metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m244-m245

(Di­methyl sulfoxide-κO)[2-({(ethyl­sulfan­yl)[2-(2-oxido­benzyl­­idene-κO)hydrazin­yl­­idene-κN2]meth­yl}­imino­meth­yl)­phenol­ato-κO]dioxidouranium(VI)

aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, 91775-1436 Mashhad, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 January 2012; accepted 28 January 2012; online 4 February 2012)

The UVI atom in the title complex, [U(C17H15N3O2S)O2(C2H6OS)], exists within a distorted penta­gonal–pyramidal geometry where the oxide atoms occupy axial positions [O—U—O = 177.84 (14)°] and the penta­gonal plane is defined by the N2O2 atoms of the tetra­dentate Schiff base ligand and the O atom of the dimethyl sulfoxide mol­ecule. In the crystal, centrosymmetric aggregates are formed via pairs of C—H⋯O inter­actions. The azomethine C=N atoms and ethyl­thiolyl group are disordered over two orientations in a 0.828 (3):0.172 (3) ratio.

Related literature

For background to uranyl Schiff base complexes, see: Şahin et al. (2010[Şahin, M., Koca, A., Özdemir, N., Dinçer, M., Büyükgüngör, O., Bal-Demirci, T. & Ülküseven, B. (2010). Dalton Trans. 39, 10228-10237.]); Özdemir et al. (2011[Özdemir, N., Şahin, M., Bal-Demirci, T. & Ülküseven, B. (2011). Polyhedron, 30, 515-521.]).

[Scheme 1]

Experimental

Crystal data
  • [U(C17H15N3O2S)O2(C2H6OS)]

  • Mr = 673.54

  • Monoclinic, P 21 /n

  • a = 11.6988 (3) Å

  • b = 15.4972 (3) Å

  • c = 12.2246 (3) Å

  • β = 105.714 (3)°

  • V = 2133.47 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.84 mm−1

  • T = 100 K

  • 0.18 × 0.12 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.333, Tmax = 0.508

  • 19265 measured reflections

  • 4927 independent reflections

  • 4237 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.063

  • S = 1.01

  • 4927 reflections

  • 281 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −1.52 e Å−3

Table 1
Selected bond lengths (Å)

U—O1 2.267 (3)
U—O2 2.233 (3)
U—O3 1.787 (3)
U—O4 1.792 (3)
U—O5 2.395 (3)
U—N1 2.547 (4)
U—N3 2.603 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O4i 0.95 2.48 3.322 (5) 147
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Tetradentate ligands with N2O2 donor sets and their metal complexes are of great importance as they provide synthetic models for the metal-containing sites in metallo-proteins and metallo-enzymes, and display extensive catalytic and bioactive applications. Such considerations have motivated recent studies of uranyl Schiff base complexes (Şahin et al., 2010; Özdemir et al., 2011) and led to the synthesis of the title complex, (I).

The U atom in (I), Fig. 1, exists within a distorted pentagonal bipyramidal geometry with the axial positions occupied by the oxido-O atoms, O3—U—O4 = 177.84 (14)°. The pentagonal plane is defined by the N2O2 atoms, derived from the tetradentate Schiff base ligand, and the O atom of the dimethyl sulfoxide molecule, Table 1. The Schiff base ligand is somewhat buckled with the dihedral angle between the terminal benzene rings being 35.6 (2)°. The S-bound substituents are directed to one side of the molecule, Fig. 1.

In the crystal structure, centrosymmetric pairs of molecules are linked via C—H···O(oxido) interactions, Fig. 2 and Table 2. The dimeric aggregates stack into columns parallel to c, Fig. 3.

Related literature top

For background to uranyl Schiff base complexes, see: Şahin et al. (2010); Özdemir et al. (2011).

Experimental top

UO2(OAc)2.2H2O (0.42 g, 1.0 mmol) was added to an ethanol (20 cm3) solution of salicylaldehyde mono-S-ethylisothiosemicarbazone hydrobromide (0.32 g, 1.0 mmol) and salicylaldehyde (0.12 g, 1.0 mmol). The red solution was heated under reflux for 1 h at 70 °C. Red crystals of the product, (I), precipitated after three days, collected by filtration, washed with ethanol, and dried in air. Recrystallization was by slow evaporation (10 days) of a dimethyl sulfoxide solution of (I) which yielded red crystals. M.pt. 513 K. Yield: 46%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The ethylthiolyl unit is disordered over two positions; the minor component refined to a site occupancy = 0.172 (3). The Uiso parameters of the atoms of the minor component were constrained to be equal to Ueq of the major component. Pairs of S—C and C—C distances were restrained to within 0.01 Å of each other. The azomethine CN unit is also disordered; the positions and anisotropic displacement parameters of the primed atoms were set to those of the unprimed ones. A short H···H contact (2.09 Å) involving the methyl groups of the disordered SEt residue and the DMSO molecule is noted. The final difference Fourier map had a peak at 0.91 Å from U and a hole at 0.11 Å from S1'. Owing to poor agreement, the (1 1 0) reflection was omitted from the final refinement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 70% probability level. Only the major component of the disordered residue is shown.
[Figure 2] Fig. 2. A view of the centrosymmetric aggregate in (I). The C—H···O interactions are shown as dashed lines.
[Figure 3] Fig. 3. A view in projection down the c axis of the unit-cell contents of (I).
(Dimethyl sulfoxide-κO)[2-({(ethylsulfanyl)[2-(2-oxidobenzylidene- κO<ι>)hydrazinylidene-κN2]methyl}iminomethyl)phenolato- κO]dioxidouranium(VI) top
Crystal data top
[U(C17H15N3O2S)O2(C2H6OS)]F(000) = 1280
Mr = 673.54Dx = 2.097 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8576 reflections
a = 11.6988 (3) Åθ = 2.2–27.5°
b = 15.4972 (3) ŵ = 7.84 mm1
c = 12.2246 (3) ÅT = 100 K
β = 105.714 (3)°Prism, red
V = 2133.47 (9) Å30.18 × 0.12 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4927 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4237 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.044
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.5°
ω scanh = 1415
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2020
Tmin = 0.333, Tmax = 0.508l = 1511
19265 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0243P)2 + 4.2587P]
where P = (Fo2 + 2Fc2)/3
4927 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.98 e Å3
3 restraintsΔρmin = 1.52 e Å3
Crystal data top
[U(C17H15N3O2S)O2(C2H6OS)]V = 2133.47 (9) Å3
Mr = 673.54Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.6988 (3) ŵ = 7.84 mm1
b = 15.4972 (3) ÅT = 100 K
c = 12.2246 (3) Å0.18 × 0.12 × 0.10 mm
β = 105.714 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4927 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4237 reflections with I > 2σ(I)
Tmin = 0.333, Tmax = 0.508Rint = 0.044
19265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0303 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.01Δρmax = 0.98 e Å3
4927 reflectionsΔρmin = 1.52 e Å3
281 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
U0.364161 (13)0.640410 (10)0.689855 (13)0.01292 (6)
S10.15547 (15)0.46851 (11)0.34195 (14)0.0341 (5)0.828 (3)
S1'0.0795 (7)0.3967 (5)0.5070 (7)0.034*0.172 (3)
S20.58169 (11)0.77489 (8)0.88184 (11)0.0260 (3)
O10.4057 (3)0.72624 (19)0.5554 (3)0.0171 (7)
O20.3653 (3)0.5871 (2)0.8599 (3)0.0257 (8)
O30.2236 (3)0.69271 (19)0.6677 (3)0.0169 (7)
O40.5046 (2)0.58833 (18)0.7065 (3)0.0168 (7)
O50.4562 (3)0.7596 (2)0.8050 (3)0.0220 (7)
N10.3115 (3)0.5629 (2)0.4990 (3)0.0145 (8)
N20.1805 (3)0.4702 (2)0.5585 (3)0.0211 (9)0.828 (3)
C8'0.1805 (3)0.4702 (2)0.5585 (3)0.0211 (9)0.172
N30.2299 (3)0.5040 (2)0.6674 (3)0.0150 (8)
C10.4713 (4)0.7110 (3)0.4855 (4)0.0140 (9)
C20.5515 (4)0.7744 (3)0.4682 (4)0.0194 (10)
H20.56030.82700.50960.023*
C30.6170 (4)0.7605 (3)0.3915 (4)0.0204 (10)
H30.67080.80360.38120.025*
C40.6058 (4)0.6841 (3)0.3285 (4)0.0195 (10)
H40.65170.67560.27610.023*
C50.5290 (4)0.6222 (3)0.3427 (4)0.0194 (10)
H50.52020.57090.29860.023*
C60.4613 (4)0.6331 (3)0.4226 (4)0.0157 (9)
C70.3764 (4)0.5671 (3)0.4269 (4)0.0148 (9)
H70.36620.52220.37210.018*
N2'0.2226 (4)0.4984 (3)0.4777 (4)0.0225 (10)0.172 (3)
C80.2226 (4)0.4984 (3)0.4777 (4)0.0225 (10)0.828 (3)
C90.0485 (5)0.3874 (4)0.3578 (6)0.0248 (15)0.828 (3)
H9A0.00550.40930.41160.030*0.828 (3)
H9B0.01050.37900.28340.030*0.828 (3)
C9'0.097 (3)0.3909 (19)0.3636 (16)0.025*0.172 (3)
H9'A0.01640.39800.31130.030*0.172 (3)
H9'B0.14270.44260.35380.030*0.172 (3)
C100.1023 (6)0.3020 (5)0.3993 (6)0.0410 (18)0.828 (3)
H10A0.03950.26180.40510.061*0.828 (3)
H10B0.15880.30910.47420.061*0.828 (3)
H10C0.14370.27910.34580.061*0.828 (3)
C10'0.152 (3)0.3162 (19)0.320 (3)0.041*0.172 (3)
H10D0.15170.32700.24100.061*0.172 (3)
H10E0.10650.26370.32400.061*0.172 (3)
H10F0.23390.30880.36650.061*0.172 (3)
C110.1832 (4)0.4694 (3)0.7413 (4)0.0167 (9)
H110.12650.42510.71420.020*
C120.2075 (4)0.4904 (3)0.8601 (4)0.0183 (10)
C130.1371 (4)0.4507 (3)0.9225 (4)0.0241 (11)
H130.07700.41110.88560.029*
C140.1538 (4)0.4683 (4)1.0362 (4)0.0290 (12)
H140.10430.44241.07700.035*
C150.2443 (5)0.5245 (3)1.0904 (4)0.0274 (11)
H150.25670.53631.16900.033*
C160.3160 (4)0.5633 (3)1.0326 (4)0.0247 (11)
H160.37810.60041.07200.030*
C170.2984 (4)0.5486 (3)0.9154 (4)0.0185 (10)
C180.6216 (5)0.6806 (3)0.9658 (4)0.0290 (12)
H18A0.57580.67781.02190.044*
H18B0.70660.68241.00500.044*
H18C0.60460.62960.91680.044*
C190.6776 (5)0.7611 (5)0.7925 (5)0.0467 (16)
H19A0.66670.80910.73840.070*
H19B0.65890.70660.75080.070*
H19C0.76030.75990.83900.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U0.01231 (9)0.01200 (8)0.01301 (9)0.00072 (6)0.00096 (6)0.00015 (7)
S10.0401 (10)0.0365 (9)0.0277 (9)0.0149 (8)0.0128 (8)0.0043 (8)
S20.0302 (7)0.0166 (6)0.0228 (6)0.0051 (5)0.0073 (5)0.0024 (5)
O10.0220 (16)0.0111 (14)0.0189 (16)0.0001 (12)0.0067 (14)0.0000 (13)
O20.0299 (18)0.0282 (18)0.0153 (16)0.0136 (15)0.0002 (15)0.0032 (15)
O30.0139 (15)0.0169 (15)0.0200 (16)0.0015 (13)0.0043 (13)0.0003 (14)
O40.0142 (15)0.0110 (14)0.0210 (16)0.0005 (12)0.0025 (13)0.0033 (13)
O50.0246 (17)0.0159 (16)0.0203 (17)0.0008 (13)0.0027 (15)0.0029 (14)
N10.0130 (17)0.0141 (18)0.0143 (18)0.0002 (14)0.0000 (15)0.0009 (16)
N20.024 (2)0.021 (2)0.015 (2)0.0050 (17)0.0008 (18)0.0024 (18)
C8'0.024 (2)0.021 (2)0.015 (2)0.0050 (17)0.0008 (18)0.0024 (18)
N30.0130 (17)0.0159 (18)0.0138 (18)0.0002 (15)0.0001 (15)0.0008 (16)
C10.0110 (19)0.015 (2)0.014 (2)0.0033 (17)0.0005 (18)0.0018 (18)
C20.024 (2)0.014 (2)0.020 (2)0.0011 (18)0.006 (2)0.0013 (19)
C30.021 (2)0.015 (2)0.026 (3)0.0033 (18)0.008 (2)0.005 (2)
C40.020 (2)0.021 (2)0.019 (2)0.0057 (19)0.010 (2)0.004 (2)
C50.020 (2)0.018 (2)0.022 (2)0.0042 (18)0.010 (2)0.003 (2)
C60.016 (2)0.014 (2)0.015 (2)0.0026 (17)0.0004 (18)0.0012 (18)
C70.017 (2)0.013 (2)0.012 (2)0.0002 (17)0.0006 (18)0.0017 (18)
N2'0.021 (2)0.018 (2)0.022 (2)0.0031 (19)0.007 (2)0.003 (2)
C80.021 (2)0.018 (2)0.022 (2)0.0031 (19)0.007 (2)0.003 (2)
C90.013 (3)0.026 (3)0.033 (4)0.008 (3)0.000 (3)0.005 (3)
C100.035 (4)0.046 (4)0.041 (4)0.009 (3)0.008 (3)0.001 (4)
C110.012 (2)0.015 (2)0.020 (2)0.0007 (17)0.0003 (19)0.0026 (19)
C120.017 (2)0.019 (2)0.017 (2)0.0047 (18)0.0018 (19)0.004 (2)
C130.020 (2)0.028 (3)0.024 (3)0.001 (2)0.004 (2)0.002 (2)
C140.025 (3)0.041 (3)0.024 (3)0.001 (2)0.012 (2)0.009 (2)
C150.037 (3)0.030 (3)0.017 (2)0.013 (2)0.009 (2)0.003 (2)
C160.033 (3)0.021 (2)0.015 (2)0.001 (2)0.002 (2)0.001 (2)
C170.024 (2)0.012 (2)0.017 (2)0.0016 (18)0.001 (2)0.0013 (19)
C180.032 (3)0.019 (2)0.026 (3)0.002 (2)0.009 (2)0.000 (2)
C190.034 (3)0.066 (4)0.036 (3)0.020 (3)0.004 (3)0.007 (3)
Geometric parameters (Å, º) top
U—O12.267 (3)C9—C101.494 (9)
U—O22.233 (3)C9—H9A0.9900
U—O31.787 (3)C9—H9B0.9900
U—O41.792 (3)C9'—C10'1.493 (13)
U—O52.395 (3)C9'—H9'A0.9900
U—N12.547 (4)C9'—H9'B0.9900
U—N32.603 (4)C10—H10A0.9800
S1—C91.821 (6)C10—H10B0.9800
S1'—C9'1.819 (12)C10—H10C0.9800
S2—O51.532 (3)C10'—H10D0.9800
S2—C181.773 (5)C10'—H10E0.9800
S2—C191.779 (6)C10'—H10F0.9800
O1—C11.316 (5)C11—C121.440 (6)
O2—C171.310 (6)C11—H110.9500
N1—C71.312 (5)C12—C131.407 (7)
N1—N2'1.415 (5)C12—C171.419 (6)
N2—N31.402 (5)C13—C141.377 (7)
N3—C111.292 (6)C13—H130.9500
C1—C21.414 (6)C14—C151.393 (7)
C1—C61.419 (6)C14—H140.9500
C2—C31.379 (6)C15—C161.373 (7)
C2—H20.9500C15—H150.9500
C3—C41.398 (6)C16—C171.409 (6)
C3—H30.9500C16—H160.9500
C4—C51.358 (6)C18—H18A0.9800
C4—H40.9500C18—H18B0.9800
C5—C61.425 (6)C18—H18C0.9800
C5—H50.9500C19—H19A0.9800
C6—C71.437 (6)C19—H19B0.9800
C7—H70.9500C19—H19C0.9800
O3—U—O4177.84 (14)S1—C9—H9A108.7
O3—U—O294.71 (13)C10—C9—H9B108.7
O4—U—O287.36 (13)S1—C9—H9B108.7
O3—U—O189.60 (12)H9A—C9—H9B107.6
O4—U—O188.65 (12)C10'—C9'—S1'124 (2)
O2—U—O1160.62 (11)C10'—C9'—H9'A106.4
O3—U—O589.31 (12)S1'—C9'—H9'A106.4
O4—U—O591.63 (12)C10'—C9'—H9'B106.4
O2—U—O581.36 (11)S1'—C9'—H9'B106.4
O1—U—O579.81 (11)H9'A—C9'—H9'B106.5
O3—U—N195.21 (13)C9—C10—H10A109.5
O4—U—N183.00 (12)C9—C10—H10B109.5
O2—U—N1128.10 (12)H10A—C10—H10B109.5
O1—U—N170.05 (11)C9—C10—H10C109.5
O5—U—N1149.45 (11)H10A—C10—H10C109.5
O3—U—N381.27 (12)H10B—C10—H10C109.5
O4—U—N398.90 (12)C9'—C10'—H10D109.5
O2—U—N369.45 (11)C9'—C10'—H10E109.5
O1—U—N3129.92 (11)H10D—C10'—H10E109.5
O5—U—N3148.30 (11)C9'—C10'—H10F109.5
N1—U—N362.04 (11)H10D—C10'—H10F109.5
O5—S2—C18106.6 (2)H10E—C10'—H10F109.5
O5—S2—C19105.3 (2)N3—C11—C12127.3 (4)
C18—S2—C1998.3 (3)N3—C11—H11116.3
C1—O1—U130.0 (3)C12—C11—H11116.3
C17—O2—U142.8 (3)C13—C12—C17119.5 (4)
S2—O5—U133.10 (18)C13—C12—C11117.6 (4)
C7—N1—N2'116.1 (4)C17—C12—C11122.8 (4)
C7—N1—U123.5 (3)C14—C13—C12121.2 (5)
N2'—N1—U119.1 (3)C14—C13—H13119.4
C11—N3—N2111.4 (4)C12—C13—H13119.4
C11—N3—U128.4 (3)C13—C14—C15119.0 (5)
N2—N3—U119.0 (3)C13—C14—H14120.5
O1—C1—C2120.0 (4)C15—C14—H14120.5
O1—C1—C6121.8 (4)C16—C15—C14121.4 (5)
C2—C1—C6118.1 (4)C16—C15—H15119.3
C3—C2—C1120.4 (4)C14—C15—H15119.3
C3—C2—H2119.8C15—C16—C17120.8 (5)
C1—C2—H2119.8C15—C16—H16119.6
C2—C3—C4121.4 (4)C17—C16—H16119.6
C2—C3—H3119.3O2—C17—C16120.7 (4)
C4—C3—H3119.3O2—C17—C12121.2 (4)
C5—C4—C3119.7 (4)C16—C17—C12118.1 (4)
C5—C4—H4120.2S2—C18—H18A109.5
C3—C4—H4120.2S2—C18—H18B109.5
C4—C5—C6120.9 (4)H18A—C18—H18B109.5
C4—C5—H5119.5S2—C18—H18C109.5
C6—C5—H5119.5H18A—C18—H18C109.5
C5—C6—C1119.5 (4)H18B—C18—H18C109.5
C5—C6—C7117.3 (4)S2—C19—H19A109.5
C1—C6—C7122.9 (4)S2—C19—H19B109.5
N1—C7—C6126.2 (4)H19A—C19—H19B109.5
N1—C7—H7116.9S2—C19—H19C109.5
C6—C7—H7116.9H19A—C19—H19C109.5
C10—C9—S1114.2 (4)H19B—C19—H19C109.5
C10—C9—H9A108.7
O3—U—O1—C1149.9 (3)O4—U—N3—N289.6 (3)
O4—U—O1—C128.9 (3)O2—U—N3—N2173.4 (3)
O2—U—O1—C1107.0 (4)O1—U—N3—N26.1 (3)
O5—U—O1—C1120.8 (3)O5—U—N3—N2162.5 (3)
N1—U—O1—C154.2 (3)N1—U—N3—N212.5 (3)
N3—U—O1—C171.6 (4)U—O1—C1—C2135.9 (3)
O3—U—O2—C1743.8 (5)U—O1—C1—C646.5 (5)
O4—U—O2—C17135.5 (5)O1—C1—C2—C3177.2 (4)
O1—U—O2—C17146.2 (4)C6—C1—C2—C30.5 (6)
O5—U—O2—C17132.4 (5)C1—C2—C3—C40.4 (7)
N1—U—O2—C1756.6 (5)C2—C3—C4—C50.1 (7)
N3—U—O2—C1735.0 (5)C3—C4—C5—C61.4 (7)
C18—S2—O5—U46.1 (3)C4—C5—C6—C12.2 (7)
C19—S2—O5—U57.7 (3)C4—C5—C6—C7175.9 (4)
O3—U—O5—S2170.9 (3)O1—C1—C6—C5175.9 (4)
O4—U—O5—S211.0 (3)C2—C1—C6—C51.7 (6)
O2—U—O5—S276.1 (3)O1—C1—C6—C72.6 (6)
O1—U—O5—S299.3 (3)C2—C1—C6—C7175.1 (4)
N1—U—O5—S290.0 (3)N2'—N1—C7—C6171.9 (4)
N3—U—O5—S298.9 (3)U—N1—C7—C621.1 (6)
O3—U—N1—C7127.2 (3)C5—C6—C7—N1175.5 (4)
O4—U—N1—C751.6 (3)C1—C6—C7—N111.0 (7)
O2—U—N1—C7132.7 (3)N2—N3—C11—C12177.0 (4)
O1—U—N1—C739.5 (3)U—N3—C11—C129.7 (6)
O5—U—N1—C729.7 (4)N3—C11—C12—C13173.4 (4)
N3—U—N1—C7155.6 (4)N3—C11—C12—C176.6 (7)
O3—U—N1—N2'66.2 (3)C17—C12—C13—C140.9 (7)
O4—U—N1—N2'115.1 (3)C11—C12—C13—C14179.2 (4)
O2—U—N1—N2'34.0 (3)C12—C13—C14—C151.8 (7)
O1—U—N1—N2'153.8 (3)C13—C14—C15—C160.7 (8)
O5—U—N1—N2'163.7 (3)C14—C15—C16—C171.3 (7)
N3—U—N1—N2'11.1 (3)U—O2—C17—C16148.3 (4)
O3—U—N3—C1178.3 (4)U—O2—C17—C1232.4 (7)
O4—U—N3—C11103.9 (4)C15—C16—C17—O2178.5 (4)
O2—U—N3—C1120.1 (3)C15—C16—C17—C122.2 (7)
O1—U—N3—C11160.4 (3)C13—C12—C17—O2179.6 (4)
O5—U—N3—C114.1 (5)C11—C12—C17—O20.4 (7)
N1—U—N3—C11179.0 (4)C13—C12—C17—C161.1 (6)
O3—U—N3—N288.2 (3)C11—C12—C17—C16178.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.952.483.322 (5)147
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[U(C17H15N3O2S)O2(C2H6OS)]
Mr673.54
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.6988 (3), 15.4972 (3), 12.2246 (3)
β (°) 105.714 (3)
V3)2133.47 (9)
Z4
Radiation typeMo Kα
µ (mm1)7.84
Crystal size (mm)0.18 × 0.12 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.333, 0.508
No. of measured, independent and
observed [I > 2σ(I)] reflections
19265, 4927, 4237
Rint0.044
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.063, 1.01
No. of reflections4927
No. of parameters281
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.98, 1.52

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
U—O12.267 (3)U—O52.395 (3)
U—O22.233 (3)U—N12.547 (4)
U—O31.787 (3)U—N32.603 (4)
U—O41.792 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.952.483.322 (5)147
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: rezatakjoo@yahoo.com.

Acknowledgements

We gratefully acknowledge financial support of this study by Ferdowsi University of Mashhad, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationÖzdemir, N., Şahin, M., Bal-Demirci, T. & Ülküseven, B. (2011). Polyhedron, 30, 515–521.  Google Scholar
First citationŞahin, M., Koca, A., Özdemir, N., Dinçer, M., Büyükgüngör, O., Bal-Demirci, T. & Ülküseven, B. (2010). Dalton Trans. 39, 10228–10237.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m244-m245
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds