organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(4-Chloro­phen­yl)-1-(4-fluoro­phenyl)­prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 31 January 2012; accepted 1 February 2012; online 10 February 2012)

In the title compound, C15H10ClFO, the fluoro-substituted benzene ring forms a dihedral angle of 44.41 (6)° with the chloro-substituted benzene ring. The only significant directional bonds in the crystal are weak C—H⋯π inter­actions.

Related literature

For related structures and background to chalcone derivatives, see: Fun, Loh et al. (2011[Fun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011). Acta Cryst. E67, o1313-o1314.]); Fun, Arshad et al. (2011a[Fun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011a). Acta Cryst. E67, o1248-o1249.],b[Fun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011b). Acta Cryst. E67, o1372-o1373.]). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10ClFO

  • Mr = 260.68

  • Triclinic, [P \overline 1]

  • a = 5.8875 (3) Å

  • b = 7.4926 (3) Å

  • c = 13.6022 (6) Å

  • α = 80.351 (1)°

  • β = 85.483 (1)°

  • γ = 83.545 (1)°

  • V = 586.69 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 100 K

  • 0.38 × 0.25 × 0.10 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.887, Tmax = 0.970

  • 12071 measured reflections

  • 3057 independent reflections

  • 2785 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.07

  • 3057 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C10–C15 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2ACg2i 0.93 2.85 3.4390 (13) 122
C5—H5ACg2ii 0.93 2.85 3.3989 (13) 119
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on the synthesis and structures of chalcone derivatives (Fun, Arshad et al., 2011a,b; Fun, Loh et al., 2011), the title compound was prepared and its crystal structure is reported.

The molecular structure of the title compound is shown in Fig. 1. The least-squares plane of the fluoro-substituted benzene ring (C1–C6) makes a dihedral angle of 44.41 (6)° with the least-squares plane of the chloro-substituted benzene ring (C10–C15). Bond lengths are comparable to those in related structures (Fun, Arshad et al., 2011a,b; Fun, Loh et al., 2011).

In the crystal structure, no significant intermolecular hydrogen bonds are observed. The crystal structure features were C—H···π interactions (Table 1), involving the centroid of C10–C15 benzene ring.

Related literature top

For related structures and background to chalcone derivatives, see: Fun, Loh et al. (2011); Fun, Arshad et al. (2011a,b). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Experimental top

To a mixture of 4-fluoroacetophenone (1.38 g, 0.01 mol) and 4-chlorobenzaldehyde (1.41 g, 0.01 mol) in ethanol (100 ml), 15 ml of 10% sodium hydroxide solution was added and stirred at 0–5 °C for 3 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Colourless blocks were grown from toluene as solvent by the slow evaporation method (m.p.: 405–407 K).

Refinement top

All H atoms were positioned geometrically [C—H = 0.93 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C). An outlier (-3 - 1 7) was omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
(E)-3-(4-Chlorophenyl)-1-(4-fluorophenyl)prop-2-en-1-one top
Crystal data top
C15H10ClFOZ = 2
Mr = 260.68F(000) = 268
Triclinic, P1Dx = 1.476 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8875 (3) ÅCell parameters from 7331 reflections
b = 7.4926 (3) Åθ = 3.0–32.5°
c = 13.6022 (6) ŵ = 0.32 mm1
α = 80.351 (1)°T = 100 K
β = 85.483 (1)°Block, colourless
γ = 83.545 (1)°0.38 × 0.25 × 0.10 mm
V = 586.69 (5) Å3
Data collection top
Bruker APEX DUO CCD
diffractometer
3057 independent reflections
Radiation source: fine-focus sealed tube2785 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 29.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.887, Tmax = 0.970k = 910
12071 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.040P)2 + 0.2844P]
where P = (Fo2 + 2Fc2)/3
3057 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C15H10ClFOγ = 83.545 (1)°
Mr = 260.68V = 586.69 (5) Å3
Triclinic, P1Z = 2
a = 5.8875 (3) ÅMo Kα radiation
b = 7.4926 (3) ŵ = 0.32 mm1
c = 13.6022 (6) ÅT = 100 K
α = 80.351 (1)°0.38 × 0.25 × 0.10 mm
β = 85.483 (1)°
Data collection top
Bruker APEX DUO CCD
diffractometer
3057 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2785 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.970Rint = 0.021
12071 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.07Δρmax = 0.45 e Å3
3057 reflectionsΔρmin = 0.25 e Å3
163 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.24305 (5)0.70656 (4)0.56678 (2)0.02277 (9)
F10.67229 (14)0.16353 (11)1.43564 (6)0.02659 (18)
O10.28078 (15)0.20326 (13)1.02611 (7)0.02103 (19)
C10.75843 (19)0.01108 (16)1.17275 (9)0.0167 (2)
H1A0.87500.01601.12240.020*
C20.8030 (2)0.07852 (16)1.26851 (9)0.0181 (2)
H2A0.94760.13631.28270.022*
C30.6274 (2)0.07948 (16)1.34189 (9)0.0180 (2)
C40.4079 (2)0.00187 (16)1.32499 (9)0.0187 (2)
H4A0.29370.00051.37640.022*
C50.36448 (19)0.08690 (16)1.22882 (9)0.0166 (2)
H5A0.21770.14021.21490.020*
C60.53854 (19)0.09366 (15)1.15221 (8)0.0145 (2)
C70.4793 (2)0.18765 (16)1.05049 (9)0.0159 (2)
C80.6648 (2)0.26517 (16)0.98177 (9)0.0171 (2)
H8A0.80770.27031.00530.021*
C90.62591 (19)0.32760 (15)0.88590 (9)0.0159 (2)
H9A0.48370.31140.86540.019*
C100.78251 (19)0.41862 (15)0.80970 (8)0.0146 (2)
C110.72368 (19)0.45188 (15)0.70992 (9)0.0157 (2)
H11A0.58800.41400.69390.019*
C120.8636 (2)0.54020 (16)0.63434 (9)0.0166 (2)
H12A0.82340.56100.56830.020*
C131.0645 (2)0.59650 (15)0.65976 (8)0.0163 (2)
C141.12740 (19)0.56716 (15)0.75820 (9)0.0161 (2)
H14A1.26210.60710.77380.019*
C150.98717 (19)0.47788 (15)0.83265 (8)0.0158 (2)
H15A1.02900.45700.89840.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02360 (16)0.02747 (16)0.01765 (15)0.01091 (11)0.00178 (11)0.00064 (11)
F10.0263 (4)0.0319 (4)0.0177 (4)0.0017 (3)0.0043 (3)0.0076 (3)
O10.0149 (4)0.0287 (5)0.0188 (4)0.0027 (3)0.0030 (3)0.0005 (3)
C10.0139 (5)0.0187 (5)0.0175 (5)0.0019 (4)0.0003 (4)0.0034 (4)
C20.0144 (5)0.0178 (5)0.0216 (6)0.0002 (4)0.0031 (4)0.0015 (4)
C30.0205 (5)0.0171 (5)0.0158 (5)0.0035 (4)0.0035 (4)0.0014 (4)
C40.0168 (5)0.0209 (5)0.0173 (5)0.0031 (4)0.0017 (4)0.0008 (4)
C50.0129 (5)0.0175 (5)0.0189 (5)0.0014 (4)0.0006 (4)0.0016 (4)
C60.0145 (5)0.0145 (5)0.0146 (5)0.0027 (4)0.0015 (4)0.0019 (4)
C70.0155 (5)0.0166 (5)0.0155 (5)0.0024 (4)0.0012 (4)0.0024 (4)
C80.0142 (5)0.0197 (5)0.0175 (5)0.0034 (4)0.0011 (4)0.0021 (4)
C90.0139 (5)0.0158 (5)0.0181 (5)0.0016 (4)0.0008 (4)0.0024 (4)
C100.0139 (5)0.0141 (5)0.0155 (5)0.0003 (4)0.0009 (4)0.0019 (4)
C110.0138 (5)0.0166 (5)0.0171 (5)0.0016 (4)0.0025 (4)0.0026 (4)
C120.0174 (5)0.0181 (5)0.0142 (5)0.0013 (4)0.0026 (4)0.0016 (4)
C130.0163 (5)0.0158 (5)0.0161 (5)0.0018 (4)0.0014 (4)0.0014 (4)
C140.0136 (5)0.0169 (5)0.0183 (5)0.0021 (4)0.0019 (4)0.0038 (4)
C150.0156 (5)0.0175 (5)0.0143 (5)0.0002 (4)0.0024 (4)0.0023 (4)
Geometric parameters (Å, º) top
Cl1—C131.7379 (12)C8—C91.3380 (16)
F1—C31.3560 (13)C8—H8A0.9300
O1—C71.2279 (14)C9—C101.4640 (15)
C1—C21.3919 (16)C9—H9A0.9300
C1—C61.3985 (15)C10—C111.4020 (15)
C1—H1A0.9300C10—C151.4044 (16)
C2—C31.3790 (17)C11—C121.3909 (16)
C2—H2A0.9300C11—H11A0.9300
C3—C41.3845 (17)C12—C131.3862 (16)
C4—C51.3853 (16)C12—H12A0.9300
C4—H4A0.9300C13—C141.3927 (16)
C5—C61.4016 (15)C14—C151.3856 (16)
C5—H5A0.9300C14—H14A0.9300
C6—C71.4919 (15)C15—H15A0.9300
C7—C81.4844 (16)
C2—C1—C6120.06 (10)C7—C8—H8A120.1
C2—C1—H1A120.0C8—C9—C10127.19 (11)
C6—C1—H1A120.0C8—C9—H9A116.4
C3—C2—C1118.38 (11)C10—C9—H9A116.4
C3—C2—H2A120.8C11—C10—C15118.49 (10)
C1—C2—H2A120.8C11—C10—C9118.77 (10)
F1—C3—C2118.32 (11)C15—C10—C9122.72 (10)
F1—C3—C4118.26 (10)C12—C11—C10121.49 (10)
C2—C3—C4123.42 (11)C12—C11—H11A119.3
C3—C4—C5117.61 (11)C10—C11—H11A119.3
C3—C4—H4A121.2C13—C12—C11118.42 (10)
C5—C4—H4A121.2C13—C12—H12A120.8
C4—C5—C6120.94 (11)C11—C12—H12A120.8
C4—C5—H5A119.5C12—C13—C14121.65 (11)
C6—C5—H5A119.5C12—C13—Cl1119.39 (9)
C1—C6—C5119.56 (10)C14—C13—Cl1118.95 (9)
C1—C6—C7122.44 (10)C15—C14—C13119.32 (10)
C5—C6—C7118.00 (10)C15—C14—H14A120.3
O1—C7—C8121.55 (10)C13—C14—H14A120.3
O1—C7—C6120.21 (10)C14—C15—C10120.63 (10)
C8—C7—C6118.22 (10)C14—C15—H15A119.7
C9—C8—C7119.82 (10)C10—C15—H15A119.7
C9—C8—H8A120.1
C6—C1—C2—C31.50 (17)C6—C7—C8—C9170.70 (11)
C1—C2—C3—F1178.63 (10)C7—C8—C9—C10175.68 (11)
C1—C2—C3—C40.96 (18)C8—C9—C10—C11171.25 (11)
F1—C3—C4—C5179.88 (10)C8—C9—C10—C1510.24 (19)
C2—C3—C4—C50.53 (18)C15—C10—C11—C120.45 (17)
C3—C4—C5—C61.49 (18)C9—C10—C11—C12179.03 (10)
C2—C1—C6—C50.58 (17)C10—C11—C12—C130.35 (17)
C2—C1—C6—C7178.48 (11)C11—C12—C13—C140.20 (17)
C4—C5—C6—C10.96 (17)C11—C12—C13—Cl1179.80 (9)
C4—C5—C6—C7179.94 (10)C12—C13—C14—C150.65 (17)
C1—C6—C7—O1155.13 (12)Cl1—C13—C14—C15179.35 (9)
C5—C6—C7—O123.93 (17)C13—C14—C15—C100.54 (17)
C1—C6—C7—C826.56 (16)C11—C10—C15—C140.00 (17)
C5—C6—C7—C8154.38 (11)C9—C10—C15—C14178.52 (10)
O1—C7—C8—C911.02 (18)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C10–C15 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cg2i0.932.853.4390 (13)122
C5—H5A···Cg2ii0.932.853.3989 (13)119
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC15H10ClFO
Mr260.68
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.8875 (3), 7.4926 (3), 13.6022 (6)
α, β, γ (°)80.351 (1), 85.483 (1), 83.545 (1)
V3)586.69 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.38 × 0.25 × 0.10
Data collection
DiffractometerBruker APEX DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.887, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
12071, 3057, 2785
Rint0.021
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.07
No. of reflections3057
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C10–C15 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cg2i0.932.853.4390 (13)122
C5—H5A···Cg2ii0.932.853.3989 (13)119
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant No. 1001/PFIZIK/811160. TSC thanks the Malaysian Government and USM for the award of the post of Research Officer under the Research University Grant No. 1001/PSKBP/8630013. BN thanks UGC, New Delhi, Government of India, for the purchase of chemicals through the SAP-DRS-Phase 1 programme.

References

First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011a). Acta Cryst. E67, o1248–o1249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011b). Acta Cryst. E67, o1372–o1373.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011). Acta Cryst. E67, o1313–o1314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds