O3—C17116.79 (16)C11—C10—C15118.63 (18)
C14—O4—C18116.03 (15)C11—C10—C9118.94 (18)
C1—N1—C9115.41 (16)C15—C10—C9122.42 (19)
C1—N1—H1N1115.3 (16)O2—C11—C10116.43 (18)
C9—N1—H1N1111.6 (17)O2—C11—C12122.38 (19)
N1—C1—C2120.58 (18)C10—C11—C12121.16 (19)
N1—C1—C6120.86 (18)C13—C12—C11119.4 (2)
C2—C1—C6118.56 (18)C13—C12—H12A120.3
C3—C2—C1120.75 (19)C11—C12—H12A120.3
C3—C2—H2A119.6O3—C13—C12123.56 (19)
C1—C2—H2A119.6O3—C13—C14116.19 (18)
C2—C3—C4120.83 (19)C12—C13—C14120.25 (18)
C2—C3—H3A119.6O4—C14—C15124.66 (19)
C4—C3—H3A119.6O4—C14—C13115.80 (17)
C5—C4—C3118.9 (2)C15—C14—C13119.53 (18)
C5—C4—H4A120.5C14—C15—C10120.82 (19)
C3—C4—H4A120.5C14—C15—H15A119.6
C4—C5—C6121.3 (2)C10—C15—H15A119.6
C4—C5—H5A119.3O2—C16—H16A109.5
C6—C5—H5A119.3O2—C16—H16B109.5
C5—C6—C1119.58 (19)H16A—C16—H16B109.5
C5—C6—C7120.06 (19)O2—C16—H16C109.5
C1—C6—C7120.37 (18)H16A—C16—H16C109.5
O1—C7—C6122.93 (19)H16B—C16—H16C109.5
O1—C7—C8121.87 (18)O3—C17—H17A109.5
C6—C7—C8115.19 (17)O3—C17—H17B109.5
C7—C8—C9110.81 (17)H17A—C17—H17B109.5
C7—C8—H8A109.5O3—C17—H17C109.5
C9—C8—H8A109.5H17A—C17—H17C109.5
C7—C8—H8B109.5H17B—C17—H17C109.5
C9—C8—H8B109.5O4—C18—H18A109.5
H8A—C8—H8B108.1O4—C18—H18B109.5
N1—C9—C10112.03 (16)H18A—C18—H18B109.5
N1—C9—C8108.16 (18)O4—C18—H18C109.5
C10—C9—C8112.88 (17)H18A—C18—H18C109.5
N1—C9—H9A107.9H18B—C18—H18C109.5
C10—C9—H9A107.9
C9—N1—C1—C2153.9 (2)N1—C9—C10—C1525.1 (3)
C9—N1—C1—C625.2 (3)C8—C9—C10—C1597.3 (2)
N1—C1—C2—C3176.4 (2)C16—O2—C11—C10160.0 (2)
C6—C1—C2—C32.7 (3)C16—O2—C11—C1221.9 (3)
C1—C2—C3—C41.0 (4)C15—C10—C11—O2177.03 (19)
C2—C3—C4—C51.0 (4)C9—C10—C11—O22.5 (3)
C3—C4—C5—C61.2 (4)C15—C10—C11—C124.8 (3)
C4—C5—C6—C10.5 (4)C9—C10—C11—C12175.6 (2)
C4—C5—C6—C7179.3 (2)O2—C11—C12—C13179.2 (2)
N1—C1—C6—C5176.7 (2)C10—C11—C12—C132.8 (3)
C2—C1—C6—C52.5 (3)C17—O3—C13—C128.6 (3)
N1—C1—C6—C73.5 (3)C17—O3—C13—C14171.93 (18)
C2—C1—C6—C7177.4 (2)C11—C12—C13—O3179.02 (19)
C5—C6—C7—O10.5 (4)C11—C12—C13—C141.6 (3)
C1—C6—C7—O1179.7 (2)C18—O4—C14—C153.5 (3)
C5—C6—C7—C8178.2 (2)C18—O4—C14—C13176.60 (18)
C1—C6—C7—C81.6 (3)O3—C13—C14—O43.1 (3)
O1—C7—C8—C9148.3 (2)C12—C13—C14—O4176.39 (19)
C6—C7—C8—C933.0 (3)O3—C13—C14—C15176.84 (18)
C1—N1—C9—C10178.76 (19)C12—C13—C14—C153.7 (3)
C1—N1—C9—C856.2 (2)O4—C14—C15—C10178.52 (19)
C7—C8—C9—N159.1 (2)C13—C14—C15—C101.6 (3)
C7—C8—C9—C10176.39 (18)C11—C10—C15—C142.6 (3)
N1—C9—C10—C11155.4 (2)C9—C10—C15—C14177.8 (2)
C8—C9—C10—C1182.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O3i0.90 (3)2.32 (3)3.156 (2)155 (3)
C2—H2A···O4i0.952.593.439 (3)150
C16—H16B···O3ii0.982.583.459 (3)150
C8—H8B···Cg1iii0.992.743.698 (2)164
C16—H16C···Cg1iv0.982.683.518 (3)144
C17—H17C···Cg2ii0.982.763.560 (3)140
C18—H18C···Cg2i0.982.753.574 (3)142
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H19NO4
Mr313.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.7354 (11), 17.1525 (16), 8.6471 (8)
β (°) 102.981 (2)
V3)1551.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.41 × 0.16 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.962, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
13335, 4511, 2751
Rint0.062
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.156, 1.03
No. of reflections4511
No. of parameters215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.30

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O3i0.90 (3)2.32 (3)3.156 (2)155 (3)
C2—H2A···O4i0.952.593.439 (3)150
C16—H16B···O3ii0.982.583.459 (3)150
C8—H8B···Cg1iii0.992.743.698 (2)164
C16—H16C···Cg1iv0.982.683.518 (3)144
C17—H17C···Cg2ii0.982.763.560 (3)140
C18—H18C···Cg2i0.982.753.574 (3)142
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Visiting Professor, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Additional correspondence author, email: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Prince of Songkla University and the Universiti Sains Malaysia for Research University grant No. 1001/PFIZIK/811160. PR thanks the Crystal Materials Research Unit, Prince of Songkla University, for financial support. NW thanks the Prince of Songkla University for a postdoctoral fellowship. HKF thanks King Saud University, Riyadh, Saudi Arabia, for the award of a visiting professorship (23 December 2011 to 14 January 2012).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGöker, H., Boykin, D. W. & Yildiz, S. (2005). Bioorg. Med. Chem. 13, 1707–1714.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, Y., Yang, Z.-Y., Xia, P., Bastow, K. F., Tachibana, Y., Kuo, S.-C., Hamel, T. H. & Lee, K.-H. (1998). J. Med. Chem. 41, 1155–1162.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o664-o665
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds