organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o568-o569

Di-tert-butyl (2R,3R)-2-{[(2E)-3-(4-acet­yl­oxy-3-meth­­oxy­phen­yl)prop-2-eno­yl]­­oxy}-3-hy­dr­oxy­butane­dioate

aSchool of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 19 January 2012; accepted 22 January 2012; online 4 February 2012)

In the title mol­ecule, C24H32O10, one tert-butyl ester group is folded towards the central benzene ring while the other is directed away. The acetyl group is almost perpendicular to the benzene ring to which it is connected [C—C—O—C torsion angle = 90.4 (12)°]. The conformation about the ethene bond [1.313 (7) Å] is E. The atoms of the benzene ring and its attached ester group and part of the hy­droxy tert-butyl ester side chain are disordered over two sets of sites in a 50:50 ratio. Linear supra­molecular chains along the a axis mediated by hy­droxy–carbonyl O—H⋯O hydrogen bonds feature in the crystal packing. The same H atom also partakes in an intra­molecular O—H⋯O inter­action.

Related literature

For background to the formation of the odorant 4-ethyl­guaiacol with relevance to the wine industry, see: Chatonnet et al. (1992[Chatonnet, P., Dubourdieu, D., Boidron, J. N. & Pons, M. (1992). J. Sci. Food Agric. 60, 165-178.]); Hixson et al. (2012[Hixson, J. L., Sleep, N. R., Capone, D. L., Elsey, G. M., Curtin, C. D., Sefton, M. A. & Taylor, D. K. (2012). J. Agric. Food Chem. Submitted.]); Ong & Nagel (1978[Ong, B. Y. & Nagel, C. W. (1978). Am. J. Enol. Vitic. 29, 277-281.]); Nagel & Wulf (1979[Nagel, C. W. & Wulf, L. W. (1979). Am. J. Enol. Vitic. 30, 111-116.]); Zhao & Burke (1998[Zhao, H. & Burke, T. R. (1998). Synth. Commun. 28, 737-740.]). For the preparation and characterization of 1-O-acetyl ferulic acid; see: Zhao & Burke (1998[Zhao, H. & Burke, T. R. (1998). Synth. Commun. 28, 737-740.]); Hosoda et al. (2001[Hosoda, A., Nomura, E., Mizuno, K. & Taniguchi, H. (2001). J. Org. Chem. 66, 7199-7201.]).

[Scheme 1]

Experimental

Crystal data
  • C24H32O10

  • Mr = 480.50

  • Monoclinic, P 21

  • a = 5.9894 (1) Å

  • b = 10.6483 (1) Å

  • c = 19.6676 (2) Å

  • β = 96.324 (1)°

  • V = 1246.71 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.84 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.736, Tmax = 1.000

  • 7492 measured reflections

  • 4800 independent reflections

  • 4762 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.159

  • S = 1.04

  • 4800 reflections

  • 326 parameters

  • 113 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.56 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2185 Friedel pairs

  • Flack parameter: 0.0 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O18—H18⋯O32 0.84 2.21 2.631 (8) 111
O18—H18⋯O22i 0.84 2.57 3.185 (5) 131
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The breakdown of ferulic acid by D. bruxellensis to form the potent odorant 4-ethylguaiacol has been known for decades (Chatonnet et al., 1992). Recently, it has been found that the metabolism of the ethyl ester of ferulic acid by this yeast can also result in the accumulation of 4-ethylguaiacol (Hixson et al., 2012). Existing in both the grape berry and in wine in significant concentrations (Ong & Nagel, 1978; Nagel & Wulf, 1979), the feruloyl L-tartrate ester has the potential to contribute to the accumulation of 4-ethylguaiacol in finished wines and thus contribute further to the spoilage of wine. Synthesis of the known wine component feruloyl L-tartrate was achieved using di-tert-butyl L-tartrate and the 1-O-acetyl protected hydroxycinnamic acid in an analogous method to that described by Zhao & Burke (1998). The products of coupling were isolated and recrystallized from 30% ethyl acetate/hexane to afford a crystalline solid from which the structure was determined by X-ray crystallography to confirm the retention of the (R,R)-stereochemistry, Fig. 1.

The hydroxyl-H atom is bifurcated, forming an intramolecular O—H···O hydrogen bond with the adjacent carbonyl-O, Table, and an intermolecular O–H···O hydrogen bond with a translationally related carbonyl-O atom to form a linear supramolecular chain along the a axis, Fig. 1 and Table 1.

Related literature top

For background to the formation of the odorant 4-ethylguaiacol with relevance to the wine industry, see: Chatonnet et al. (1992); Hixson et al. (2012); Ong & Nagel (1978); Nagel & Wulf (1979); Zhao & Burke (1998). For the preparation and characterization of 1-O-acetyl ferulic acid; see: Zhao & Burke (1998); Hosoda et al. (2001).

Experimental top

1-O-Acetyl ferulic acid was prepared using a method analogous to that previously described by Zhao and Burke (1998), and the characterization data matched that previously described (Hosoda et al., 2001). 1-O-Acetyl ferulic acid (0.16 g, 0.67 mmol) was heated under reflux in dry benzene (10 ml) containing thionyl chloride (1 ml, 13.77 mmol). After 5 h the mixture was allowed to cool to room temperature and then concentrated in vacuo. The crude residue was taken up in dry benzene (3 ml) and added drop-wise to a solution of di-tert-butyl L-tartrate (0.21 g, 0.79 mmol) in dry pyridine (3 ml), then stirred at ambient temperature overnight. The mixture was concentrated and pyridine azeotropically removed with toluene. Purification with column chromatography (20% EtOAc/X4) and recrystallization from 30% EtOAc/X4 gave 154.0 mg (48%) of white crystals. M.pt 413.7–415.2 K. Rf (30% EtOAc/X4): 0.34 1H NMR: (600 MHz, CDCl3) δ: 7.70 (d, 1H, J = 16.0 Hz, H7), 7.12–7.11 (m, 2H, H3,5), 7.05 (d, 1H, J = 8.6 Hz, H6), 6.45 (d, 1H, J = 16.0 Hz, H8), 5.50 (d, 1H, J = 2.3 Hz, H2'), 4.68 (dd, 1H, J = 6.8 and 2.3 Hz, H3'), 3.87 (s, 3H, OCH3), 3.21 (d, 1H, J = 6.8 Hz, OH), 2.33 (s, 3H, OCOCH3), 1.51 (s, 9H, t-Bu4), 1.44 (s, 9H, tBu1). 13C NMR: (600 MHz, CDCl3) δ: 170.2 (C4'), 168.9 (OCOCH3), 165.9 (C1'), 165.5 (C9), 151.5 (C7), 145.9 (C2), 141.8 (C1), 133.2 (C4), 123.4 (C6), 121.8 (C5), 116.8 (C8), 111.3 (C3), 84.1 (C1(CH3)3), 83.5 (C4(CH3)3), 73.5 (C2'), 71.0 (C3'), 56.1 (OMe), 28.1 (C4(CH3)3), 28.0 (C1(CH3)3), 20.8 (OCOCH3). Calc. C 59.99, H 6.71, O 33.30. Anal. C24H32O10 for C 59.79, H 6.73, O 33.48.

Refinement top

Carbon- and oxygen bound H-atoms were placed in calculated positions [C—H 0.95 to 1.00 and O—H 0.84 Å; Uiso(H) 1.2 to 1.5Ueq(C,O)] and were included in the refinement in the riding model approximation. The molecule is disordered in some parts of the molecule. The disorder was treated as a 1:1 type of disorder. The aromatic rings were refined as rigid hexagons of 1.39 Å sides. For the disordered atoms, pairs of 1,2-related bond distances were restrained to within 0.01 Å of each other; these included atom—atomordered as well as atom—atomdisordered distances. The displacement parameters of the primed atoms were set to those of the unprimed ones, and the anisotropic displacement factors of the disordered atom atoms were restrained to be nearly isotropic. The two t-butyl groups are both ordered. However, the vibration of one of the four-carbon groups had to be tightly restrained to be nearly isotropic.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Only one component of the disordered atoms is shown for clarity.
[Figure 2] Fig. 2. A view of the linear supramolecular chain along the a axis mediated by O—H···O hydrogen bonds shown as orange dashed lines. Only one component of the disordered atoms is shown for clarity.
Di-tert-butyl (2R,3R)-2-{[(2E)-3-(4-acetyloxy- 3-methoxyphenyl)prop-2-enoyl]oxy}-3-hydroxybutanedioate top
Crystal data top
C24H32O10F(000) = 512
Mr = 480.50Dx = 1.280 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 5994 reflections
a = 5.9894 (1) Åθ = 4.2–74.3°
b = 10.6483 (1) ŵ = 0.84 mm1
c = 19.6676 (2) ÅT = 100 K
β = 96.324 (1)°Block, colourless
V = 1246.71 (3) Å30.30 × 0.25 × 0.20 mm
Z = 2
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4800 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4762 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.011
Detector resolution: 10.4041 pixels mm-1θmax = 74.5°, θmin = 4.5°
ω scanh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1312
Tmin = 0.736, Tmax = 1.000l = 1624
7492 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0976P)2 + 0.9408P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.159(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.56 e Å3
4800 reflectionsΔρmin = 0.56 e Å3
326 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
113 restraintsExtinction coefficient: 0.0092 (14)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2185 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.0 (2)
Crystal data top
C24H32O10V = 1246.71 (3) Å3
Mr = 480.50Z = 2
Monoclinic, P21Cu Kα radiation
a = 5.9894 (1) ŵ = 0.84 mm1
b = 10.6483 (1) ÅT = 100 K
c = 19.6676 (2) Å0.30 × 0.25 × 0.20 mm
β = 96.324 (1)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4800 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4762 reflections with I > 2σ(I)
Tmin = 0.736, Tmax = 1.000Rint = 0.011
7492 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.159Δρmax = 0.56 e Å3
S = 1.04Δρmin = 0.56 e Å3
4800 reflectionsAbsolute structure: Flack (1983), 2185 Friedel pairs
326 parametersAbsolute structure parameter: 0.0 (2)
113 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O70.4371 (4)0.5005 (2)0.08067 (10)0.0278 (5)
O90.6166 (4)0.3370 (2)0.16084 (11)0.0328 (5)
O110.4029 (4)0.1948 (2)0.11472 (11)0.0292 (5)
O221.3631 (4)0.6050 (2)0.41763 (10)0.0310 (5)
O261.0669 (4)0.2356 (2)0.32468 (11)0.0347 (5)
O291.2096 (4)0.7128 (2)0.32469 (12)0.0397 (6)
C80.3467 (6)0.5990 (3)0.04224 (16)0.0336 (7)
H8A0.20640.62960.06710.050*
H8B0.45500.66810.03590.050*
H8C0.31670.56670.00250.050*
C100.4462 (5)0.2526 (3)0.16343 (14)0.0242 (6)
C190.3237 (7)0.2434 (4)0.23373 (16)0.0424 (8)
H19A0.29850.15480.24580.064*
H19B0.41350.28280.26660.064*
H19C0.17880.28650.23490.064*
C161.1830 (5)0.4859 (3)0.33031 (14)0.0276 (6)
H161.32040.43230.33870.033*0.50
H16'1.31350.42910.32580.033*0.50
C171.0120 (6)0.4317 (3)0.3743 (2)0.0398 (8)
H171.10490.40230.41670.048*0.50
H17'1.06750.42380.42400.048*0.50
C211.2513 (5)0.6166 (3)0.35547 (15)0.0281 (6)
C231.4332 (6)0.7160 (3)0.46048 (15)0.0288 (6)
C241.5891 (5)0.7998 (3)0.42441 (15)0.0307 (6)
H24A1.50540.83720.38380.046*
H24B1.71370.74960.41070.046*
H24C1.64860.86660.45560.046*
C271.0144 (9)0.1107 (4)0.29275 (19)0.0545 (11)
C281.2436 (10)0.0608 (4)0.2822 (3)0.0677 (13)
H28A1.33190.04860.32660.102*
H28B1.32030.12100.25500.102*
H28C1.22750.01970.25790.102*
C301.5590 (6)0.6561 (3)0.52404 (16)0.0350 (7)
H30A1.69310.61300.51150.052*
H30B1.46090.59530.54350.052*
H30C1.60360.72140.55790.052*
C311.2248 (6)0.7844 (3)0.47798 (18)0.0377 (7)
H31A1.14680.82150.43640.057*
H31B1.26840.85090.51120.057*
H31C1.12480.72490.49760.057*
C330.8689 (11)0.1311 (6)0.2251 (2)0.0820 (18)
H33A0.95170.18170.19460.123*
H33B0.73080.17510.23350.123*
H33C0.83060.04970.20370.123*
C340.9014 (10)0.0297 (4)0.3424 (2)0.0612 (12)
H34A1.00380.01780.38430.092*
H34B0.86350.05210.32140.092*
H34C0.76400.07120.35360.092*
C250.9092 (6)0.3113 (4)0.34205 (19)0.0426 (9)
O151.1121 (8)0.4798 (6)0.2571 (3)0.0228 (10)0.50
O180.8662 (8)0.5278 (4)0.3987 (3)0.0307 (7)0.50
H180.73650.49830.39960.046*0.50
O201.4905 (9)0.4773 (6)0.2372 (3)0.0428 (11)0.50
O320.7017 (9)0.3148 (6)0.3472 (3)0.0330 (11)0.50
C50.9150 (8)0.4130 (9)0.0399 (2)0.0257 (15)0.50
C60.7206 (15)0.4724 (12)0.0112 (5)0.0288 (12)0.50
H60.64470.52980.03760.035*0.50
C10.637 (2)0.4479 (19)0.0563 (5)0.0238 (10)0.50
C20.748 (2)0.3639 (18)0.0950 (4)0.0208 (17)0.50
C30.9427 (17)0.3045 (11)0.0662 (4)0.0312 (15)0.50
H31.01850.24710.09260.037*0.50
C41.0261 (11)0.3290 (9)0.0013 (3)0.0329 (17)0.50
H41.15900.28840.02090.039*0.50
C120.9996 (9)0.4465 (5)0.1183 (3)0.0235 (9)0.50
H120.89110.47010.14770.028*0.50
C131.2118 (9)0.4426 (6)0.1434 (3)0.0247 (8)0.50
H131.31690.42330.11210.030*0.50
C141.3058 (13)0.4652 (7)0.2160 (3)0.0211 (10)0.50
O15'1.0409 (8)0.5056 (6)0.2672 (3)0.0228 (10)0.50
O18'0.8121 (7)0.5086 (4)0.3612 (3)0.0307 (7)0.50
H18'0.69820.46530.36670.046*0.50
O20'1.3768 (11)0.4694 (8)0.2179 (4)0.0428 (11)0.50
O32'0.7143 (9)0.2721 (6)0.3262 (3)0.0330 (11)0.50
C5'0.9726 (8)0.4098 (9)0.0235 (2)0.0257 (15)0.50
C6'0.7657 (16)0.4690 (12)0.0099 (5)0.0288 (12)0.50
H6'0.71730.52730.04180.035*0.50
C1'0.6298 (18)0.4431 (19)0.0504 (6)0.0238 (10)0.50
C2'0.7007 (19)0.3579 (18)0.0971 (5)0.0208 (17)0.50
C3'0.9076 (17)0.2987 (11)0.0835 (4)0.0312 (15)0.50
H3'0.95610.24050.11540.037*0.50
C4'1.0436 (11)0.3246 (9)0.0232 (3)0.0329 (17)0.50
H4'1.18500.28410.01390.039*0.50
C12'1.0951 (9)0.4272 (5)0.0934 (3)0.0235 (9)0.50
H12'1.24740.40060.09880.028*0.50
C13'1.0193 (11)0.4750 (6)0.1491 (3)0.0247 (8)0.50
H13'0.86960.50490.14820.030*0.50
C14'1.1755 (11)0.4797 (6)0.2121 (3)0.0211 (10)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.0346 (10)0.0278 (10)0.0191 (9)0.0055 (9)0.0054 (7)0.0043 (8)
O90.0478 (12)0.0274 (11)0.0254 (10)0.0106 (10)0.0145 (9)0.0049 (8)
O110.0318 (10)0.0317 (11)0.0233 (10)0.0058 (9)0.0012 (8)0.0043 (9)
O220.0488 (12)0.0215 (10)0.0205 (10)0.0008 (9)0.0068 (8)0.0014 (8)
O260.0441 (13)0.0264 (11)0.0310 (11)0.0172 (9)0.0076 (9)0.0017 (9)
O290.0428 (13)0.0344 (13)0.0372 (12)0.0119 (10)0.0169 (10)0.0191 (10)
C80.0429 (17)0.0298 (16)0.0265 (14)0.0091 (14)0.0031 (12)0.0054 (12)
C100.0298 (14)0.0209 (13)0.0223 (13)0.0043 (11)0.0047 (10)0.0010 (11)
C190.069 (2)0.0356 (18)0.0203 (14)0.0014 (17)0.0026 (14)0.0006 (13)
C160.0322 (14)0.0292 (15)0.0193 (13)0.0102 (12)0.0072 (11)0.0050 (11)
C170.0406 (18)0.0251 (16)0.056 (2)0.0031 (14)0.0179 (15)0.0153 (15)
C210.0253 (13)0.0311 (15)0.0262 (14)0.0063 (12)0.0051 (10)0.0077 (13)
C230.0421 (16)0.0189 (13)0.0248 (14)0.0024 (12)0.0000 (11)0.0002 (11)
C240.0353 (15)0.0263 (15)0.0299 (15)0.0005 (12)0.0019 (11)0.0065 (12)
C270.092 (3)0.0381 (18)0.0305 (17)0.038 (2)0.0078 (18)0.0010 (15)
C280.111 (4)0.040 (2)0.056 (2)0.019 (2)0.025 (2)0.0203 (19)
C300.056 (2)0.0237 (14)0.0226 (15)0.0055 (14)0.0075 (13)0.0000 (12)
C310.0429 (17)0.0308 (17)0.0406 (18)0.0026 (14)0.0105 (14)0.0017 (14)
C330.121 (4)0.083 (3)0.036 (2)0.070 (3)0.017 (2)0.015 (2)
C340.099 (3)0.047 (2)0.0349 (18)0.040 (2)0.0053 (18)0.0038 (16)
C250.0330 (16)0.045 (2)0.0472 (19)0.0140 (15)0.0096 (13)0.0300 (17)
O150.019 (3)0.027 (3)0.0207 (17)0.0050 (19)0.0049 (17)0.0026 (15)
O180.0330 (17)0.0225 (15)0.036 (2)0.0023 (13)0.0025 (16)0.0022 (16)
O200.025 (2)0.063 (2)0.039 (2)0.010 (3)0.0039 (18)0.009 (2)
O320.0285 (13)0.029 (3)0.040 (3)0.0141 (19)0.0021 (17)0.0005 (19)
C50.013 (3)0.0270 (18)0.037 (3)0.012 (3)0.001 (2)0.011 (3)
C60.033 (3)0.0180 (15)0.0315 (16)0.002 (2)0.0128 (19)0.0007 (12)
C10.0289 (15)0.0196 (16)0.0222 (19)0.0039 (13)0.0000 (14)0.0016 (17)
C20.008 (5)0.0230 (19)0.0321 (16)0.011 (4)0.0036 (16)0.0013 (12)
C30.017 (3)0.0249 (18)0.049 (4)0.006 (2)0.008 (3)0.004 (3)
C40.0279 (18)0.0281 (19)0.042 (5)0.0003 (16)0.001 (3)0.008 (4)
C120.014 (2)0.0207 (19)0.036 (3)0.0019 (16)0.0043 (15)0.0121 (18)
C130.0324 (18)0.028 (2)0.0122 (16)0.0036 (16)0.0053 (15)0.0027 (15)
C140.029 (3)0.0229 (19)0.0102 (16)0.012 (3)0.002 (3)0.0026 (14)
O15'0.019 (3)0.027 (3)0.0207 (17)0.0050 (19)0.0049 (17)0.0026 (15)
O18'0.0330 (17)0.0225 (15)0.036 (2)0.0023 (13)0.0025 (16)0.0022 (16)
O20'0.025 (2)0.063 (2)0.039 (2)0.010 (3)0.0039 (18)0.009 (2)
O32'0.0285 (13)0.029 (3)0.040 (3)0.0141 (19)0.0021 (17)0.0005 (19)
C5'0.013 (3)0.0270 (18)0.037 (3)0.012 (3)0.001 (2)0.011 (3)
C6'0.033 (3)0.0180 (15)0.0315 (16)0.002 (2)0.0128 (19)0.0007 (12)
C1'0.0289 (15)0.0196 (16)0.0222 (19)0.0039 (13)0.0000 (14)0.0016 (17)
C2'0.008 (5)0.0230 (19)0.0321 (16)0.011 (4)0.0036 (16)0.0013 (12)
C3'0.017 (3)0.0249 (18)0.049 (4)0.006 (2)0.008 (3)0.004 (3)
C4'0.0279 (18)0.0281 (19)0.042 (5)0.0003 (16)0.001 (3)0.008 (4)
C12'0.014 (2)0.0207 (19)0.036 (3)0.0019 (16)0.0043 (15)0.0121 (18)
C13'0.0324 (18)0.028 (2)0.0122 (16)0.0036 (16)0.0053 (15)0.0027 (15)
C14'0.029 (3)0.0229 (19)0.0102 (16)0.012 (3)0.002 (3)0.0026 (14)
Geometric parameters (Å, º) top
O7—C11.361 (5)C31—H31A0.9800
O7—C1'1.381 (6)C31—H31B0.9800
O7—C81.434 (4)C31—H31C0.9800
O9—C2'1.318 (6)C33—H33A0.9800
O9—C101.357 (4)C33—H33B0.9800
O9—C21.468 (5)C33—H33C0.9800
O11—C101.191 (4)C34—H34A0.9800
O22—C211.333 (3)C34—H34B0.9800
O22—C231.485 (4)C34—H34C0.9800
O26—C251.316 (5)C25—O32'1.247 (6)
O26—C271.489 (4)C25—O321.258 (6)
O29—C211.202 (4)O15—C141.494 (8)
C8—H8A0.9800O18—H180.8400
C8—H8B0.9800O20—C141.146 (9)
C8—H8C0.9800C5—C61.3900
C10—C191.495 (4)C5—C41.3900
C19—H19A0.9800C5—C121.608 (7)
C19—H19B0.9800C6—C11.3900
C19—H19C0.9800C6—H60.9500
C16—O15'1.441 (5)C1—C21.3900
C16—O151.457 (5)C2—C31.3900
C16—C211.519 (4)C3—C41.3900
C16—C171.525 (4)C3—H30.9500
C16—H161.0000C4—H40.9500
C16—H16'1.0000C12—C131.313 (7)
C17—O18'1.450 (5)C12—H120.9500
C17—O181.460 (5)C13—C141.495 (7)
C17—C251.530 (6)C13—H130.9500
C17—H171.0000O15'—C14'1.447 (7)
C17—H17'1.0000O18'—H18'0.8400
C23—C311.517 (5)O20'—C14'1.203 (9)
C23—C241.523 (4)C5'—C6'1.3900
C23—C301.526 (4)C5'—C4'1.3900
C24—H24A0.9800C5'—C12'1.497 (6)
C24—H24B0.9800C6'—C1'1.3900
C24—H24C0.9800C6'—H6'0.9500
C27—C281.508 (8)C1'—C2'1.3900
C27—C341.517 (5)C2'—C3'1.3900
C27—C331.524 (6)C3'—C4'1.3900
C28—H28A0.9800C3'—H3'0.9500
C28—H28B0.9800C4'—H4'0.9500
C28—H28C0.9800C12'—C13'1.333 (7)
C30—H30A0.9800C12'—H12'0.9500
C30—H30B0.9800C13'—C14'1.468 (7)
C30—H30C0.9800C13'—H13'0.9500
C1—O7—C8119.0 (6)C23—C31—H31B109.5
C1'—O7—C8116.3 (5)H31A—C31—H31B109.5
C2'—O9—C10110.8 (9)C23—C31—H31C109.5
C10—O9—C2119.4 (8)H31A—C31—H31C109.5
C21—O22—C23121.9 (2)H31B—C31—H31C109.5
C25—O26—C27122.2 (3)C27—C33—H33A109.5
O7—C8—H8A109.5C27—C33—H33B109.5
O7—C8—H8B109.5H33A—C33—H33B109.5
H8A—C8—H8B109.5C27—C33—H33C109.5
O7—C8—H8C109.5H33A—C33—H33C109.5
H8A—C8—H8C109.5H33B—C33—H33C109.5
H8B—C8—H8C109.5C27—C34—H34A109.5
O11—C10—O9122.8 (3)C27—C34—H34B109.5
O11—C10—C19125.6 (3)H34A—C34—H34B109.5
O9—C10—C19111.6 (3)C27—C34—H34C109.5
C10—C19—H19A109.5H34A—C34—H34C109.5
C10—C19—H19B109.5H34B—C34—H34C109.5
H19A—C19—H19B109.5O32'—C25—O26114.1 (4)
C10—C19—H19C109.5O32—C25—O26141.5 (4)
H19A—C19—H19C109.5O32'—C25—C17135.1 (5)
H19B—C19—H19C109.5O32—C25—C17107.3 (4)
O15'—C16—C21105.1 (3)O26—C25—C17110.7 (3)
O15—C16—C21113.7 (4)C16—O15—C14112.4 (4)
O15'—C16—C17100.0 (3)C17—O18—H18109.5
O15—C16—C17113.8 (3)C6—C5—C4120.0
C21—C16—C17109.6 (3)C6—C5—C12116.8 (6)
O15'—C16—H16128.5C4—C5—C12123.2 (6)
O15—C16—H16106.4C5—C6—C1120.0
C21—C16—H16106.4C5—C6—H6120.0
C17—C16—H16106.4C1—C6—H6120.0
O15'—C16—H16'113.8O7—C1—C2121.8 (8)
O15—C16—H16'91.7O7—C1—C6117.9 (7)
C21—C16—H16'113.5C2—C1—C6120.0
C17—C16—H16'113.7C1—C2—C3120.0
O18'—C17—C16106.2 (3)C1—C2—O9111.4 (7)
O18—C17—C16112.6 (3)C3—C2—O9127.9 (8)
O18'—C17—C2596.5 (3)C4—C3—C2120.0
O18—C17—C25119.7 (3)C4—C3—H3120.0
C16—C17—C25110.3 (3)C2—C3—H3120.0
O18'—C17—H17134.3C3—C4—C5120.0
O18—C17—H17104.2C3—C4—H4120.0
C16—C17—H17104.2C5—C4—H4120.0
C25—C17—H17104.2C13—C12—C5122.9 (6)
O18'—C17—H17'113.6C13—C12—H12118.6
O18—C17—H17'83.4C5—C12—H12118.6
C16—C17—H17'114.5C12—C13—C14127.0 (6)
C25—C17—H17'114.2C12—C13—H13116.5
O29—C21—O22126.6 (3)C14—C13—H13116.5
O29—C21—C16125.7 (3)O20—C14—O15124.5 (6)
O22—C21—C16107.7 (2)O20—C14—C13127.8 (6)
O22—C23—C31108.8 (3)O15—C14—C13107.5 (6)
O22—C23—C24110.6 (2)C16—O15'—C14'107.0 (4)
C31—C23—C24112.7 (3)C17—O18'—H18'109.5
O22—C23—C30102.5 (2)C6'—C5'—C4'120.0
C31—C23—C30111.0 (3)C6'—C5'—C12'117.2 (5)
C24—C23—C30110.7 (3)C4'—C5'—C12'122.2 (6)
C23—C24—H24A109.5C1'—C6'—C5'120.0
C23—C24—H24B109.5C1'—C6'—H6'120.0
H24A—C24—H24B109.5C5'—C6'—H6'120.0
C23—C24—H24C109.5O7—C1'—C6'131.5 (8)
H24A—C24—H24C109.5O7—C1'—C2'107.8 (8)
H24B—C24—H24C109.5C6'—C1'—C2'120.0
O26—C27—C28102.7 (3)O9—C2'—C3'110.2 (8)
O26—C27—C34108.9 (3)O9—C2'—C1'128.8 (8)
C28—C27—C34111.5 (4)C3'—C2'—C1'120.0
O26—C27—C33108.3 (4)C2'—C3'—C4'120.0
C28—C27—C33111.8 (4)C2'—C3'—H3'120.0
C34—C27—C33113.0 (4)C4'—C3'—H3'120.0
C27—C28—H28A109.5C3'—C4'—C5'120.0
C27—C28—H28B109.5C3'—C4'—H4'120.0
H28A—C28—H28B109.5C5'—C4'—H4'120.0
C27—C28—H28C109.5C13'—C12'—C5'128.8 (5)
H28A—C28—H28C109.5C13'—C12'—H12'115.6
H28B—C28—H28C109.5C5'—C12'—H12'115.6
C23—C30—H30A109.5C12'—C13'—C14'117.6 (6)
C23—C30—H30B109.5C12'—C13'—H13'121.2
H30A—C30—H30B109.5C14'—C13'—H13'121.2
C23—C30—H30C109.5O20'—C14'—O15'125.5 (6)
H30A—C30—H30C109.5O20'—C14'—C13'128.0 (6)
H30B—C30—H30C109.5O15'—C14'—C13'106.4 (5)
C23—C31—H31A109.5
C2'—O9—C10—O119.0 (7)C6—C1—C2—C30.0
C2—O9—C10—O112.9 (7)O7—C1—C2—O93.1 (9)
C2'—O9—C10—C19170.5 (6)C6—C1—C2—O9171.6 (14)
C2—O9—C10—C19176.6 (6)C2'—O9—C2—C146 (8)
O15'—C16—C17—O18'43.9 (4)C10—O9—C2—C180.4 (7)
O15—C16—C17—O18'62.3 (5)C2'—O9—C2—C3124 (9)
C21—C16—C17—O18'66.2 (4)C10—O9—C2—C390.4 (12)
O15'—C16—C17—O1877.0 (4)C1—C2—C3—C40.0
O15—C16—C17—O1895.5 (5)O9—C2—C3—C4170.1 (16)
C21—C16—C17—O1833.1 (4)C2—C3—C4—C50.0
O15'—C16—C17—C2559.5 (4)C6—C5—C4—C30.0
O15—C16—C17—C2541.1 (4)C12—C5—C4—C3179.9 (8)
C21—C16—C17—C25169.6 (2)C6—C5—C12—C13151.1 (8)
C23—O22—C21—O296.2 (5)C4—C5—C12—C1329.1 (9)
C23—O22—C21—C16173.2 (3)C5—C12—C13—C14176.5 (7)
O15'—C16—C21—O296.2 (5)C16—O15—C14—O2011.7 (10)
O15—C16—C21—O2915.7 (5)C16—O15—C14—C13172.4 (5)
C17—C16—C21—O29112.9 (4)C12—C13—C14—O20169.6 (8)
O15'—C16—C21—O22173.3 (3)C12—C13—C14—O156.0 (9)
O15—C16—C21—O22164.8 (3)O15—C16—O15'—C14'14.2 (10)
C17—C16—C21—O2266.6 (3)C21—C16—O15'—C14'101.9 (5)
C21—O22—C23—C3164.2 (3)C17—C16—O15'—C14'144.5 (5)
C21—O22—C23—C2460.1 (4)C4'—C5'—C6'—C1'0.0
C21—O22—C23—C30178.2 (3)C12'—C5'—C6'—C1'171.2 (8)
C25—O26—C27—C28179.7 (3)C1—O7—C1'—C6'114 (16)
C25—O26—C27—C3462.0 (5)C8—O7—C1'—C6'5.3 (18)
C25—O26—C27—C3361.3 (5)C1—O7—C1'—C2'56 (14)
C27—O26—C25—O32'3.6 (5)C8—O7—C1'—C2'175.5 (4)
C27—O26—C25—O328.4 (8)C5'—C6'—C1'—O7169.2 (19)
C27—O26—C25—C17179.3 (3)C5'—C6'—C1'—C2'0.0
O18'—C17—C25—O32'18.1 (7)C10—O9—C2'—C3'105.5 (8)
O18—C17—C25—O32'5.0 (7)C2—O9—C2'—C3'43 (8)
C16—C17—C25—O32'128.0 (6)C10—O9—C2'—C1'86.2 (10)
O18'—C17—C25—O3227.7 (5)C2—O9—C2'—C1'125 (9)
O18—C17—C25—O324.6 (6)O7—C1'—C2'—O94.3 (9)
C16—C17—C25—O32137.6 (4)C6'—C1'—C2'—O9167.3 (17)
O18'—C17—C25—O26158.2 (3)O7—C1'—C2'—C3'171.5 (16)
O18—C17—C25—O26178.7 (3)C6'—C1'—C2'—C3'0.0
C16—C17—C25—O2648.3 (4)O9—C2'—C3'—C4'169.5 (14)
O15'—C16—O15—C14155.9 (17)C1'—C2'—C3'—C4'0.0
C21—C16—O15—C1484.7 (6)C2'—C3'—C4'—C5'0.0
C17—C16—O15—C14148.9 (5)C6'—C5'—C4'—C3'0.0
C4—C5—C6—C10.0C12'—C5'—C4'—C3'170.8 (8)
C12—C5—C6—C1179.9 (7)C6'—C5'—C12'—C13'12.2 (11)
C1'—O7—C1—C2125 (15)C4'—C5'—C12'—C13'158.8 (7)
C8—O7—C1—C2171.5 (5)C5'—C12'—C13'—C14'179.1 (6)
C1'—O7—C1—C649 (14)C16—O15'—C14'—O20'13.8 (10)
C8—O7—C1—C613.7 (15)C16—O15'—C14'—C13'168.8 (5)
C5—C6—C1—O7174.9 (17)C12'—C13'—C14'—O20'16.2 (11)
C5—C6—C1—C20.0C12'—C13'—C14'—O15'166.5 (6)
O7—C1—C2—C3174.7 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O18—H18···O320.842.212.631 (8)111
O18—H18···O22i0.842.573.185 (5)131
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC24H32O10
Mr480.50
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)5.9894 (1), 10.6483 (1), 19.6676 (2)
β (°) 96.324 (1)
V3)1246.71 (3)
Z2
Radiation typeCu Kα
µ (mm1)0.84
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.736, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7492, 4800, 4762
Rint0.011
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.159, 1.04
No. of reflections4800
No. of parameters326
No. of restraints113
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.56
Absolute structureFlack (1983), 2185 Friedel pairs
Absolute structure parameter0.0 (2)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O18—H18···O320.842.212.631 (8)111
O18—H18···O22i0.842.573.185 (5)131
Symmetry code: (i) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: dennis.taylor@adelaide.edu.au.

Acknowledgements

This project was supported by the School of Agriculture, Food and Wine, the University of Adelaide, as well as by Australia's grape growers and winemakers through their investment body, the Grape and Wine Research and Development Corporation, with matching funds from the Australian Government. The Ministry of Higher Education (Malaysia) is thanked for funding structural studies through the High-Impact Research Scheme (grant No. UM·C/HIR/MOHE/SC/12).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChatonnet, P., Dubourdieu, D., Boidron, J. N. & Pons, M. (1992). J. Sci. Food Agric. 60, 165–178.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHixson, J. L., Sleep, N. R., Capone, D. L., Elsey, G. M., Curtin, C. D., Sefton, M. A. & Taylor, D. K. (2012). J. Agric. Food Chem. Submitted.  Google Scholar
First citationHosoda, A., Nomura, E., Mizuno, K. & Taniguchi, H. (2001). J. Org. Chem. 66, 7199–7201.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNagel, C. W. & Wulf, L. W. (1979). Am. J. Enol. Vitic. 30, 111–116.  CAS Google Scholar
First citationOng, B. Y. & Nagel, C. W. (1978). Am. J. Enol. Vitic. 29, 277–281.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H. & Burke, T. R. (1998). Synth. Commun. 28, 737–740.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o568-o569
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds