organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o621-o622

4-Hy­dr­oxy-2-methyl-1,1-dioxo-2H-1λ6,2- benzo­thia­zine-3-carb­­oxy­lic acid hemihydrate

aUniversity of Sargodha, Department of Chemistry, Sargodha, Pakistan, and bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 30 January 2012; accepted 1 February 2012; online 4 February 2012)

In the title compound, C10H9NO5S·0.5H2O, two geometrically different organic mol­ecules are present. The benzene rings and the carboxyl­ate groups are oriented at dihedral angles of 13.44 (4) and 21.15 (18)°. In both mol­ecules, an intra­molecular O—H⋯O hydrogen bond generates an S(6) ring. In the crystal, both moleucles form inversion dimers linked by pairs of O—H⋯O hydrogen bonds to generate R22(8) loops. The dimers are consolidated into chains extending along [100] by bridging O—H⋯O hydrogen bonds from the water mol­ecule. A weak C—H⋯O hydrogen bond also occurs.

Related literature

For background to non-steroidal anti-inflammatory drugs, see: Akram et al. (2008[Akram, R., Siddiqui, W. A., Tahir, M. N., Siddiqui, H. L. & Iqbal, A. (2008). Acta Cryst. E64, m1293-m1294.]); Foye et al. (1995[Foye, W. O., Lemke, T. L. & Williams, D. A. (1995). Principles of Medicinal Chemistry, 4th ed., pp. 567-569. New Delhi: Waverly.]); Lombardino et al. (1971[Lombardino, J. G., Wiseman, E. H. & Mclamore, W. M. (1971). J. Med. Chem. 14, 1171-1175.], 1973[Lombardino, J. G., Wiseman, E. H. & Chiani, J. (1973). J. Med. Chem. 16, 493-497.]); Siddiqui, Ahmad, Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Bukhari, M. H. & Parvez, M. (2008). Acta Cryst. E64, o1922.]); Siddiqui, Ahmad, Tariq et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.]). For a related structure, see: Golič & Leban (1987[Golič, L. & Leban, I. (1987). Acta Cryst. C43, 280-282.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO5S·0.5H2O

  • Mr = 264.25

  • Triclinic, [P \overline 1]

  • a = 7.1837 (2) Å

  • b = 8.5847 (3) Å

  • c = 17.9814 (4) Å

  • α = 87.605 (1)°

  • β = 89.713 (2)°

  • γ = 87.174 (1)°

  • V = 1106.59 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.35 × 0.25 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 0.938

  • 15712 measured reflections

  • 4317 independent reflections

  • 3468 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 1.03

  • 4317 reflections

  • 295 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.83 (2) 1.82 (2) 2.647 (2) 177 (2)
O3—H3⋯O2 0.88 (2) 1.76 (2) 2.558 (2) 150 (2)
O6—H6A⋯O11ii 0.89 1.70 2.5881 (17) 170
O8—H8A⋯O7 0.88 1.75 2.5675 (8) 154
O11—H11A⋯O4iii 0.81 (3) 2.28 (3) 3.029 (2) 155 (3)
O11—H11B⋯O7iii 0.84 (3) 2.06 (3) 2.8508 (18) 158 (3)
C10—H10B⋯O1iv 0.96 2.50 3.3679 (16) 151
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Among non-steroidal anti-inflammatory drugs (NSAIDs) some of the agents who have proven clinical efficacy are the β-diketones such as phenylbutazone or derivatives of the carboxylic acid class like aspirin, indomethacin and flufenamic acid, (Lombardino et al., 1971). Piroxicam is the first member of the 'Oxicam' class of NSAIDs to serve as an effective anti-inflammatory agent and gain immediate popularity in the international market (Foye et al., 1995). The carboxylic acid derivative of piroxicam, 4-hydroxy-2-methyl-2H-1,2 benzothiazine-3-carboxylic acid 1,1-dioxide has shown satisfactory plasma half-life (Lombardino et al., 1973) for its application in human beings. Due to our interest in the synthesis of this type of molecules and their transition metal complexes (Siddiqui, Ahmad, Siddiqui et al., 2008; Siddiqui, Ahmad, Tariq et al., 2008; Akram et al., 2008), we have synthesized this molecule by a simple procedure. Herein, we report the crystal structure of (I), (Fig. 1).

The crystal structures of the reactant i.e (II) methyl 4-hydroxy-2-methyl-2H-1,2-benzothiazine-3-carboxylate-1,1-dioxide (Golič & Leban, 1987) has been published which is also related to (I).

The asymmetric unit of (I) consists of two molecules (A & B) of the acid moiety and a water molecule. In the molecule A, the benzene ring C (C4–C9) is planar with r. m. s. deviation of 0.0019 Å and oriented at a dihedral angle of 21.15 (18)° with the carboxylate group D (O1/C1/O2). The puckering parameters (Cremer & Pople, 1975) of the adjacent heterocyclic ring E (C2/C3/C4/C9/S1/N1) are Q = 0.5183 (15) Å, θ = 114.4 (2)° and ϕ = 204.0 (2)°. The molecule B differs from A as the benzene ring F (C14—C1) [r. m. s. deviation = 0.0063 Å] is oriented at a dihedral angle of 13.44 (4)° with its carboxylate moiety G (O6/C11/O7). Also the puckering parameters of its adjacent heterocyclic ring H (C12/C13/C14/C19/S2/N2) are Q = 0.5047 (7) Å, θ = 117.06 (10)° and ϕ = 205.52 (13)°. In both molecules there exist intramolecular H-bonding of O—H···O type (Table 1, Fig. 2) forming S(6) ring motif (Bernstein et al., 1995). The molecules are dimerized due to intermolecular H-bonding of O—H···O bonding (Table 1, Fig. 2) forming a conventional R22(8) ring motifs. The water molecules interlink the dimers from the CO2 and SO2 groups due to O—H···O bonding, where CO2 and SO2 are of molecule B and A, respectively. The molecules are stabilized in the form of one-dimensional polymeric chains along the [1 0 0] direction.

Related literature top

For background to non-steroidal anti-inflammatory drugs, see: Akram et al. (2008); Foye et al. (1995); Lombardino et al. (1971, 1973); Siddiqui, Ahmad, Siddiqui et al. (2008); Siddiqui, Ahmad, Tariq et al. (2008). For a related structure, see: Golič & Leban (1987). For graph-set notation, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A light yellow solution of 4-hydroxy-2-methyl-2H-1,2 benzothiazine-3-carboxylic acid 1,1 dioxide methyl ester (0.5 g, 1.86 mmol) was subjected to stirring with an excess of sodium hydroxide at room temperature for 24 h. The reaction mixture was then acidified with dilute HCl and the precipitates filtered, washed with cold distilled water (3×25 ml) and dried to get white product (0.4 g, 1.65 mmol, 89%). m.p 361–362 K.

Refinement top

The coordinates of hydroxy H-atoms were refined. The H-atoms of aryl and methyl groups were positioned geometrically at C—H = 0.93 and C—H = 0.96 Å, respectively and included in the refinement as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for methyl groups and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing, which shows that molecules form polymeric chains extending along the [100] direction.
4-Hydroxy-2-methyl-1,1-dioxo-2H-1λ6,2- benzothiazine-3-carboxylic acid hemihydrate top
Crystal data top
C10H9NO5S·0.5H2OZ = 4
Mr = 264.25F(000) = 548
Triclinic, P1Dx = 1.586 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1837 (2) ÅCell parameters from 3468 reflections
b = 8.5847 (3) Åθ = 2.3–26.0°
c = 17.9814 (4) ŵ = 0.31 mm1
α = 87.605 (1)°T = 296 K
β = 89.713 (2)°Prism, light green
γ = 87.174 (1)°0.35 × 0.25 × 0.22 mm
V = 1106.59 (6) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4317 independent reflections
Radiation source: fine-focus sealed tube3468 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.00 pixels mm-1θmax = 26.0°, θmin = 2.3°
ω scansh = 78
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 910
Tmin = 0.915, Tmax = 0.938l = 2222
15712 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.3985P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4317 reflectionsΔρmax = 0.32 e Å3
295 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0115 (13)
Crystal data top
C10H9NO5S·0.5H2Oγ = 87.174 (1)°
Mr = 264.25V = 1106.59 (6) Å3
Triclinic, P1Z = 4
a = 7.1837 (2) ÅMo Kα radiation
b = 8.5847 (3) ŵ = 0.31 mm1
c = 17.9814 (4) ÅT = 296 K
α = 87.605 (1)°0.35 × 0.25 × 0.22 mm
β = 89.713 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4317 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3468 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.938Rint = 0.028
15712 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.32 e Å3
4317 reflectionsΔρmin = 0.32 e Å3
295 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.73268 (7)0.47997 (5)0.36202 (3)0.0326 (2)
O11.0126 (2)0.78588 (17)0.48912 (8)0.0460 (5)
O20.9190 (2)0.99420 (16)0.41728 (8)0.0487 (5)
O30.7800 (2)0.95223 (16)0.28936 (8)0.0429 (5)
O40.56659 (19)0.53462 (17)0.39886 (8)0.0434 (5)
O50.7877 (2)0.31809 (15)0.36788 (8)0.0433 (5)
N10.9045 (2)0.57982 (17)0.39058 (8)0.0318 (5)
C10.9390 (3)0.8508 (2)0.42875 (11)0.0374 (7)
C20.8833 (3)0.7439 (2)0.37332 (10)0.0318 (6)
C30.8093 (3)0.7998 (2)0.30725 (10)0.0318 (6)
C40.7527 (3)0.6968 (2)0.24926 (10)0.0318 (6)
C50.7316 (3)0.7497 (3)0.17540 (11)0.0396 (7)
C60.6781 (3)0.6499 (3)0.12229 (11)0.0458 (8)
C70.6430 (3)0.4970 (3)0.14134 (12)0.0462 (8)
C80.6621 (3)0.4403 (3)0.21428 (11)0.0407 (7)
C90.7164 (3)0.5410 (2)0.26757 (10)0.0328 (6)
C101.09513 (6)0.50694 (9)0.39024 (3)0.0442 (7)
S20.34876 (5)1.12692 (4)0.12496 (2)0.0377 (2)
O60.36746 (6)1.17536 (7)0.35142 (3)0.0544 (6)
O70.37431 (6)0.91858 (7)0.37872 (3)0.0550 (6)
O80.31763 (5)0.73224 (5)0.27403 (4)0.0476 (5)
O90.54647 (5)1.10602 (4)0.13153 (2)0.0479 (5)
O100.27227 (5)1.25250 (4)0.07867 (2)0.0530 (6)
N20.26231 (5)1.14344 (4)0.20849 (2)0.0361 (5)
C110.35007 (5)1.03047 (5)0.33412 (3)0.0412 (7)
C120.29810 (5)1.00779 (4)0.25703 (2)0.0352 (6)
C130.28734 (5)0.86196 (5)0.23138 (3)0.0352 (6)
C140.24568 (5)0.83233 (5)0.15354 (3)0.0363 (6)
C150.19471 (5)0.68585 (5)0.13242 (4)0.0488 (8)
C160.1577 (3)0.6612 (3)0.05880 (15)0.0585 (9)
C170.1707 (3)0.7789 (3)0.00546 (14)0.0598 (9)
C180.2239 (3)0.9247 (3)0.02421 (12)0.0511 (8)
C190.2620 (3)0.9500 (2)0.09812 (11)0.0372 (6)
C200.0766 (3)1.2219 (3)0.21567 (13)0.0530 (8)
O110.4465 (3)0.2097 (2)0.48986 (9)0.0635 (7)
H11.038 (3)0.854 (3)0.5179 (13)0.0552*
H30.816 (3)1.001 (3)0.3286 (13)0.0514*
H50.753590.852930.161850.0475*
H60.665560.686140.073020.0549*
H70.606240.431250.104900.0554*
H80.638970.337060.227250.0488*
H10A1.140090.503330.339940.0663*
H10B1.093400.402820.411800.0663*
H10C1.175760.567310.418740.0663*
H6A0.396691.175670.399640.0652*
H8A0.338410.769100.317930.0571*
H150.185700.604810.168020.0585*
H160.123440.563310.045150.0702*
H170.143530.760550.043830.0717*
H180.233871.004390.012050.0613*
H20A0.052711.242590.266980.0795*
H20B0.016201.155790.198020.0795*
H20C0.072191.318470.186670.0795*
H11A0.453 (4)0.294 (4)0.5075 (17)0.0762*
H11B0.507 (4)0.152 (3)0.5209 (16)0.0762*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0377 (3)0.0276 (3)0.0328 (3)0.0056 (2)0.0022 (2)0.0010 (2)
O10.0701 (10)0.0310 (8)0.0377 (8)0.0098 (7)0.0214 (7)0.0008 (6)
O20.0744 (11)0.0265 (8)0.0457 (9)0.0063 (7)0.0213 (8)0.0001 (6)
O30.0589 (10)0.0283 (8)0.0412 (8)0.0037 (7)0.0138 (7)0.0047 (6)
O40.0401 (8)0.0479 (9)0.0427 (8)0.0068 (7)0.0066 (6)0.0051 (7)
O50.0575 (9)0.0267 (8)0.0456 (8)0.0047 (7)0.0087 (7)0.0023 (6)
N10.0350 (9)0.0247 (8)0.0356 (9)0.0021 (7)0.0076 (7)0.0014 (7)
C10.0440 (12)0.0310 (12)0.0374 (11)0.0070 (9)0.0078 (9)0.0029 (9)
C20.0360 (10)0.0255 (10)0.0338 (10)0.0034 (8)0.0046 (8)0.0020 (8)
C30.0327 (10)0.0270 (10)0.0357 (10)0.0028 (8)0.0009 (8)0.0014 (8)
C40.0286 (10)0.0338 (11)0.0326 (10)0.0005 (8)0.0021 (8)0.0008 (8)
C50.0402 (11)0.0423 (12)0.0357 (11)0.0018 (9)0.0028 (9)0.0048 (9)
C60.0468 (13)0.0589 (15)0.0311 (11)0.0020 (11)0.0041 (9)0.0003 (10)
C70.0489 (13)0.0524 (14)0.0380 (12)0.0010 (11)0.0087 (10)0.0138 (10)
C80.0424 (12)0.0368 (12)0.0435 (12)0.0008 (9)0.0056 (9)0.0090 (9)
C90.0308 (10)0.0341 (11)0.0334 (10)0.0008 (8)0.0030 (8)0.0026 (8)
C100.0401 (12)0.0345 (12)0.0571 (14)0.0004 (9)0.0016 (10)0.0079 (10)
S20.0490 (3)0.0330 (3)0.0308 (3)0.0030 (2)0.0016 (2)0.0025 (2)
O60.0779 (12)0.0512 (10)0.0340 (8)0.0002 (8)0.0103 (8)0.0042 (7)
O70.0713 (11)0.0566 (10)0.0354 (8)0.0034 (9)0.0033 (7)0.0105 (8)
O80.0563 (10)0.0377 (9)0.0475 (9)0.0017 (7)0.0050 (7)0.0112 (7)
O90.0454 (9)0.0476 (9)0.0509 (9)0.0086 (7)0.0081 (7)0.0020 (7)
O100.0814 (12)0.0390 (9)0.0373 (8)0.0008 (8)0.0052 (8)0.0091 (7)
N20.0467 (10)0.0312 (9)0.0297 (9)0.0020 (8)0.0000 (7)0.0009 (7)
C110.0430 (12)0.0462 (13)0.0336 (11)0.0028 (10)0.0028 (9)0.0029 (10)
C120.0382 (11)0.0363 (12)0.0304 (10)0.0015 (9)0.0023 (8)0.0038 (9)
C130.0328 (10)0.0334 (11)0.0384 (11)0.0001 (9)0.0048 (8)0.0076 (9)
C140.0304 (10)0.0345 (11)0.0439 (11)0.0009 (9)0.0043 (8)0.0032 (9)
C150.0429 (12)0.0387 (13)0.0653 (15)0.0065 (10)0.0060 (11)0.0055 (11)
C160.0538 (15)0.0506 (15)0.0735 (18)0.0075 (12)0.0037 (12)0.0250 (14)
C170.0626 (16)0.0646 (17)0.0533 (15)0.0035 (13)0.0080 (12)0.0242 (14)
C180.0618 (15)0.0530 (15)0.0384 (12)0.0022 (12)0.0019 (10)0.0082 (11)
C190.0393 (11)0.0346 (11)0.0376 (11)0.0021 (9)0.0008 (9)0.0039 (9)
C200.0598 (15)0.0465 (14)0.0504 (14)0.0160 (12)0.0057 (11)0.0017 (11)
O110.0951 (14)0.0557 (12)0.0398 (9)0.0004 (11)0.0156 (9)0.0064 (8)
Geometric parameters (Å, º) top
S1—O41.4302 (15)C4—C91.401 (2)
S1—O51.4257 (14)C5—C61.378 (3)
S1—N11.6339 (15)C6—C71.378 (4)
S1—C91.7590 (19)C7—C81.385 (3)
S2—N21.6314 (5)C8—C91.387 (3)
S2—O91.4276 (5)C5—H50.9300
S2—O101.4241 (5)C6—H60.9300
S2—C191.7566 (18)C7—H70.9300
O1—C11.302 (2)C8—H80.9300
O2—C11.241 (2)C10—H10C0.9600
O3—C31.341 (2)C10—H10A0.9600
O1—H10.83 (2)C10—H10B0.9600
O3—H30.88 (2)C11—C121.4607 (6)
O6—C111.3067 (7)C12—C131.3580 (6)
O7—C111.2315 (7)C13—C141.4679 (7)
O8—C131.3349 (7)C14—C191.3977 (19)
O6—H6A0.8900C14—C151.3951 (6)
O8—H8A0.8800C15—C161.379 (3)
O11—H11B0.84 (3)C16—C171.370 (4)
O11—H11A0.81 (3)C17—C181.382 (4)
N1—C101.4774 (15)C18—C191.386 (3)
N1—C21.431 (2)C15—H150.9300
N2—C121.4394 (5)C16—H160.9300
N2—C201.472 (2)C17—H170.9300
C1—C21.453 (3)C18—H180.9300
C2—C31.363 (3)C20—H20C0.9600
C3—C41.467 (3)C20—H20A0.9600
C4—C51.392 (3)C20—H20B0.9600
O4—S1—O5119.32 (9)C7—C6—H6120.00
O4—S1—N1107.88 (8)C6—C7—H7120.00
O4—S1—C9108.12 (9)C8—C7—H7120.00
O5—S1—N1108.56 (8)C9—C8—H8121.00
O5—S1—C9109.51 (9)C7—C8—H8121.00
N1—S1—C9102.07 (9)N1—C10—H10B109.00
O9—S2—O10119.03 (3)N1—C10—H10C109.00
O9—S2—N2107.87 (3)N1—C10—H10A109.00
O9—S2—C19108.08 (7)H10A—C10—H10B109.00
O10—S2—N2108.36 (3)H10B—C10—H10C109.00
O10—S2—C19109.87 (7)H10A—C10—H10C109.00
N2—S2—C19102.34 (7)O6—C11—O7123.53 (5)
C1—O1—H1109.6 (17)O6—C11—C12115.45 (4)
C3—O3—H3105.2 (16)O7—C11—C12121.03 (4)
C11—O6—H6A108.00N2—C12—C11118.50 (3)
C13—O8—H8A103.00N2—C12—C13120.77 (4)
H11A—O11—H11B102 (3)C11—C12—C13120.72 (4)
S1—N1—C2114.15 (12)C12—C13—C14123.01 (4)
S1—N1—C10118.74 (10)O8—C13—C12123.29 (5)
C2—N1—C10117.70 (13)O8—C13—C14113.69 (4)
S2—N2—C20117.81 (9)C13—C14—C15121.33 (5)
S2—N2—C12113.99 (3)C13—C14—C19120.41 (8)
C12—N2—C20115.64 (10)C15—C14—C19118.23 (9)
O1—C1—O2123.45 (18)C14—C15—C16120.03 (12)
O1—C1—C2115.62 (15)C15—C16—C17120.9 (2)
O2—C1—C2120.91 (18)C16—C17—C18120.6 (2)
N1—C2—C1118.39 (16)C17—C18—C19118.7 (2)
C1—C2—C3120.37 (16)S2—C19—C14117.15 (13)
N1—C2—C3121.22 (16)S2—C19—C18121.23 (16)
O3—C3—C4113.89 (16)C14—C19—C18121.47 (17)
O3—C3—C2123.67 (16)C16—C15—H15120.00
C2—C3—C4122.44 (16)C14—C15—H15120.00
C3—C4—C5121.78 (17)C15—C16—H16120.00
C5—C4—C9118.12 (18)C17—C16—H16120.00
C3—C4—C9120.10 (16)C18—C17—H17120.00
C4—C5—C6120.3 (2)C16—C17—H17120.00
C5—C6—C7120.8 (2)C17—C18—H18121.00
C6—C7—C8120.6 (2)C19—C18—H18121.00
C7—C8—C9118.5 (2)N2—C20—H20B109.00
C4—C9—C8121.72 (18)N2—C20—H20C109.00
S1—C9—C4117.15 (14)N2—C20—H20A109.00
S1—C9—C8121.07 (15)H20A—C20—H20C109.00
C6—C5—H5120.00H20B—C20—H20C109.00
C4—C5—H5120.00H20A—C20—H20B109.00
C5—C6—H6120.00
O4—S1—N1—C261.72 (14)C1—C2—C3—C4179.38 (19)
O4—S1—N1—C10152.50 (10)O3—C3—C4—C9158.93 (19)
O5—S1—N1—C2167.65 (13)C2—C3—C4—C5160.1 (2)
O5—S1—N1—C1021.87 (13)C2—C3—C4—C920.5 (3)
C9—S1—N1—C252.05 (14)O3—C3—C4—C520.4 (3)
C9—S1—N1—C1093.72 (12)C3—C4—C5—C6179.9 (2)
O4—S1—C9—C478.31 (18)C3—C4—C9—S12.5 (3)
O4—S1—C9—C899.01 (19)C3—C4—C9—C8179.8 (2)
O5—S1—C9—C4150.19 (16)C9—C4—C5—C60.6 (3)
O5—S1—C9—C832.5 (2)C5—C4—C9—C80.4 (3)
N1—S1—C9—C435.29 (18)C5—C4—C9—S1176.86 (16)
N1—S1—C9—C8147.39 (18)C4—C5—C6—C70.6 (3)
C19—S2—N2—C1252.04 (8)C5—C6—C7—C80.5 (3)
C19—S2—N2—C2088.35 (13)C6—C7—C8—C90.3 (3)
O9—S2—C19—C1478.38 (14)C7—C8—C9—S1176.90 (17)
O9—S2—C19—C1897.21 (18)C7—C8—C9—C40.3 (3)
O10—S2—C19—C14150.27 (11)O6—C11—C12—N22.89 (5)
O10—S2—C19—C1834.1 (2)O6—C11—C12—C13175.85 (4)
N2—S2—C19—C1435.32 (15)O7—C11—C12—N2176.85 (4)
N2—S2—C19—C18149.09 (17)O7—C11—C12—C134.41 (6)
O10—S2—N2—C2027.70 (12)N2—C12—C13—O8179.45 (4)
O9—S2—N2—C1261.81 (4)N2—C12—C13—C142.10 (6)
O9—S2—N2—C20157.80 (11)C11—C12—C13—O81.84 (6)
O10—S2—N2—C12168.08 (3)C11—C12—C13—C14176.62 (3)
S1—N1—C2—C1140.26 (16)O8—C13—C14—C1515.95 (5)
S1—N1—C2—C338.4 (2)O8—C13—C14—C19162.03 (11)
C10—N1—C2—C173.6 (2)C12—C13—C14—C15165.46 (4)
C10—N1—C2—C3107.7 (2)C12—C13—C14—C1916.56 (11)
S2—N2—C12—C11138.41 (3)C13—C14—C15—C16179.53 (11)
C20—N2—C12—C1180.31 (11)C19—C14—C15—C161.51 (15)
C20—N2—C12—C13100.95 (11)C13—C14—C19—S24.25 (18)
S2—N2—C12—C1340.33 (5)C13—C14—C19—C18179.83 (15)
O1—C1—C2—N13.0 (3)C15—C14—C19—S2173.79 (8)
O1—C1—C2—C3178.26 (19)C15—C14—C19—C181.8 (2)
O2—C1—C2—N1178.13 (18)C14—C15—C16—C170.2 (2)
O2—C1—C2—C30.6 (3)C15—C16—C17—C180.9 (3)
N1—C2—C3—O3177.46 (18)C16—C17—C18—C190.7 (3)
N1—C2—C3—C42.0 (3)C17—C18—C19—S2174.68 (17)
C1—C2—C3—O31.2 (3)C17—C18—C19—C140.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.83 (2)1.82 (2)2.647 (2)177 (2)
O3—H3···O20.88 (2)1.76 (2)2.558 (2)150 (2)
O6—H6A···O11ii0.891.702.5881 (17)170
O8—H8A···O70.881.752.5675 (8)154
O11—H11A···O4iii0.81 (3)2.28 (3)3.029 (2)155 (3)
O11—H11B···O7iii0.84 (3)2.06 (3)2.8508 (18)158 (3)
C10—H10B···O1iv0.962.503.3679 (16)151
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H9NO5S·0.5H2O
Mr264.25
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.1837 (2), 8.5847 (3), 17.9814 (4)
α, β, γ (°)87.605 (1), 89.713 (2), 87.174 (1)
V3)1106.59 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.35 × 0.25 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.915, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
15712, 4317, 3468
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.03
No. of reflections4317
No. of parameters295
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.32

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.83 (2)1.82 (2)2.647 (2)177 (2)
O3—H3···O20.88 (2)1.76 (2)2.558 (2)150 (2)
O6—H6A···O11ii0.891.702.5881 (17)170
O8—H8A···O70.881.752.5675 (8)154
O11—H11A···O4iii0.81 (3)2.28 (3)3.029 (2)155 (3)
O11—H11B···O7iii0.84 (3)2.06 (3)2.8508 (18)158 (3)
C10—H10B···O1iv0.962.503.3679 (16)151
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan. WAS is thankful to the Higher Education Commission (HEC), Islamabad, Pakistan, for providing funds for this research work.

References

First citationAkram, R., Siddiqui, W. A., Tahir, M. N., Siddiqui, H. L. & Iqbal, A. (2008). Acta Cryst. E64, m1293–m1294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFoye, W. O., Lemke, T. L. & Williams, D. A. (1995). Principles of Medicinal Chemistry, 4th ed., pp. 567–569. New Delhi: Waverly.  Google Scholar
First citationGolič, L. & Leban, I. (1987). Acta Cryst. C43, 280–282.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationLombardino, J. G., Wiseman, E. H. & Chiani, J. (1973). J. Med. Chem. 16, 493–497.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLombardino, J. G., Wiseman, E. H. & Mclamore, W. M. (1971). J. Med. Chem. 14, 1171–1175.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Bukhari, M. H. & Parvez, M. (2008). Acta Cryst. E64, o1922.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o621-o622
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds