organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-{4-[Bis(4-bromo­phen­yl)meth­yl]piperazin-1-yl}-3-(4-methyl­phen­yl)prop-2-en-1-one

aSchool of Chemistry and Chemical Engineering, Southeast University, Sipailou No. 2 Nanjing, Nanjing 210096, People's Republic of China, bCentre of Laboratory Animal, Nanjing Medical University, Hanzhong Road No. 140 Nanjing, Nanjing 210029, People's Republic of China, and cSchool of Pharmacy, Nanjing Medical University, Hanzhong Road No. 140 Nanjing, Nanjing 210029, People's Republic of China
*Correspondence e-mail: wubin@njmu.edu.cn

(Received 27 January 2012; accepted 29 January 2012; online 4 February 2012)

In the title compound, C27H26Br2N2O, the piperazine ring adopts a chair conformation with the N—C bonds in equatorial orientations. The C=C double bond has an E configuration. The dihedral angle between the bromo­benzene rings is 83.0 (4)°. In the crystal, inversion dimers linked through pairs of C—H⋯O hydrogen bonds generate R22(10) loops.

Related literature

For a related structure and background to cinnamic acid derivatives, see: Teng et al. (2011[Teng, Y.-B., Dai, Z.-H. & Wu, B. (2011). Acta Cryst. E67, o697.]); Zhong et al. (2012[Zhong, Y., Zhang, X. P. & Wu, B. (2012). Acta Cryst. E68, o122.]). For further synthetic details, see: Wu et al. (2008[Wu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. 19, 1163-1166.]).

[Scheme 1]

Experimental

Crystal data
  • C27H26Br2N2O

  • Mr = 554.32

  • Monoclinic, P 21 /c

  • a = 10.050 (2) Å

  • b = 11.622 (2) Å

  • c = 21.259 (4) Å

  • β = 101.72 (3)°

  • V = 2431.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.36 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.553, Tmax = 0.730

  • 4720 measured reflections

  • 4452 independent reflections

  • 1998 reflections with I > 2σ(I)

  • Rint = 0.097

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.155

  • S = 1.00

  • 4452 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20A⋯Oi 0.93 2.55 3.445 (10) 162
Symmetry code: (i) -x, -y-1, -z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); data reduction: XCAD4; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a continuation of our study of cinnamic acid derivatives (Teng et al., 2011; Zhong et al., 2012), we present here the title compound (I). In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in related compounds (Teng et al., 2011; Zhong et al., 2012). The molecule of (I) exists an E configulation with respect to the C19=C20 ethene bond [1.317 (10)]. The piperazine ring adopts a chair conformation with puchering parameters Q = 0.574 (8), Theta = 5.0 (7), Phi = 2(10). In the crystal, molecules are linked by C—H···O hydrogen bonds to form inversion dimers.

Related literature top

For a related structure and background to cinnamic acid derivatives, see: Teng et al. (2011); Zhong et al. (2012). For further synthetic details, see: Wu et al. (2008).

Experimental top

The synthesis follows the method of Wu et al. (2008). The title compound was prepared by stirring a mixture of (E)-3-(4-methylphenyl) acrylic acid (0.649 g; 4 mmol), thionyl chloride (2 ml) and dichloromethane (30 ml) for 6 h at room temperature. The solvent was removed under reduced pressure. The residue was dissolved in acetone (15 ml) and reacted with 1-(bis(4-bromophenyl)methyl)iperazine (2.461 g; 6 mmol) in the presence of triethylamine (5 ml) for 12 h at room temperature. The resultant mixture was cooled. The solid, (E)-1-(4-(bis(4-bromophenyl)methyl)piperazin-1-yl) -3-(4-methylphenyl)prop-2-en-1-one obtained was filtered and was recrystallized from ethanol. Colourless blocks were grown from an ethanol:ethyl acetate (1:1) solution by slow evaporation at room temperature.

Refinement top

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were positioned geometrically with C—H distances ranging from 0.93 Å to 0.98 Å and refined as riding on their parent atoms with Uĩso~(H) = 1.2 or 1.5U~eq~ of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: XCAD4 (Harms & Wocadlo, 1995); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for non-H drawn at 70% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound.
(E)-1-{4-[Bis(4-bromophenyl)methyl]piperazin-1-yl}- 3-(4-methylphenyl)prop-2-en-1-one top
Crystal data top
C27H26Br2N2OF(000) = 1120
Mr = 554.32Dx = 1.514 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.050 (2) ÅCell parameters from 25 reflections
b = 11.622 (2) Åθ = 9–13°
c = 21.259 (4) ŵ = 3.36 mm1
β = 101.72 (3)°T = 293 K
V = 2431.3 (8) Å3Block, colorless
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1998 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.097
Graphite monochromatorθmax = 25.4°, θmin = 2.0°
ω/2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 014
Tmin = 0.553, Tmax = 0.730l = 2525
4720 measured reflections3 standard reflections every 200 reflections
4452 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.058P)2]
where P = (Fo2 + 2Fc2)/3
4452 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C27H26Br2N2OV = 2431.3 (8) Å3
Mr = 554.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.050 (2) ŵ = 3.36 mm1
b = 11.622 (2) ÅT = 293 K
c = 21.259 (4) Å0.20 × 0.10 × 0.10 mm
β = 101.72 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1998 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.097
Tmin = 0.553, Tmax = 0.7303 standard reflections every 200 reflections
4720 measured reflections intensity decay: 1%
4452 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.00Δρmax = 0.34 e Å3
4452 reflectionsΔρmin = 0.45 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.0717 (5)0.3479 (4)0.0069 (3)0.0630 (15)
Br10.44042 (9)0.37326 (8)0.22953 (5)0.0767 (4)
N10.0588 (5)0.0520 (5)0.1495 (3)0.0442 (15)
C10.0218 (7)0.0187 (6)0.2125 (4)0.0487 (19)
H1A0.06530.08830.23330.058*
Br20.32805 (9)0.19580 (10)0.38972 (4)0.0806 (4)
N20.1598 (6)0.2188 (5)0.0521 (3)0.0545 (17)
C20.1307 (7)0.0670 (7)0.2094 (4)0.0470 (19)
C30.2514 (8)0.0676 (7)0.2534 (4)0.060 (2)
H3A0.27070.00500.28100.072*
C40.3449 (8)0.1542 (8)0.2592 (4)0.061 (2)
H4A0.42400.15100.29070.074*
C50.3201 (8)0.2465 (7)0.2176 (4)0.055 (2)
C60.2044 (8)0.2464 (7)0.1691 (4)0.054 (2)
H6A0.19010.30430.13820.065*
C70.1108 (8)0.1585 (7)0.1676 (4)0.057 (2)
H7A0.03060.16150.13680.068*
C80.0647 (7)0.0317 (7)0.2557 (4)0.049 (2)
C90.1647 (8)0.1108 (7)0.2339 (4)0.054 (2)
H9A0.17980.13140.19080.065*
C100.2433 (8)0.1612 (7)0.2714 (4)0.055 (2)
H10A0.30920.21540.25480.067*
C110.2210 (8)0.1285 (7)0.3351 (4)0.056 (2)
C120.1220 (8)0.0515 (8)0.3588 (4)0.065 (2)
H12A0.10510.03260.40220.079*
C130.0476 (8)0.0019 (6)0.3197 (4)0.055 (2)
H13A0.01650.05360.33640.066*
C140.1526 (7)0.1435 (7)0.1605 (4)0.057 (2)
H14A0.20850.11570.18960.069*
H14B0.10090.20890.18060.069*
C150.2449 (8)0.1819 (7)0.0968 (4)0.061 (2)
H15A0.30260.24490.10470.073*
H15B0.30270.11850.07830.073*
C160.0594 (8)0.1313 (7)0.0440 (4)0.064 (2)
H16A0.10590.06430.02290.077*
H16B0.00080.16160.01690.077*
C170.0250 (8)0.0964 (7)0.1075 (4)0.058 (2)
H17A0.07570.16240.12750.070*
H17B0.08970.03800.10090.070*
C180.1507 (8)0.3269 (7)0.0276 (4)0.051 (2)
C190.2448 (8)0.4138 (7)0.0431 (4)0.055 (2)
H19A0.32470.39130.05520.066*
C200.2158 (8)0.5239 (7)0.0396 (3)0.052 (2)
H20A0.13440.54190.02760.063*
C210.2995 (7)0.6208 (7)0.0530 (3)0.0483 (19)
C220.4292 (8)0.6105 (7)0.0646 (4)0.060 (2)
H22A0.46680.53760.06570.072*
C230.5059 (9)0.7074 (8)0.0748 (4)0.064 (2)
H23A0.59350.69760.08190.076*
C240.4521 (9)0.8183 (8)0.0743 (4)0.059 (2)
C250.3214 (9)0.8263 (7)0.0645 (4)0.066 (2)
H25A0.28230.89890.06510.079*
C260.2454 (8)0.7326 (7)0.0538 (3)0.055 (2)
H26A0.15760.74320.04710.066*
C270.5351 (9)0.9212 (8)0.0868 (4)0.093 (3)
H27A0.48450.99040.08400.139*
H27B0.61850.92340.05540.139*
H27C0.55510.91520.12900.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.078 (4)0.049 (4)0.070 (4)0.004 (3)0.032 (3)0.014 (3)
Br10.0687 (6)0.0546 (6)0.1100 (8)0.0143 (5)0.0262 (5)0.0154 (6)
N10.048 (4)0.029 (3)0.062 (4)0.009 (3)0.026 (3)0.016 (3)
C10.045 (4)0.031 (4)0.068 (5)0.002 (4)0.008 (4)0.008 (4)
Br20.0783 (7)0.1131 (9)0.0545 (5)0.0146 (6)0.0232 (5)0.0214 (6)
N20.055 (4)0.042 (4)0.073 (4)0.009 (3)0.029 (3)0.014 (4)
C20.038 (4)0.035 (5)0.066 (5)0.002 (4)0.005 (4)0.003 (4)
C30.063 (6)0.043 (5)0.076 (6)0.006 (5)0.018 (5)0.012 (5)
C40.043 (5)0.073 (7)0.069 (6)0.004 (4)0.011 (4)0.026 (5)
C50.054 (5)0.036 (5)0.083 (6)0.002 (4)0.034 (5)0.001 (5)
C60.049 (5)0.046 (5)0.069 (5)0.002 (4)0.018 (4)0.002 (4)
C70.059 (5)0.049 (6)0.063 (5)0.009 (4)0.015 (4)0.006 (4)
C80.052 (5)0.039 (5)0.055 (5)0.001 (4)0.007 (4)0.002 (4)
C90.064 (5)0.055 (6)0.041 (4)0.001 (5)0.005 (4)0.000 (4)
C100.065 (5)0.054 (6)0.049 (5)0.008 (4)0.015 (4)0.001 (4)
C110.069 (5)0.056 (5)0.046 (5)0.019 (5)0.015 (4)0.006 (4)
C120.073 (6)0.079 (7)0.043 (5)0.010 (6)0.009 (5)0.003 (5)
C130.059 (5)0.049 (5)0.054 (5)0.003 (4)0.002 (4)0.004 (4)
C140.052 (5)0.056 (6)0.069 (6)0.007 (4)0.023 (4)0.002 (5)
C150.065 (5)0.039 (5)0.087 (6)0.006 (4)0.035 (5)0.020 (5)
C160.087 (6)0.045 (5)0.076 (6)0.002 (5)0.051 (5)0.006 (5)
C170.057 (5)0.049 (6)0.073 (6)0.005 (4)0.025 (5)0.006 (4)
C180.056 (5)0.044 (5)0.055 (5)0.008 (4)0.014 (4)0.010 (4)
C190.052 (5)0.045 (5)0.064 (5)0.001 (4)0.004 (4)0.009 (4)
C200.064 (5)0.047 (5)0.044 (5)0.003 (4)0.004 (4)0.003 (4)
C210.055 (5)0.049 (5)0.040 (4)0.008 (5)0.007 (4)0.009 (4)
C220.073 (6)0.045 (6)0.067 (6)0.004 (4)0.026 (5)0.003 (4)
C230.067 (6)0.062 (6)0.063 (5)0.013 (5)0.017 (4)0.011 (5)
C240.079 (6)0.052 (6)0.048 (5)0.003 (5)0.014 (5)0.002 (4)
C250.091 (7)0.038 (5)0.069 (6)0.010 (5)0.017 (5)0.004 (5)
C260.065 (5)0.047 (6)0.053 (5)0.008 (5)0.013 (4)0.007 (4)
C270.102 (8)0.078 (7)0.094 (7)0.022 (6)0.009 (6)0.015 (6)
Geometric parameters (Å, º) top
O—C181.210 (8)C13—H13A0.9300
Br1—C51.890 (7)C14—C151.544 (10)
N1—C171.441 (8)C14—H14A0.9700
N1—C11.470 (8)C14—H14B0.9700
N1—C141.472 (8)C15—H15A0.9700
C1—C21.491 (9)C15—H15B0.9700
C1—C81.506 (9)C16—C171.496 (10)
C1—H1A0.9800C16—H16A0.9700
Br2—C111.904 (8)C16—H16B0.9700
N2—C181.370 (9)C17—H17A0.9700
N2—C151.466 (8)C17—H17B0.9700
N2—C161.466 (9)C18—C191.466 (10)
C2—C31.373 (9)C19—C201.317 (10)
C2—C71.374 (10)C19—H19A0.9300
C3—C41.365 (10)C20—C211.468 (10)
C3—H3A0.9300C20—H20A0.9300
C4—C51.381 (10)C21—C221.380 (9)
C4—H4A0.9300C21—C261.408 (9)
C5—C61.389 (10)C22—C231.406 (10)
C6—C71.385 (9)C22—H22A0.9300
C6—H6A0.9300C23—C241.398 (10)
C7—H7A0.9300C23—H23A0.9300
C8—C91.370 (9)C24—C251.375 (11)
C8—C131.380 (9)C24—C271.513 (11)
C9—C101.364 (10)C25—C261.374 (10)
C9—H9A0.9300C25—H25A0.9300
C10—C111.380 (10)C26—H26A0.9300
C10—H10A0.9300C27—H27A0.9600
C11—C121.356 (10)C27—H27B0.9600
C12—C131.354 (10)C27—H27C0.9600
C12—H12A0.9300
C17—N1—C1112.1 (6)H14A—C14—H14B108.0
C17—N1—C14108.3 (6)N2—C15—C14109.1 (6)
C1—N1—C14107.3 (6)N2—C15—H15A109.9
N1—C1—C2114.1 (6)C14—C15—H15A109.9
N1—C1—C8112.3 (6)N2—C15—H15B109.9
C2—C1—C8106.7 (6)C14—C15—H15B109.9
N1—C1—H1A107.9H15A—C15—H15B108.3
C2—C1—H1A107.9N2—C16—C17111.1 (6)
C8—C1—H1A107.9N2—C16—H16A109.4
C18—N2—C15127.4 (6)C17—C16—H16A109.4
C18—N2—C16119.4 (6)N2—C16—H16B109.4
C15—N2—C16112.3 (6)C17—C16—H16B109.4
C3—C2—C7115.4 (7)H16A—C16—H16B108.0
C3—C2—C1121.9 (7)N1—C17—C16111.1 (6)
C7—C2—C1122.3 (7)N1—C17—H17A109.4
C4—C3—C2124.3 (8)C16—C17—H17A109.4
C4—C3—H3A117.9N1—C17—H17B109.4
C2—C3—H3A117.9C16—C17—H17B109.4
C3—C4—C5118.9 (8)H17A—C17—H17B108.0
C3—C4—H4A120.6O—C18—N2121.2 (8)
C5—C4—H4A120.6O—C18—C19121.9 (7)
C4—C5—C6119.3 (7)N2—C18—C19116.8 (7)
C4—C5—Br1119.5 (7)C20—C19—C18119.8 (8)
C6—C5—Br1121.1 (6)C20—C19—H19A120.1
C7—C6—C5118.7 (8)C18—C19—H19A120.1
C7—C6—H6A120.7C19—C20—C21126.3 (8)
C5—C6—H6A120.7C19—C20—H20A116.8
C2—C7—C6123.2 (8)C21—C20—H20A116.8
C2—C7—H7A118.4C22—C21—C26117.0 (8)
C6—C7—H7A118.4C22—C21—C20124.6 (7)
C9—C8—C13116.0 (7)C26—C21—C20118.4 (7)
C9—C8—C1122.0 (7)C21—C22—C23121.7 (8)
C13—C8—C1122.1 (7)C21—C22—H22A119.1
C10—C9—C8124.2 (7)C23—C22—H22A119.1
C10—C9—H9A117.9C24—C23—C22120.8 (8)
C8—C9—H9A117.9C24—C23—H23A119.6
C9—C10—C11117.2 (8)C22—C23—H23A119.6
C9—C10—H10A121.4C25—C24—C23116.5 (8)
C11—C10—H10A121.4C25—C24—C27123.5 (9)
C12—C11—C10120.5 (8)C23—C24—C27120.0 (8)
C12—C11—Br2120.5 (6)C26—C25—C24123.5 (8)
C10—C11—Br2119.0 (7)C26—C25—H25A118.3
C13—C12—C11120.5 (8)C24—C25—H25A118.3
C13—C12—H12A119.7C25—C26—C21120.5 (8)
C11—C12—H12A119.7C25—C26—H26A119.8
C12—C13—C8121.6 (8)C21—C26—H26A119.8
C12—C13—H13A119.2C24—C27—H27A109.5
C8—C13—H13A119.2C24—C27—H27B109.5
N1—C14—C15111.0 (6)H27A—C27—H27B109.5
N1—C14—H14A109.4C24—C27—H27C109.5
C15—C14—H14A109.4H27A—C27—H27C109.5
N1—C14—H14B109.4H27B—C27—H27C109.5
C15—C14—H14B109.4
C17—N1—C1—C256.4 (8)C1—C8—C13—C12177.1 (7)
C14—N1—C1—C2175.1 (6)C17—N1—C14—C1560.4 (8)
C17—N1—C1—C8177.9 (6)C1—N1—C14—C15178.4 (6)
C14—N1—C1—C863.3 (7)C18—N2—C15—C14115.6 (8)
N1—C1—C2—C3147.5 (7)C16—N2—C15—C1453.0 (9)
C8—C1—C2—C387.9 (8)N1—C14—C15—N256.5 (8)
N1—C1—C2—C740.7 (10)C18—N2—C16—C17115.1 (8)
C8—C1—C2—C783.8 (9)C15—N2—C16—C1754.5 (8)
C7—C2—C3—C43.4 (12)C1—N1—C17—C16179.2 (6)
C1—C2—C3—C4168.9 (7)C14—N1—C17—C1661.0 (8)
C2—C3—C4—C51.7 (12)N2—C16—C17—N158.5 (8)
C3—C4—C5—C63.1 (11)C15—N2—C18—O176.7 (7)
C3—C4—C5—Br1174.6 (6)C16—N2—C18—O8.8 (11)
C4—C5—C6—C75.9 (11)C15—N2—C18—C195.8 (11)
Br1—C5—C6—C7171.7 (5)C16—N2—C18—C19173.7 (7)
C3—C2—C7—C60.3 (11)O—C18—C19—C2024.1 (12)
C1—C2—C7—C6172.0 (7)N2—C18—C19—C20158.4 (7)
C5—C6—C7—C24.3 (12)C18—C19—C20—C21179.5 (7)
N1—C1—C8—C944.2 (9)C19—C20—C21—C227.4 (12)
C2—C1—C8—C981.4 (9)C19—C20—C21—C26173.0 (8)
N1—C1—C8—C13136.3 (7)C26—C21—C22—C232.0 (11)
C2—C1—C8—C1398.1 (8)C20—C21—C22—C23177.6 (7)
C13—C8—C9—C101.3 (11)C21—C22—C23—C240.8 (12)
C1—C8—C9—C10178.2 (7)C22—C23—C24—C250.9 (11)
C8—C9—C10—C111.0 (12)C22—C23—C24—C27178.7 (8)
C9—C10—C11—C121.7 (12)C23—C24—C25—C261.6 (12)
C9—C10—C11—Br2179.9 (5)C27—C24—C25—C26179.2 (8)
C10—C11—C12—C132.9 (12)C24—C25—C26—C210.5 (12)
Br2—C11—C12—C13178.7 (6)C22—C21—C26—C251.3 (11)
C11—C12—C13—C83.3 (12)C20—C21—C26—C25178.3 (7)
C9—C8—C13—C122.4 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···Oi0.932.553.445 (10)162
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC27H26Br2N2O
Mr554.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.050 (2), 11.622 (2), 21.259 (4)
β (°) 101.72 (3)
V3)2431.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)3.36
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.553, 0.730
No. of measured, independent and
observed [I > 2σ(I)] reflections
4720, 4452, 1998
Rint0.097
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.155, 1.00
No. of reflections4452
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.45

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···Oi0.932.553.445 (10)162
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors thank Professor Hua-Qin Wang of the Analysis Centre, Nanjing University, for the diffraction measurements. This work was supported by the Natural Science Foundation of Jiangsu Province (grant No. BK2010538).

References

First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeng, Y.-B., Dai, Z.-H. & Wu, B. (2011). Acta Cryst. E67, o697.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. 19, 1163–1166.  Web of Science CrossRef CAS Google Scholar
First citationZhong, Y., Zhang, X. P. & Wu, B. (2012). Acta Cryst. E68, o122.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds