metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m255-m256

(Butan-2-ol-κO)[2-({(ethyl­sulfan­yl)[2-(2-oxido­benzyl­­idene-κO)hydrazinyl­­idene-κN2]meth­yl}imino­meth­yl)phenolato-κO]dioxidouranium(VI)

aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, 91775-1436 Mashhad, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 28 January 2012; accepted 1 February 2012; online 10 February 2012)

The U atom in the title complex, [U(C17H15N3O2S)O2(C4H10O)], exists within a distorted penta­gonal–bipyramidal geometry where the oxide O atoms occupy axial positions [O—U—O = 179.61 (18)°] and the penta­gonal plane is defined by the N2O2 atoms of the tetra­dentate Schiff base ligand and the O atom of the butan-2-ol mol­ecule. In the crystal, centrosymmetric aggregates are formed via pairs of hy­droxy–phenoxide O—H⋯O hydrogen bonds. The azomethine C=N atoms, the ethyl­thiolyl group and the butyl group of the butan-2-ol mol­ecule are disordered over two positions in a 0.668 (3):0.332 (3) ratio.

Related literature

For background to uranyl Schiff base complexes, see: Şahin et al. (2010[Şahin, M., Koca, A., Özdemir, N., Dinçer, M., Büyükgüngör, O., Bal-Demirci, T. & Ülküseven, B. (2010). Dalton Trans. 39, 10228-10237.]); Özdemir et al. (2011[Özdemir, N., Şahin, M., Bal-Demirci, T. & Ülküseven, B. (2011). Polyhedron, 30, 515-521.]). For a related structure, see: Takjoo et al. (2012[Takjoo, R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m244-m245.]).

[Scheme 1]

Experimental

Crystal data
  • [U(C17H15N3O2S)O2(C4H10O)]

  • Mr = 669.53

  • Monoclinic, P 21 /c

  • a = 11.3803 (2) Å

  • b = 14.3999 (3) Å

  • c = 14.0264 (4) Å

  • β = 97.326 (2)°

  • V = 2279.81 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.25 mm−1

  • T = 100 K

  • 0.25 × 0.10 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.265, Tmax = 0.713

  • 15878 measured reflections

  • 5262 independent reflections

  • 4493 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.078

  • S = 1.16

  • 5262 reflections

  • 302 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.16 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Selected bond lengths (Å)

U—O1 2.291 (4)
U—O2 2.229 (4)
U—O3 1.779 (4)
U—O4 1.776 (4)
U—O5 2.415 (4)
U—N1 2.562 (5)
U—N3 2.579 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1o⋯O1i 0.84 (1) 1.83 (2) 2.648 (6) 166 (7)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Tetradentate ligands with N2O2 donor sets and their metal complexes attract attention as they provide synthetic models for the metal-containing sites in metallo-proteins and metallo-enzymes, and display extensive catalytic and bioactive applications. In this connection, recent studies of uranyl Schiff base complexes (Şahin et al., 2010; Özdemir et al., 2011) motivated the synthesis of the title complex, (I), in continuation of related studies (Takjoo et al., 2012).

The U atom in (I), Fig. 1, exists within a distorted pentagonal bipyramidal geometry with the axial positions occupied by the oxido-O atoms, O3—U—O4 = 179.61 (18)°. The pentagonal plane is defined by the N2O2 atoms, derived from the tetradentate Schiff base ligand, and the O atom of the butan-2-ol molecule, Table 1. The Schiff base ligand is somewhat twisted with the dihedral angle between the terminal benzene rings being 31.7 (3)°.

In the crystal structure, centrosymmetric pairs of molecules are linked via O—H···O hydrogen bonds formed between the hydroxyl and O1-phenoxide atoms, Fig. 2 and Table 2. The dimeric aggregates stack into columns parallel to c, Fig. 3.

Related literature top

For background to uranyl Schiff base complexes, see: Şahin et al. (2010); Özdemir et al. (2011). For a related structure, see: Takjoo et al. (2012).

Experimental top

UO2(OAc)2.2H2O (0.42 g, 1.0 mmol) was added to a butanol solution (20 cm3) of salicylaldehyde mono-S-ethylisothiosemicarbazone hydrobromide (0.32 g, 1.0 mmol) and salicylaldehyde (0.12 g, 1.0 mmol). The red solution was heated under reflux for 1 h at 70 °C. Red prisms precipitated after four days, which were collected by filtration, washed with diethyl ether and dried in air. M.pt. 503 K. Yield: 25%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The hydroxyl H-atom was located in a difference Fourier map, and was refined with a distance restraint of O—H 0.84±0.01 Å and with Uiso(H) = 1.5Ueq(O).

The ethylthiolyl unit is disordered over two positions; the minor component refined to a site occupancy of 0.332 (3). The Uiso parameters of the atoms of the minor component were constrained to be equal to Ueq of the major component. Pairs of S—C and C—C distances were restrained to within 0.01 Å of each other. The azomethine CN unit is also disordered; the positions and anisotropic displacement parameters of the primed atoms were set to those of the unprimed ones. The butan-2-ol molecule is also disordered over two positions with respect to the butyl portion only, and the occupancies were set to those of the ethylthiolyl unit. Pairs of C—O and C—C distances were restrained to within 0.01 Å.

The final difference Fourier map had a peak at 0.88 Å from C19 and a hole at 0.75 Å from U.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 70% probability level. Only the major component of the disordered residues is shown.
[Figure 2] Fig. 2. A view of the centrosymmetric aggregate in (I). The O—H···O hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A view in projection down the c axis of the unit-cell contents of (I).
(Butan-2-ol-κO)[2-({(ethylsulfanyl)[2-(2-oxidobenzylidene- κO)hydrazinylidene-κN2]methyl}iminomethyl)phenolato- κO]dioxidouranium(VI) top
Crystal data top
[U(C17H15N3O2S)O2(C4H10O)]F(000) = 1280
Mr = 669.53Dx = 1.951 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8576 reflections
a = 11.3803 (2) Åθ = 2.2–27.5°
b = 14.3999 (3) ŵ = 7.25 mm1
c = 14.0264 (4) ÅT = 100 K
β = 97.326 (2)°Prism, red
V = 2279.81 (9) Å30.25 × 0.10 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5262 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4493 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.3°
ω scanh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1818
Tmin = 0.265, Tmax = 0.713l = 1812
15878 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0199P)2 + 8.1201P]
where P = (Fo2 + 2Fc2)/3
5262 reflections(Δ/σ)max = 0.001
302 parametersΔρmax = 1.16 e Å3
8 restraintsΔρmin = 0.81 e Å3
Crystal data top
[U(C17H15N3O2S)O2(C4H10O)]V = 2279.81 (9) Å3
Mr = 669.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3803 (2) ŵ = 7.25 mm1
b = 14.3999 (3) ÅT = 100 K
c = 14.0264 (4) Å0.25 × 0.10 × 0.05 mm
β = 97.326 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5262 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4493 reflections with I > 2σ(I)
Tmin = 0.265, Tmax = 0.713Rint = 0.040
15878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0388 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 1.16 e Å3
5262 reflectionsΔρmin = 0.81 e Å3
302 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
U0.717677 (17)0.479390 (14)0.617403 (15)0.01623 (7)
S11.0356 (2)0.23488 (16)0.73678 (17)0.0243 (6)0.668 (3)
S1'1.0688 (4)0.2786 (3)0.5310 (3)0.024*0.332 (3)
O10.6650 (3)0.4824 (3)0.4542 (3)0.0239 (9)
O20.7142 (4)0.5085 (3)0.7731 (3)0.0228 (9)
O30.8179 (3)0.5740 (3)0.6153 (3)0.0190 (9)
O40.6169 (3)0.3854 (3)0.6190 (3)0.0195 (9)
O50.5497 (3)0.5832 (3)0.6033 (3)0.0237 (9)
H1o0.486 (3)0.554 (4)0.590 (5)0.036*
N10.8758 (4)0.3968 (3)0.5338 (3)0.0186 (10)
N20.9541 (4)0.3318 (3)0.5841 (4)0.0194 (11)0.668 (3)
C8'0.9541 (4)0.3318 (3)0.5841 (4)0.0194 (11)0.33
N30.8570 (4)0.3646 (3)0.7175 (3)0.0194 (10)
C10.7233 (5)0.5070 (4)0.3817 (4)0.0215 (13)
C20.6682 (5)0.5611 (4)0.3058 (4)0.0244 (13)
H20.59100.58500.30880.029*
C30.7248 (5)0.5801 (4)0.2268 (4)0.0262 (14)
H30.68650.61740.17630.031*
C40.8382 (6)0.5450 (4)0.2201 (4)0.0296 (15)
H40.87640.55760.16510.036*
C50.8933 (5)0.4923 (4)0.2941 (4)0.0246 (14)
H50.96990.46770.28940.030*
C60.8393 (5)0.4738 (4)0.3765 (4)0.0192 (12)
C70.9043 (5)0.4154 (4)0.4491 (4)0.0187 (12)
H70.97510.38780.43310.022*
C80.9416 (4)0.3157 (4)0.6716 (4)0.0198 (12)0.668 (3)
N2'0.9416 (4)0.3157 (4)0.6716 (4)0.0198 (12)0.33
C91.1329 (10)0.2017 (7)0.6476 (9)0.029 (3)0.668 (3)
H9A1.15280.25780.61210.035*0.668 (3)
H9B1.20760.17620.68130.035*0.668 (3)
C9'1.117 (2)0.1895 (15)0.621 (2)0.029*0.332 (3)
H9'A1.19980.17220.61620.035*0.332 (3)
H9'B1.11350.21550.68620.035*0.332 (3)
C101.0774 (11)0.1312 (9)0.5773 (9)0.053 (4)0.668 (3)
H10A1.13240.11620.53120.080*0.668 (3)
H10B1.00400.15650.54290.080*0.668 (3)
H10C1.05950.07480.61180.080*0.668 (3)
C10'1.041 (3)0.1044 (19)0.609 (2)0.053*0.332 (3)
H10D1.07120.05760.65620.080*0.332 (3)
H10E1.04170.07950.54380.080*0.332 (3)
H10F0.95910.12050.61790.080*0.332 (3)
C110.8453 (5)0.3368 (4)0.8038 (4)0.0254 (14)
H110.89100.28430.82650.031*
C120.7716 (5)0.3761 (4)0.8691 (4)0.0259 (14)
C130.7682 (6)0.3306 (5)0.9574 (5)0.0398 (18)
H130.80970.27370.96890.048*
C140.7077 (7)0.3653 (6)1.0269 (5)0.0422 (19)
H140.70680.33291.08580.051*
C150.6474 (6)0.4485 (5)1.0108 (5)0.0320 (15)
H150.60470.47311.05910.038*
C160.6485 (5)0.4960 (4)0.9258 (5)0.0277 (14)
H160.60730.55340.91650.033*
C170.7097 (5)0.4610 (4)0.8523 (4)0.0198 (13)
C180.6045 (6)0.7293 (5)0.5245 (5)0.0350 (16)
H18A0.59490.79690.52440.053*
H18B0.58330.70540.45910.053*
H18C0.68720.71350.54710.053*
C190.5234 (10)0.6853 (7)0.5916 (8)0.044 (3)0.668 (3)
H190.44050.69070.55850.053*0.668 (3)
C19'0.574 (2)0.6858 (9)0.6188 (10)0.044*0.332 (3)
H19'0.64200.69420.67040.053*0.332 (3)
C200.5226 (12)0.7204 (9)0.6886 (9)0.051 (3)0.668 (3)
H20A0.60520.71690.72070.062*0.668 (3)
H20B0.50220.78720.68270.062*0.668 (3)
C20'0.468 (2)0.725 (2)0.650 (2)0.051*0.332 (3)
H20C0.48030.79280.66090.062*0.332 (3)
H20D0.40100.71790.59810.062*0.332 (3)
C210.4487 (16)0.6807 (19)0.7538 (10)0.042 (4)0.668 (3)
H21A0.46180.71350.81540.063*0.668 (3)
H21B0.46860.61490.76390.063*0.668 (3)
H21C0.36540.68650.72650.063*0.668 (3)
C21'0.434 (4)0.685 (4)0.737 (3)0.042*0.332 (3)
H21D0.36390.71770.75440.063*0.332 (3)
H21E0.49920.69100.78890.063*0.332 (3)
H21F0.41460.61930.72560.063*0.332 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U0.01237 (10)0.01495 (11)0.02069 (11)0.00117 (9)0.00049 (8)0.00006 (10)
S10.0231 (11)0.0219 (12)0.0267 (13)0.0079 (9)0.0014 (10)0.0046 (10)
O10.0144 (19)0.033 (2)0.024 (2)0.0056 (18)0.0006 (17)0.0000 (19)
O20.026 (2)0.020 (2)0.022 (2)0.0008 (17)0.0038 (18)0.0006 (17)
O30.0125 (18)0.018 (2)0.028 (2)0.0010 (16)0.0060 (17)0.0025 (17)
O40.0133 (19)0.018 (2)0.028 (2)0.0001 (16)0.0037 (17)0.0015 (17)
O50.018 (2)0.016 (2)0.037 (3)0.0032 (17)0.004 (2)0.0016 (19)
N10.016 (2)0.019 (2)0.019 (3)0.002 (2)0.005 (2)0.001 (2)
N20.018 (3)0.016 (3)0.023 (3)0.006 (2)0.001 (2)0.003 (2)
C8'0.018 (3)0.016 (3)0.023 (3)0.006 (2)0.001 (2)0.003 (2)
N30.015 (2)0.022 (3)0.021 (3)0.002 (2)0.000 (2)0.002 (2)
C10.023 (3)0.018 (3)0.022 (3)0.001 (2)0.001 (3)0.003 (2)
C20.018 (3)0.027 (3)0.025 (3)0.007 (3)0.005 (3)0.000 (3)
C30.026 (3)0.028 (3)0.024 (3)0.007 (3)0.001 (3)0.005 (3)
C40.038 (4)0.034 (4)0.016 (3)0.001 (3)0.003 (3)0.007 (3)
C50.023 (3)0.030 (4)0.021 (3)0.000 (3)0.002 (3)0.003 (3)
C60.015 (3)0.022 (3)0.019 (3)0.003 (2)0.004 (2)0.003 (3)
C70.012 (3)0.021 (3)0.024 (3)0.002 (2)0.003 (2)0.002 (2)
C80.016 (3)0.019 (3)0.024 (3)0.001 (2)0.002 (2)0.002 (2)
N2'0.016 (3)0.019 (3)0.024 (3)0.001 (2)0.002 (2)0.002 (2)
C90.018 (6)0.025 (6)0.042 (8)0.012 (4)0.004 (5)0.002 (5)
C100.044 (8)0.051 (9)0.062 (9)0.027 (7)0.002 (6)0.009 (7)
C110.020 (3)0.026 (3)0.029 (3)0.008 (3)0.003 (3)0.004 (3)
C120.023 (3)0.032 (4)0.023 (3)0.001 (3)0.004 (3)0.010 (3)
C130.041 (4)0.047 (5)0.033 (4)0.020 (4)0.010 (3)0.013 (3)
C140.045 (4)0.061 (5)0.022 (4)0.012 (4)0.009 (3)0.014 (3)
C150.028 (3)0.047 (4)0.022 (3)0.007 (3)0.004 (3)0.009 (3)
C160.020 (3)0.034 (4)0.029 (3)0.001 (3)0.003 (3)0.003 (3)
C170.017 (3)0.026 (3)0.016 (3)0.008 (2)0.001 (2)0.000 (2)
C180.033 (4)0.035 (4)0.035 (4)0.002 (3)0.002 (3)0.000 (3)
C190.038 (7)0.049 (7)0.050 (7)0.005 (6)0.020 (6)0.016 (6)
C200.051 (8)0.046 (7)0.057 (9)0.018 (6)0.005 (6)0.002 (6)
C210.041 (8)0.056 (8)0.026 (7)0.010 (6)0.008 (7)0.005 (7)
Geometric parameters (Å, º) top
U—O12.291 (4)C10—H10B0.9800
U—O22.229 (4)C10—H10C0.9800
U—O31.779 (4)C10'—H10D0.9800
U—O41.776 (4)C10'—H10E0.9800
U—O52.415 (4)C10'—H10F0.9800
U—N12.562 (5)C11—C121.435 (9)
U—N32.579 (5)C11—H110.9500
S1—C81.757 (5)C12—C131.405 (9)
S1—C91.836 (12)C12—C171.416 (8)
S1'—C9'1.835 (15)C13—C141.357 (10)
O1—C11.331 (7)C13—H130.9500
O2—C171.311 (7)C14—C151.385 (10)
O5—C191.506 (10)C14—H140.9500
O5—C19'1.513 (13)C15—C161.376 (9)
O5—H1o0.839 (10)C15—H150.9500
N1—C71.299 (7)C16—C171.409 (8)
N1—N21.417 (6)C16—H160.9500
N2—C81.274 (7)C18—C191.537 (11)
N3—C111.298 (8)C18—C19'1.544 (13)
N3—C81.412 (7)C18—H18A0.9800
C1—C21.402 (8)C18—H18B0.9800
C1—C61.414 (8)C18—H18C0.9800
C2—C31.378 (9)C19—C201.453 (13)
C2—H20.9500C19—H191.0000
C3—C41.399 (9)C19'—C20'1.455 (15)
C3—H30.9500C19'—H19'1.0000
C4—C51.371 (8)C20—C211.438 (14)
C4—H40.9500C20—H20A0.9900
C5—C61.402 (8)C20—H20B0.9900
C5—H50.9500C20'—C21'1.439 (16)
C6—C71.449 (8)C20'—H20C0.9900
C7—H70.9500C20'—H20D0.9900
C9—C101.498 (13)C21—H21A0.9800
C9—H9A0.9900C21—H21B0.9800
C9—H9B0.9900C21—H21C0.9800
C9'—C10'1.497 (15)C21'—H21D0.9800
C9'—H9'A0.9900C21'—H21E0.9800
C9'—H9'B0.9900C21'—H21F0.9800
C10—H10A0.9800
O4—U—O3179.61 (18)H10A—C10—H10B109.5
O4—U—O292.23 (16)C9—C10—H10C109.5
O3—U—O287.92 (16)H10A—C10—H10C109.5
O4—U—O186.55 (17)H10B—C10—H10C109.5
O3—U—O193.18 (16)C9'—C10'—H10D109.5
O2—U—O1160.07 (14)C9'—C10'—H10E109.5
O4—U—O588.12 (15)H10D—C10'—H10E109.5
O3—U—O591.55 (15)C9'—C10'—H10F109.5
O2—U—O581.44 (15)H10D—C10'—H10F109.5
O1—U—O578.64 (14)H10E—C10'—H10F109.5
O4—U—N198.29 (16)N3—C11—C12127.8 (5)
O3—U—N181.88 (16)N3—C11—H11116.1
O2—U—N1129.55 (14)C12—C11—H11116.1
O1—U—N170.20 (14)C13—C12—C17118.7 (6)
O5—U—N1147.64 (15)C13—C12—C11117.6 (6)
O4—U—N381.81 (16)C17—C12—C11123.5 (5)
O3—U—N398.57 (16)C14—C13—C12122.3 (7)
O2—U—N370.97 (15)C14—C13—H13118.8
O1—U—N3128.32 (15)C12—C13—H13118.8
O5—U—N3150.10 (15)C13—C14—C15119.2 (6)
N1—U—N362.11 (15)C13—C14—H14120.4
C8—S1—C9101.4 (4)C15—C14—H14120.4
C1—O1—U132.5 (4)C16—C15—C14120.8 (6)
C17—O2—U137.7 (4)C16—C15—H15119.6
C19—O5—U139.3 (5)C14—C15—H15119.6
C19'—O5—U117.8 (9)C15—C16—C17121.1 (6)
C19—O5—H1o108 (5)C15—C16—H16119.5
C19'—O5—H1o131 (5)C17—C16—H16119.5
U—O5—H1o111 (5)O2—C17—C16120.6 (5)
C7—N1—N2112.1 (5)O2—C17—C12121.3 (5)
C7—N1—U126.5 (4)C16—C17—C12118.0 (5)
N2—N1—U120.9 (3)C19—C18—H18A109.5
C8—N2—N1117.3 (4)C19—C18—H18B109.5
C11—N3—C8115.4 (5)H18A—C18—H18B109.5
C11—N3—U125.1 (4)C19—C18—H18C109.5
C8—N3—U118.6 (3)H18A—C18—H18C109.5
O1—C1—C2120.7 (5)H18B—C18—H18C109.5
O1—C1—C6120.6 (5)C20—C19—O5105.2 (9)
C2—C1—C6118.6 (6)C20—C19—C18120.4 (9)
C3—C2—C1120.7 (6)O5—C19—C18110.0 (6)
C3—C2—H2119.6C20—C19—H19106.8
C1—C2—H2119.6O5—C19—H19106.8
C2—C3—C4120.8 (6)C18—C19—H19106.8
C2—C3—H3119.6C20'—C19'—O5106.5 (17)
C4—C3—H3119.6C20'—C19'—C18113.0 (17)
C5—C4—C3119.1 (6)O5—C19'—C18109.2 (8)
C5—C4—H4120.5C20'—C19'—H19'109.3
C3—C4—H4120.5O5—C19'—H19'109.3
C4—C5—C6121.5 (6)C18—C19'—H19'109.3
C4—C5—H5119.3C21—C20—C19122.1 (13)
C6—C5—H5119.3C21—C20—H20A106.8
C5—C6—C1119.3 (5)C19—C20—H20A106.8
C5—C6—C7116.8 (5)C21—C20—H20B106.8
C1—C6—C7123.8 (5)C19—C20—H20B106.8
N1—C7—C6126.7 (5)H20A—C20—H20B106.7
N1—C7—H7116.7C21'—C20'—C19'115 (3)
C6—C7—H7116.7C21'—C20'—H20C108.6
N2—C8—N3121.0 (4)C19'—C20'—H20C108.6
N2—C8—S1119.1 (4)C21'—C20'—H20D108.6
N3—C8—S1119.9 (4)C19'—C20'—H20D108.6
C10—C9—S1112.6 (9)H20C—C20'—H20D107.5
C10—C9—H9A109.1C20—C21—H21A109.5
S1—C9—H9A109.1C20—C21—H21B109.5
C10—C9—H9B109.1H21A—C21—H21B109.5
S1—C9—H9B109.1C20—C21—H21C109.5
H9A—C9—H9B107.8H21A—C21—H21C109.5
C10'—C9'—S1'112.0 (17)H21B—C21—H21C109.5
C10'—C9'—H9'A109.2C20'—C21'—H21D109.5
S1'—C9'—H9'A109.2C20'—C21'—H21E109.5
C10'—C9'—H9'B109.2H21D—C21'—H21E109.5
S1'—C9'—H9'B109.2C20'—C21'—H21F109.5
H9'A—C9'—H9'B107.9H21D—C21'—H21F109.5
C9—C10—H10A109.5H21E—C21'—H21F109.5
C9—C10—H10B109.5
O4—U—O1—C1150.2 (5)C2—C3—C4—C50.9 (10)
O3—U—O1—C130.1 (5)C3—C4—C5—C60.8 (10)
O2—U—O1—C1122.8 (5)C4—C5—C6—C12.7 (9)
O5—U—O1—C1121.0 (5)C4—C5—C6—C7178.5 (6)
N1—U—O1—C150.1 (5)O1—C1—C6—C5172.9 (5)
N3—U—O1—C173.5 (5)C2—C1—C6—C52.9 (8)
O4—U—O2—C1737.7 (5)O1—C1—C6—C72.6 (9)
O3—U—O2—C17142.6 (5)C2—C1—C6—C7178.4 (5)
O1—U—O2—C17123.7 (6)N2—N1—C7—C6175.5 (5)
O5—U—O2—C17125.5 (5)U—N1—C7—C612.5 (8)
N1—U—O2—C1765.0 (6)C5—C6—C7—N1173.2 (6)
N3—U—O2—C1742.8 (5)C1—C6—C7—N111.2 (9)
O4—U—O5—C19176.8 (7)N1—N2—C8—N33.1 (8)
O3—U—O5—C193.0 (7)N1—N2—C8—S1179.5 (4)
O2—U—O5—C1990.7 (7)C11—N3—C8—N2174.3 (5)
O1—U—O5—C1989.9 (7)U—N3—C8—N24.1 (7)
N1—U—O5—C1974.2 (8)C11—N3—C8—S18.3 (7)
N3—U—O5—C19113.3 (7)U—N3—C8—S1178.5 (2)
O4—U—O5—C19'167.3 (6)C9—S1—C8—N22.3 (6)
O3—U—O5—C19'12.9 (6)C9—S1—C8—N3175.1 (5)
O2—U—O5—C19'74.8 (6)C8—S1—C9—C1080.6 (9)
O1—U—O5—C19'105.8 (6)C8—N3—C11—C12176.4 (6)
N1—U—O5—C19'90.1 (6)U—N3—C11—C1214.1 (9)
N3—U—O5—C19'97.4 (6)N3—C11—C12—C13176.4 (7)
O4—U—N1—C7113.7 (5)N3—C11—C12—C178.4 (10)
O3—U—N1—C766.0 (5)C17—C12—C13—C140.0 (11)
O2—U—N1—C7146.5 (4)C11—C12—C13—C14175.5 (7)
O1—U—N1—C730.4 (4)C12—C13—C14—C150.2 (12)
O5—U—N1—C714.0 (6)C13—C14—C15—C160.2 (11)
N3—U—N1—C7170.2 (5)C14—C15—C16—C170.8 (10)
O4—U—N1—N275.1 (4)U—O2—C17—C16145.9 (5)
O3—U—N1—N2105.3 (4)U—O2—C17—C1237.9 (8)
O2—U—N1—N224.8 (4)C15—C16—C17—O2177.3 (6)
O1—U—N1—N2158.4 (4)C15—C16—C17—C121.0 (9)
O5—U—N1—N2174.8 (3)C13—C12—C17—O2176.9 (6)
N3—U—N1—N21.0 (3)C11—C12—C17—O21.7 (9)
C7—N1—N2—C8173.0 (5)C13—C12—C17—C160.6 (9)
U—N1—N2—C80.6 (6)C11—C12—C17—C16174.6 (6)
O4—U—N3—C1167.7 (5)C19'—O5—C19—C2058.1 (15)
O3—U—N3—C11112.3 (5)U—O5—C19—C2093.5 (9)
O2—U—N3—C1127.6 (5)C19'—O5—C19—C1873.0 (11)
O1—U—N3—C11146.7 (4)U—O5—C19—C1837.6 (12)
O5—U—N3—C113.9 (6)C19'—C18—C19—C2049.7 (16)
N1—U—N3—C11171.6 (5)C19'—C18—C19—O572.9 (11)
O4—U—N3—C8101.5 (4)C19—O5—C19'—C20'51.0 (19)
O3—U—N3—C878.5 (4)U—O5—C19'—C20'154.3 (14)
O2—U—N3—C8163.3 (4)C19—O5—C19'—C1871.3 (11)
O1—U—N3—C822.5 (4)U—O5—C19'—C1883.4 (14)
O5—U—N3—C8173.0 (3)C19—C18—C19'—C20'47 (2)
N1—U—N3—C82.5 (3)C19—C18—C19'—O571.2 (11)
U—O1—C1—C2136.4 (5)O5—C19—C20—C2154.6 (18)
U—O1—C1—C647.9 (8)C18—C19—C20—C21179.5 (14)
O1—C1—C2—C3174.5 (6)O5—C19'—C20'—C21'58 (4)
C6—C1—C2—C31.3 (9)C18—C19'—C20'—C21'178 (3)
C1—C2—C3—C40.6 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1o···O1i0.84 (1)1.83 (2)2.648 (6)166 (7)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[U(C17H15N3O2S)O2(C4H10O)]
Mr669.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.3803 (2), 14.3999 (3), 14.0264 (4)
β (°) 97.326 (2)
V3)2279.81 (9)
Z4
Radiation typeMo Kα
µ (mm1)7.25
Crystal size (mm)0.25 × 0.10 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.265, 0.713
No. of measured, independent and
observed [I > 2σ(I)] reflections
15878, 5262, 4493
Rint0.040
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.078, 1.16
No. of reflections5262
No. of parameters302
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.16, 0.81

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
U—O12.291 (4)U—O52.415 (4)
U—O22.229 (4)U—N12.562 (5)
U—O31.779 (4)U—N32.579 (5)
U—O41.776 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1o···O1i0.84 (1)1.83 (2)2.648 (6)166 (7)
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: rezatakjoo@yahoo.com.

Acknowledgements

We gratefully acknowledge financial support of this study by Ferdowsi University of Mashhad, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationÖzdemir, N., Şahin, M., Bal-Demirci, T. & Ülküseven, B. (2011). Polyhedron, 30, 515–521.  Google Scholar
First citationŞahin, M., Koca, A., Özdemir, N., Dinçer, M., Büyükgüngör, O., Bal-Demirci, T. & Ülküseven, B. (2010). Dalton Trans. 39, 10228–10237.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakjoo, R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m244–m245.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m255-m256
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds