metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(diiso­propyl­ammonium) tetra­chloridocuprate(II)

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wangyc33@yahoo.com.cn

(Received 3 February 2012; accepted 4 February 2012; online 10 February 2012)

In the title mol­ecular salt, (C6H16N)2[CuCl4], the CuII ion adopts an extremely distorted tetra­hedral coordination geometry. All the ammonium H atoms are involved in N—H⋯Cl hydrogen bonds, which serve to link the cations and anions into chains propagating along the c-axis direction.

Related literature

For background to mol­ecular ferroelectric crystals, see: Fu et al. (2011[Fu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011). Adv. Mater. 23, 5658-5662.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H16N)2[CuCl4]

  • Mr = 409.74

  • Monoclinic, P 21 /c

  • a = 10.541 (2) Å

  • b = 14.402 (3) Å

  • c = 14.641 (6) Å

  • β = 114.38 (2)°

  • V = 2024.5 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 298 K

  • 0.10 × 0.03 × 0.03 mm

Data collection
  • Rigaku Mercury2 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 20644 measured reflections

  • 4637 independent reflections

  • 3904 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.081

  • S = 1.10

  • 4637 reflections

  • 180 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—Cl1 2.2419 (9)
Cu1—Cl3 2.2439 (11)
Cu1—Cl2 2.2495 (8)
Cu1—Cl4 2.2714 (8)
Cl1—Cu1—Cl3 139.39 (3)
Cl1—Cu1—Cl2 99.91 (3)
Cl3—Cu1—Cl2 95.93 (3)
Cl1—Cu1—Cl4 96.75 (3)
Cl3—Cu1—Cl4 98.18 (3)
Cl2—Cu1—Cl4 134.61 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯Cl4i 0.90 2.40 3.281 (2) 168
N1—H1D⋯Cl1i 0.90 2.43 3.282 (2) 157
N2—H2B⋯Cl3 0.90 2.37 3.2434 (19) 164
N1—H1E⋯Cl2 0.90 2.44 3.321 (2) 167
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Simple organic salts containig amino cations have attracted an attention as materials which display ferroelectric-paraelectric phase transitions (e.g. Fu et al., 2011). As part of our ongonig studies in this area, we now present the crystal structure of the title compound.

The asymmetric unit of the title compound contains two di-isopropylammonium cations and one CuCl42- anion (Table 1 and Fig. 1). Both the amine N atoms are protonated.

In the crystal structure, all the amino H atoms are involved in N—H···Cl H-bonding interactions with the Cl atoms of the CuCl42- anion with N···Cl distances between the range of 3.243 (2)Å to 3.321 (2)Å. These hydrogen bonds link the ionic units into a one-dimentional chain along the c-axis (Table 2 and Fig. 2).

Related literature top

For background to molecular ferroelectric crystals, see: Fu et al. (2011).

Experimental top

A mixture of di-isopropylamine (0.8 mmol) and CuCl2 (0.4 mmol) were dissolved in HCl/EtOH/distilled water (1:1:1 v/v) solvent. The solution was slowly evaporated in air affording blue block-shaped crystals of the title compound.

Refinement top

The H atoms were geometrically placed (C—H = 0.96–0.98Å, N—H = 0.90Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(C methyl).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with displacement ellipsoids drawn at the 30% probability level. C-bound H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis showing the one-dimensionnal hydrogen bondings chain (dashed line). H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity.
Bis(diisopropylammonium) tetrachloridocuprate(II) top
Crystal data top
(C6H16N)2[CuCl4]F(000) = 860
Mr = 409.74Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3479 reflections
a = 10.541 (2) Åθ = 3.0–27.5°
b = 14.402 (3) ŵ = 1.60 mm1
c = 14.641 (6) ÅT = 298 K
β = 114.38 (2)°Block, blue
V = 2024.5 (10) Å30.10 × 0.03 × 0.03 mm
Z = 4
Data collection top
Rigaku Mercury2 CCD
diffractometer
4637 independent reflections
Radiation source: fine-focus sealed tube3904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD profile fitting scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1818
Tmin = 0.910, Tmax = 1.000l = 1819
20644 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.029P)2 + 0.869P]
where P = (Fo2 + 2Fc2)/3
4637 reflections(Δ/σ)max = 0.001
180 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
(C6H16N)2[CuCl4]V = 2024.5 (10) Å3
Mr = 409.74Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.541 (2) ŵ = 1.60 mm1
b = 14.402 (3) ÅT = 298 K
c = 14.641 (6) Å0.10 × 0.03 × 0.03 mm
β = 114.38 (2)°
Data collection top
Rigaku Mercury2 CCD
diffractometer
4637 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3904 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.036
20644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.10Δρmax = 0.50 e Å3
4637 reflectionsΔρmin = 0.41 e Å3
180 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.48865 (18)0.84283 (12)0.29600 (13)0.0392 (4)
H2B0.42070.81950.31140.047*
H2C0.48040.81580.23840.047*
C80.4613 (2)0.94547 (15)0.27605 (18)0.0452 (5)
H8A0.53280.97140.25690.054*
C110.6264 (2)0.81319 (18)0.37713 (17)0.0487 (5)
H11A0.63180.83580.44170.058*
C90.3211 (3)0.95517 (19)0.1884 (2)0.0620 (7)
H9A0.30021.01980.17370.093*
H9B0.25060.92730.20510.093*
H9C0.32330.92460.13080.093*
C120.7457 (3)0.8551 (2)0.3585 (2)0.0673 (8)
H12A0.74510.92130.36560.101*
H12B0.73500.83990.29190.101*
H12C0.83240.83060.40620.101*
C100.6302 (3)0.7088 (2)0.3796 (2)0.0698 (8)
H10A0.55380.68580.39270.105*
H10B0.71640.68830.43170.105*
H10C0.62290.68560.31620.105*
C70.4685 (3)0.99487 (19)0.3691 (2)0.0634 (7)
H7A0.56020.98800.42160.095*
H7B0.40140.96840.39010.095*
H7C0.44851.05960.35460.095*
N10.09163 (18)0.59594 (13)0.28500 (13)0.0411 (4)
H1D0.14130.62680.25740.049*
H1E0.09430.62990.33740.049*
C20.0577 (2)0.5925 (2)0.20865 (19)0.0576 (7)
H2A0.11460.56440.24000.069*
C60.0892 (3)0.4518 (2)0.3773 (3)0.0843 (10)
H6A0.00080.43320.32870.126*
H6B0.07850.49060.42690.126*
H6C0.14230.39770.40910.126*
C50.1649 (3)0.50524 (16)0.32533 (18)0.0487 (6)
H5A0.16380.46800.26900.058*
C40.3141 (3)0.5256 (2)0.3944 (2)0.0600 (7)
H4A0.35720.56010.35880.090*
H4B0.36330.46830.41800.090*
H4C0.31690.56140.45050.090*
C30.1049 (3)0.6917 (2)0.1807 (2)0.0803 (9)
H3A0.08770.72680.24050.120*
H3B0.20270.69260.13810.120*
H3C0.05420.71870.14590.120*
C10.0719 (3)0.5348 (2)0.1193 (2)0.0827 (10)
H1A0.04590.47180.14010.124*
H1B0.01200.55930.09040.124*
H1C0.16670.53650.07040.124*
Cu10.26640 (3)0.773295 (18)0.52212 (2)0.03879 (9)
Cl40.49483 (6)0.73243 (4)0.58638 (4)0.05000 (15)
Cl30.23772 (7)0.80136 (4)0.36402 (4)0.05210 (15)
Cl20.06532 (6)0.69540 (5)0.48106 (5)0.05519 (16)
Cl10.27415 (8)0.85100 (5)0.65701 (5)0.06438 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0416 (10)0.0417 (10)0.0380 (9)0.0027 (8)0.0200 (8)0.0017 (8)
C80.0522 (13)0.0385 (11)0.0523 (13)0.0042 (10)0.0289 (11)0.0003 (10)
C110.0464 (13)0.0602 (15)0.0355 (12)0.0030 (11)0.0128 (10)0.0007 (11)
C90.0689 (18)0.0498 (15)0.0628 (16)0.0123 (13)0.0226 (14)0.0078 (12)
C120.0449 (14)0.082 (2)0.0716 (19)0.0011 (14)0.0208 (14)0.0004 (15)
C100.0741 (19)0.0608 (17)0.0659 (18)0.0115 (14)0.0201 (16)0.0158 (14)
C70.0783 (19)0.0520 (15)0.0686 (18)0.0088 (13)0.0390 (16)0.0174 (13)
N10.0389 (10)0.0450 (10)0.0401 (10)0.0018 (8)0.0171 (8)0.0045 (8)
C20.0355 (12)0.0780 (19)0.0547 (15)0.0065 (12)0.0140 (11)0.0168 (13)
C60.082 (2)0.0666 (19)0.096 (2)0.0093 (16)0.0291 (19)0.0345 (18)
C50.0543 (14)0.0417 (12)0.0470 (13)0.0021 (10)0.0179 (11)0.0009 (10)
C40.0502 (15)0.0638 (16)0.0601 (16)0.0099 (12)0.0169 (13)0.0094 (13)
C30.0601 (18)0.096 (2)0.071 (2)0.0284 (17)0.0131 (15)0.0132 (18)
C10.073 (2)0.085 (2)0.0594 (18)0.0175 (17)0.0040 (15)0.0042 (16)
Cu10.04210 (16)0.04234 (16)0.03866 (15)0.00002 (11)0.02342 (12)0.00011 (11)
Cl40.0416 (3)0.0643 (4)0.0472 (3)0.0021 (3)0.0214 (3)0.0004 (3)
Cl30.0613 (4)0.0590 (3)0.0436 (3)0.0059 (3)0.0292 (3)0.0079 (3)
Cl20.0426 (3)0.0740 (4)0.0546 (3)0.0075 (3)0.0258 (3)0.0014 (3)
Cl10.0727 (4)0.0751 (4)0.0618 (4)0.0067 (3)0.0443 (4)0.0227 (3)
Geometric parameters (Å, º) top
N2—C111.509 (3)N1—H1D0.9000
N2—C81.511 (3)N1—H1E0.9000
N2—H2B0.9000C2—C11.504 (4)
N2—H2C0.9000C2—C31.513 (4)
C8—C71.510 (3)C2—H2A0.9800
C8—C91.511 (4)C6—C51.519 (4)
C8—H8A0.9800C6—H6A0.9600
C11—C101.505 (4)C6—H6B0.9600
C11—C121.517 (4)C6—H6C0.9600
C11—H11A0.9800C5—C41.507 (3)
C9—H9A0.9600C5—H5A0.9800
C9—H9B0.9600C4—H4A0.9600
C9—H9C0.9600C4—H4B0.9600
C12—H12A0.9600C4—H4C0.9600
C12—H12B0.9600C3—H3A0.9600
C12—H12C0.9600C3—H3B0.9600
C10—H10A0.9600C3—H3C0.9600
C10—H10B0.9600C1—H1A0.9600
C10—H10C0.9600C1—H1B0.9600
C7—H7A0.9600C1—H1C0.9600
C7—H7B0.9600Cu1—Cl12.2419 (9)
C7—H7C0.9600Cu1—Cl32.2439 (11)
N1—C51.508 (3)Cu1—Cl22.2495 (8)
N1—C21.509 (3)Cu1—Cl42.2714 (8)
C11—N2—C8118.27 (18)C5—N1—H1E107.8
C11—N2—H2B107.7C2—N1—H1E107.8
C8—N2—H2B107.7H1D—N1—H1E107.1
C11—N2—H2C107.7C1—C2—N1111.2 (2)
C8—N2—H2C107.7C1—C2—C3112.5 (2)
H2B—N2—H2C107.1N1—C2—C3107.1 (2)
C7—C8—C9112.9 (2)C1—C2—H2A108.6
C7—C8—N2110.6 (2)N1—C2—H2A108.6
C9—C8—N2107.23 (19)C3—C2—H2A108.6
C7—C8—H8A108.7C5—C6—H6A109.5
C9—C8—H8A108.7C5—C6—H6B109.5
N2—C8—H8A108.7H6A—C6—H6B109.5
C10—C11—N2108.0 (2)C5—C6—H6C109.5
C10—C11—C12112.7 (2)H6A—C6—H6C109.5
N2—C11—C12110.2 (2)H6B—C6—H6C109.5
C10—C11—H11A108.6C4—C5—N1108.54 (19)
N2—C11—H11A108.6C4—C5—C6112.4 (2)
C12—C11—H11A108.6N1—C5—C6110.2 (2)
C8—C9—H9A109.5C4—C5—H5A108.5
C8—C9—H9B109.5N1—C5—H5A108.5
H9A—C9—H9B109.5C6—C5—H5A108.5
C8—C9—H9C109.5C5—C4—H4A109.5
H9A—C9—H9C109.5C5—C4—H4B109.5
H9B—C9—H9C109.5H4A—C4—H4B109.5
C11—C12—H12A109.5C5—C4—H4C109.5
C11—C12—H12B109.5H4A—C4—H4C109.5
H12A—C12—H12B109.5H4B—C4—H4C109.5
C11—C12—H12C109.5C2—C3—H3A109.5
H12A—C12—H12C109.5C2—C3—H3B109.5
H12B—C12—H12C109.5H3A—C3—H3B109.5
C11—C10—H10A109.5C2—C3—H3C109.5
C11—C10—H10B109.5H3A—C3—H3C109.5
H10A—C10—H10B109.5H3B—C3—H3C109.5
C11—C10—H10C109.5C2—C1—H1A109.5
H10A—C10—H10C109.5C2—C1—H1B109.5
H10B—C10—H10C109.5H1A—C1—H1B109.5
C8—C7—H7A109.5C2—C1—H1C109.5
C8—C7—H7B109.5H1A—C1—H1C109.5
H7A—C7—H7B109.5H1B—C1—H1C109.5
C8—C7—H7C109.5Cl1—Cu1—Cl3139.39 (3)
H7A—C7—H7C109.5Cl1—Cu1—Cl299.91 (3)
H7B—C7—H7C109.5Cl3—Cu1—Cl295.93 (3)
C5—N1—C2118.04 (19)Cl1—Cu1—Cl496.75 (3)
C5—N1—H1D107.8Cl3—Cu1—Cl498.18 (3)
C2—N1—H1D107.8Cl2—Cu1—Cl4134.61 (3)
C11—N2—C8—C759.6 (3)C5—N1—C2—C156.3 (3)
C11—N2—C8—C9176.88 (19)C5—N1—C2—C3179.6 (2)
C8—N2—C11—C10177.9 (2)C2—N1—C5—C4176.3 (2)
C8—N2—C11—C1254.4 (3)C2—N1—C5—C660.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···Cl4i0.902.403.281 (2)168
N1—H1D···Cl1i0.902.433.282 (2)157
N2—H2B···Cl30.902.373.2434 (19)164
N1—H1E···Cl20.902.443.321 (2)167
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula(C6H16N)2[CuCl4]
Mr409.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.541 (2), 14.402 (3), 14.641 (6)
β (°) 114.38 (2)
V3)2024.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.60
Crystal size (mm)0.10 × 0.03 × 0.03
Data collection
DiffractometerRigaku Mercury2 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
20644, 4637, 3904
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.081, 1.10
No. of reflections4637
No. of parameters180
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.41

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—Cl12.2419 (9)Cu1—Cl22.2495 (8)
Cu1—Cl32.2439 (11)Cu1—Cl42.2714 (8)
Cl1—Cu1—Cl3139.39 (3)Cl1—Cu1—Cl496.75 (3)
Cl1—Cu1—Cl299.91 (3)Cl3—Cu1—Cl498.18 (3)
Cl3—Cu1—Cl295.93 (3)Cl2—Cu1—Cl4134.61 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···Cl4i0.902.403.281 (2)168
N1—H1D···Cl1i0.902.433.282 (2)157
N2—H2B···Cl30.902.373.2434 (19)164
N1—H1E···Cl20.902.443.321 (2)167
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the Doctoral Foundation of Southeast University, China.

References

First citationFu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011). Adv. Mater. 23, 5658–5662.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds