organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,5-Tri­chloro­anilinium perchlorate 18-crown-6 clathrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chemcrystal66@yahoo.com.cn

(Received 4 February 2012; accepted 12 February 2012; online 17 February 2012)

In the title compound, C6H5Cl3N+·ClO4·C12H24O6, the perchlorate anion is disordered over two orientations in a 0.666 (17):0.334 (17) ratio. The ammonium group of the organic cation inserts into the crown ether ring and forms three bifurcated N—H⋯(O,O) hydrogen bonds to generate a supra­molecular complex. The macrocycle has approximate D3d local symmetry.

Related literature

For background to mol­ecular ferroelectric materials, see: Fu et al. (2011[Fu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011). Adv. Mater. 23, 5658-5662.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5Cl3N+·ClO4·C12H24O6

  • Mr = 561.22

  • Triclinic, [P \overline 1]

  • a = 9.4961 (19) Å

  • b = 11.783 (2) Å

  • c = 11.852 (2) Å

  • α = 97.86 (3)°

  • β = 90.39 (3)°

  • γ = 105.26 (3)°

  • V = 1266.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 298 K

  • 0.10 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 (2 × 2 bin mode) diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 11310 measured reflections

  • 4713 independent reflections

  • 3562 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.152

  • S = 1.03

  • 4713 reflections

  • 346 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1i 0.89 2.13 2.916 (3) 147
N1—H1C⋯O6i 0.89 2.21 2.899 (3) 134
N1—H1D⋯O5i 0.89 2.06 2.896 (3) 156
N1—H1D⋯O4i 0.89 2.52 3.052 (3) 119
N1—H1E⋯O3i 0.89 2.19 3.046 (3) 161
N1—H1E⋯O2i 0.89 2.35 2.856 (3) 116
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

With the purpose of obtaining phase transition crystals of amino compounds, various amines have been studied and we have elaborated a series of new materials with this organic molecules (Fu et al. 2011). In this study, we describe the crystal structure of the title compound, (I).

The title compound was composed of cationic [(C6H5NCl3).(C12H24O6)]+ and one ClO4- anion (Fig.1). Supramolecular cation was assembled by protonated 2,4,5-trichloroanilinium and 18-crown-6 through six strong N—H···O hydrogen bonds. The C-N bonds of cation were almost perpendicular to the mean oxygen planes of crown ethers. The macrocycle adopts a conformation with approximate D3d symmetry, with all O-C-C-O torsion angles being gauche and alternating in sign, and all C-O-C-C torsion angles being anti. Supramolecular cation structure, [(C6H5NCl3).(C12H24O6)]+, was introduced as counter cation to ClO4- anion. Cl has a flattened tetrahedral coordination by four O atoms. The ClO4- anion is disordered over two sets of sites with refined occupancies 0.666 (17) and 0.334 (17).

The title compound was stabilized by intermolecular N—H···O hydrogen bonds, the ClO4- anion not participating in the H-bonding interactions. The intermolecular N—H···O H-bonding length are within the usual range of 2.856 (3) to 3.052 (3)Å. (Table 1 and Fig.2).

Related literature top

For background to molecular ferroelectric materials, see: Fu et al. (2011).

Experimental top

18-Crown-6 (6 mmol), HClO4 (6 mmol) and 2,4,5-trichloroaniline (3 mmol) were dissolved in water/EtOH (1:1 v/v) solvent. The solution was slowly evaporated in air affording colourless blocks.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C–H = 0.93 Å (C-aromatic) and 0.98 Å (C-methylene), with Uiso(H)=1.2Ueq(C). The positional parameters of the H atoms (N1) were intially refined freely, subsequently restrained using a distance of N–H = 0.89 (2) Å, and in the final refinements treated in riding motion of their parent nitrogen atom with Uiso(H)=1.5Ueq(N).

The ClO4- anion is disordered over sites and refined using the PART instruction in SHELXL (Sheldrick, 2008)

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the H-bonding interactions. H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity.
2,4,5-Trichloroanilinium perchlorate 1,4,7,10,13,16-hexaoxacyclooctadecane top
Crystal data top
C6H5Cl3N+·ClO4·C12H24O6Z = 2
Mr = 561.22F(000) = 584
Triclinic, P1Dx = 1.472 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4961 (19) ÅCell parameters from 4713 reflections
b = 11.783 (2) Åθ = 3.1–26.5°
c = 11.852 (2) ŵ = 0.52 mm1
α = 97.86 (3)°T = 298 K
β = 90.39 (3)°Block, colourless
γ = 105.26 (3)°0.10 × 0.05 × 0.05 mm
V = 1266.1 (4) Å3
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
4713 independent reflections
Radiation source: fine-focus sealed tube3562 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 13.6612 pixels mm-1θmax = 25.5°, θmin = 3.1°
CCD profile fitting scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.910, Tmax = 1.000l = 1414
11310 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.070P)2 + 0.575P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4713 reflectionsΔρmax = 0.57 e Å3
346 parametersΔρmin = 0.28 e Å3
18 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (2)
Crystal data top
C6H5Cl3N+·ClO4·C12H24O6γ = 105.26 (3)°
Mr = 561.22V = 1266.1 (4) Å3
Triclinic, P1Z = 2
a = 9.4961 (19) ÅMo Kα radiation
b = 11.783 (2) ŵ = 0.52 mm1
c = 11.852 (2) ÅT = 298 K
α = 97.86 (3)°0.10 × 0.05 × 0.05 mm
β = 90.39 (3)°
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
4713 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3562 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.042
11310 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05418 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.03Δρmax = 0.57 e Å3
4713 reflectionsΔρmin = 0.28 e Å3
346 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.30933 (8)0.67394 (7)0.38541 (7)0.0584 (3)
N10.5852 (2)0.7317 (2)0.25875 (17)0.0421 (5)
H1C0.67610.73840.23700.063*
H1D0.53580.75700.20780.063*
H1E0.54170.65590.26370.063*
Cl20.60060 (12)1.00366 (8)0.72283 (6)0.0763 (3)
C180.5882 (3)0.8037 (2)0.3703 (2)0.0366 (6)
Cl30.86985 (10)1.06897 (8)0.56512 (8)0.0800 (3)
C130.4666 (3)0.7804 (2)0.4375 (2)0.0408 (6)
C150.5973 (4)0.9285 (3)0.5859 (2)0.0492 (7)
C160.7156 (3)0.9555 (3)0.5175 (2)0.0489 (7)
O30.5578 (2)0.53489 (19)0.78658 (19)0.0616 (6)
O10.1138 (2)0.2827 (2)0.7236 (2)0.0636 (6)
C170.7111 (3)0.8924 (2)0.4094 (2)0.0458 (6)
H17A0.79080.91000.36350.055*
C140.4716 (3)0.8432 (2)0.5456 (2)0.0467 (7)
H14A0.39080.82790.59060.056*
O20.3401 (3)0.43429 (19)0.61331 (18)0.0643 (6)
O40.6757 (3)0.3898 (2)0.90636 (19)0.0747 (7)
O60.2005 (3)0.1902 (2)0.9069 (2)0.0697 (6)
O50.4919 (3)0.1617 (2)0.93064 (19)0.0773 (7)
C10.0241 (4)0.2633 (4)0.8172 (3)0.0762 (11)
H1A0.07770.24510.79190.091*
H1B0.04590.33460.87300.091*
C90.5364 (5)0.5924 (3)0.6920 (3)0.0813 (12)
H9A0.59270.56990.62890.098*
H9B0.56910.67800.71310.098*
C100.3801 (5)0.5564 (3)0.6579 (3)0.0776 (11)
H10A0.32300.57050.72340.093*
H10B0.36110.60270.60070.093*
C60.6873 (5)0.3373 (4)1.0053 (3)0.0837 (12)
H6A0.62650.36311.06340.100*
H6B0.78770.36161.03520.100*
C80.7075 (4)0.5679 (3)0.8253 (4)0.0799 (11)
H8A0.74370.65380.83980.096*
H8B0.76560.53790.76740.096*
C70.7188 (4)0.5178 (4)0.9294 (4)0.0877 (13)
H7A0.81870.54500.96050.105*
H7B0.65650.54480.98560.105*
C20.0499 (4)0.1641 (4)0.8693 (3)0.0841 (13)
H2A0.01180.15070.93370.101*
H2B0.02490.09220.81420.101*
C30.2348 (6)0.1026 (4)0.9654 (4)0.0952 (14)
H3A0.22440.02970.91310.114*
H3B0.16780.08551.02610.114*
C110.1938 (5)0.3922 (4)0.5702 (4)0.0843 (12)
H11A0.18280.31830.51930.101*
H11B0.17210.44950.52610.101*
C120.0878 (4)0.3719 (4)0.6604 (4)0.0899 (13)
H12A0.09720.44550.71150.108*
H12B0.01070.34600.62650.108*
C50.6391 (5)0.2059 (4)0.9751 (3)0.0909 (13)
H5A0.70310.18140.91900.109*
H5B0.64930.17001.04260.109*
C40.3898 (7)0.1477 (5)1.0147 (4)0.1070 (17)
H4A0.40080.22361.06250.128*
H4B0.40870.09231.06250.128*
Cl40.0719 (14)0.7626 (15)0.7497 (13)0.128 (4)0.334 (17)
O100.040 (2)0.7880 (19)0.8570 (11)0.121 (7)0.334 (17)
O90.053 (3)0.653 (2)0.703 (3)0.152 (7)0.334 (17)
O80.2286 (19)0.797 (2)0.7517 (18)0.116 (6)0.334 (17)
O70.056 (2)0.790 (2)0.6899 (19)0.143 (7)0.334 (17)
Cl4'0.0736 (4)0.7704 (3)0.7438 (2)0.0580 (11)0.666 (17)
O10'0.0532 (11)0.7151 (19)0.8447 (12)0.190 (7)0.666 (17)
O8'0.0154 (17)0.8368 (11)0.7385 (16)0.194 (6)0.666 (17)
O7'0.0428 (16)0.6824 (13)0.6488 (9)0.170 (5)0.666 (17)
O9'0.2038 (16)0.8551 (14)0.7353 (12)0.192 (7)0.666 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0438 (4)0.0646 (5)0.0609 (5)0.0076 (3)0.0091 (3)0.0018 (4)
N10.0388 (11)0.0521 (13)0.0324 (11)0.0092 (10)0.0006 (9)0.0014 (9)
Cl20.1349 (9)0.0625 (5)0.0344 (4)0.0375 (5)0.0029 (4)0.0051 (3)
C180.0411 (14)0.0425 (14)0.0288 (12)0.0160 (11)0.0007 (10)0.0040 (10)
Cl30.0662 (6)0.0702 (6)0.0860 (7)0.0096 (4)0.0143 (5)0.0312 (5)
C130.0474 (15)0.0392 (14)0.0388 (14)0.0152 (12)0.0034 (11)0.0084 (11)
C150.080 (2)0.0444 (16)0.0293 (13)0.0286 (15)0.0014 (13)0.0032 (11)
C160.0540 (17)0.0456 (16)0.0457 (16)0.0170 (13)0.0099 (13)0.0055 (12)
O30.0480 (12)0.0607 (13)0.0674 (14)0.0004 (10)0.0010 (10)0.0068 (11)
O10.0443 (12)0.0651 (14)0.0767 (15)0.0104 (10)0.0073 (11)0.0020 (11)
C170.0441 (15)0.0490 (16)0.0422 (15)0.0127 (12)0.0014 (12)0.0010 (12)
C140.0670 (18)0.0451 (16)0.0352 (14)0.0247 (14)0.0150 (13)0.0108 (12)
O20.0764 (15)0.0543 (13)0.0599 (13)0.0113 (11)0.0039 (11)0.0126 (10)
O40.0741 (16)0.0865 (18)0.0550 (14)0.0184 (13)0.0222 (12)0.0125 (12)
O60.0624 (14)0.0651 (15)0.0746 (15)0.0004 (11)0.0200 (12)0.0182 (12)
O50.103 (2)0.0890 (18)0.0466 (13)0.0389 (15)0.0023 (13)0.0064 (12)
C10.0423 (18)0.092 (3)0.079 (2)0.0084 (18)0.0038 (17)0.022 (2)
C90.113 (3)0.052 (2)0.065 (2)0.005 (2)0.015 (2)0.0152 (17)
C100.121 (3)0.051 (2)0.060 (2)0.021 (2)0.015 (2)0.0118 (16)
C60.088 (3)0.106 (3)0.056 (2)0.042 (2)0.0287 (19)0.019 (2)
C80.056 (2)0.065 (2)0.097 (3)0.0067 (17)0.0035 (19)0.020 (2)
C70.071 (2)0.089 (3)0.081 (3)0.006 (2)0.030 (2)0.033 (2)
C20.064 (2)0.094 (3)0.065 (2)0.024 (2)0.0227 (18)0.004 (2)
C30.130 (4)0.076 (3)0.076 (3)0.011 (3)0.031 (3)0.031 (2)
C110.088 (3)0.081 (3)0.086 (3)0.018 (2)0.025 (2)0.027 (2)
C120.058 (2)0.076 (3)0.139 (4)0.023 (2)0.024 (2)0.020 (3)
C50.111 (3)0.103 (3)0.067 (2)0.054 (3)0.031 (2)0.008 (2)
C40.151 (5)0.135 (4)0.061 (3)0.072 (4)0.016 (3)0.035 (3)
Cl40.090 (6)0.144 (8)0.143 (8)0.028 (6)0.025 (6)0.004 (7)
O100.135 (11)0.177 (15)0.031 (6)0.018 (10)0.037 (6)0.010 (8)
O90.148 (11)0.102 (10)0.203 (17)0.057 (9)0.002 (13)0.030 (12)
O80.058 (6)0.188 (15)0.089 (7)0.017 (9)0.016 (5)0.010 (10)
O70.117 (9)0.173 (15)0.138 (11)0.020 (10)0.047 (9)0.060 (10)
Cl4'0.0618 (17)0.0635 (16)0.0419 (15)0.0072 (12)0.0088 (11)0.0024 (10)
O10'0.089 (5)0.337 (18)0.144 (9)0.002 (8)0.019 (5)0.153 (11)
O8'0.194 (12)0.141 (8)0.264 (15)0.093 (8)0.029 (10)0.008 (8)
O7'0.235 (10)0.144 (9)0.114 (6)0.056 (7)0.074 (6)0.049 (6)
O9'0.149 (10)0.187 (11)0.152 (9)0.087 (8)0.067 (8)0.022 (8)
Geometric parameters (Å, º) top
Cl1—C131.724 (3)C10—H10A0.9700
N1—C181.466 (3)C10—H10B0.9700
N1—H1C0.8900C6—C51.486 (6)
N1—H1D0.8900C6—H6A0.9700
N1—H1E0.8900C6—H6B0.9700
Cl2—C151.735 (3)C8—C71.454 (6)
C18—C171.374 (4)C8—H8A0.9700
C18—C131.395 (4)C8—H8B0.9700
Cl3—C161.733 (3)C7—H7A0.9700
C13—C141.383 (4)C7—H7B0.9700
C15—C141.376 (4)C2—H2A0.9700
C15—C161.383 (4)C2—H2B0.9700
C16—C171.385 (4)C3—C41.511 (7)
O3—C81.425 (4)C3—H3A0.9700
O3—C91.427 (4)C3—H3B0.9700
O1—C11.409 (4)C11—C121.473 (6)
O1—C121.441 (4)C11—H11A0.9700
C17—H17A0.9300C11—H11B0.9700
C14—H14A0.9300C12—H12A0.9700
O2—C111.412 (4)C12—H12B0.9700
O2—C101.413 (4)C5—H5A0.9700
O4—C61.415 (5)C5—H5B0.9700
O4—C71.442 (5)C4—H4A0.9700
O6—C31.422 (5)C4—H4B0.9700
O6—C21.436 (4)Cl4—O91.30 (2)
O5—C41.391 (5)Cl4—O101.322 (19)
O5—C51.426 (5)Cl4—O81.43 (2)
C1—C21.468 (6)Cl4—O71.53 (2)
C1—H1A0.9700Cl4'—O8'1.300 (13)
C1—H1B0.9700Cl4'—O9'1.384 (11)
C9—C101.470 (6)Cl4'—O7'1.395 (10)
C9—H9A0.9700Cl4'—O10'1.428 (12)
C9—H9B0.9700
C18—N1—H1C109.5O3—C8—H8B110.0
C18—N1—H1D109.5C7—C8—H8B110.0
H1C—N1—H1D109.5H8A—C8—H8B108.4
C18—N1—H1E109.5O4—C7—C8110.2 (3)
H1C—N1—H1E109.5O4—C7—H7A109.6
H1D—N1—H1E109.5C8—C7—H7A109.6
C17—C18—C13120.2 (2)O4—C7—H7B109.6
C17—C18—N1120.1 (2)C8—C7—H7B109.6
C13—C18—N1119.7 (2)H7A—C7—H7B108.1
C14—C13—C18120.1 (3)O6—C2—C1110.1 (3)
C14—C13—Cl1119.9 (2)O6—C2—H2A109.6
C18—C13—Cl1120.1 (2)C1—C2—H2A109.6
C14—C15—C16120.6 (2)O6—C2—H2B109.6
C14—C15—Cl2118.0 (2)C1—C2—H2B109.6
C16—C15—Cl2121.3 (2)H2A—C2—H2B108.2
C15—C16—C17120.1 (3)O6—C3—C4109.4 (3)
C15—C16—Cl3120.7 (2)O6—C3—H3A109.8
C17—C16—Cl3119.2 (2)C4—C3—H3A109.8
C8—O3—C9111.4 (3)O6—C3—H3B109.8
C1—O1—C12114.0 (3)C4—C3—H3B109.8
C18—C17—C16119.5 (3)H3A—C3—H3B108.2
C18—C17—H17A120.2O2—C11—C12113.0 (3)
C16—C17—H17A120.2O2—C11—H11A109.0
C15—C14—C13119.3 (3)C12—C11—H11A109.0
C15—C14—H14A120.3O2—C11—H11B109.0
C13—C14—H14A120.3C12—C11—H11B109.0
C11—O2—C10113.4 (3)H11A—C11—H11B107.8
C6—O4—C7112.1 (3)O1—C12—C11109.9 (3)
C3—O6—C2114.4 (3)O1—C12—H12A109.7
C4—O5—C5113.4 (3)C11—C12—H12A109.7
O1—C1—C2109.6 (3)O1—C12—H12B109.7
O1—C1—H1A109.7C11—C12—H12B109.7
C2—C1—H1A109.7H12A—C12—H12B108.2
O1—C1—H1B109.7O5—C5—C6113.9 (3)
C2—C1—H1B109.7O5—C5—H5A108.8
H1A—C1—H1B108.2C6—C5—H5A108.8
O3—C9—C10108.6 (3)O5—C5—H5B108.8
O3—C9—H9A110.0C6—C5—H5B108.8
C10—C9—H9A110.0H5A—C5—H5B107.7
O3—C9—H9B110.0O5—C4—C3112.3 (4)
C10—C9—H9B110.0O5—C4—H4A109.1
H9A—C9—H9B108.3C3—C4—H4A109.1
O2—C10—C9108.7 (3)O5—C4—H4B109.1
O2—C10—H10A109.9C3—C4—H4B109.1
C9—C10—H10A109.9H4A—C4—H4B107.9
O2—C10—H10B109.9O9—Cl4—O10121.0 (19)
C9—C10—H10B109.9O9—Cl4—O897.3 (18)
H10A—C10—H10B108.3O10—Cl4—O8104.3 (15)
O4—C6—C5108.9 (3)O9—Cl4—O798.8 (15)
O4—C6—H6A109.9O10—Cl4—O799.6 (15)
C5—C6—H6A109.9O8—Cl4—O7138.5 (15)
O4—C6—H6B109.9O8'—Cl4'—O9'98.7 (13)
C5—C6—H6B109.9O8'—Cl4'—O7'108.0 (8)
H6A—C6—H6B108.3O9'—Cl4'—O7'111.9 (9)
O3—C8—C7108.5 (3)O8'—Cl4'—O10'110.5 (9)
O3—C8—H8A110.0O9'—Cl4'—O10'118.0 (10)
C7—C8—H8A110.0O7'—Cl4'—O10'109.0 (8)
C17—C18—C13—C142.6 (4)C8—O3—C9—C10178.9 (3)
N1—C18—C13—C14176.2 (2)C11—O2—C10—C9175.8 (3)
C17—C18—C13—Cl1176.8 (2)O3—C9—C10—O267.2 (4)
N1—C18—C13—Cl14.4 (3)C7—O4—C6—C5179.2 (3)
C14—C15—C16—C173.1 (4)C9—O3—C8—C7173.2 (3)
Cl2—C15—C16—C17178.7 (2)C6—O4—C7—C8179.2 (3)
C14—C15—C16—Cl3176.1 (2)O3—C8—C7—O464.0 (4)
Cl2—C15—C16—Cl32.1 (3)C3—O6—C2—C1176.1 (3)
C13—C18—C17—C162.4 (4)O1—C1—C2—O659.2 (4)
N1—C18—C17—C16176.4 (2)C2—O6—C3—C4172.0 (3)
C15—C16—C17—C180.4 (4)C10—O2—C11—C1277.7 (4)
Cl3—C16—C17—C18178.8 (2)C1—O1—C12—C11175.7 (3)
C16—C15—C14—C132.9 (4)O2—C11—C12—O161.4 (4)
Cl2—C15—C14—C13178.8 (2)C4—O5—C5—C683.1 (4)
C18—C13—C14—C150.1 (4)O4—C6—C5—O559.9 (5)
Cl1—C13—C14—C15179.5 (2)C5—O5—C4—C3179.2 (3)
C12—O1—C1—C2175.0 (3)O6—C3—C4—O565.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1i0.892.132.916 (3)147
N1—H1C···O6i0.892.212.899 (3)134
N1—H1D···O5i0.892.062.896 (3)156
N1—H1D···O4i0.892.523.052 (3)119
N1—H1E···O3i0.892.193.046 (3)161
N1—H1E···O2i0.892.352.856 (3)116
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H5Cl3N+·ClO4·C12H24O6
Mr561.22
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.4961 (19), 11.783 (2), 11.852 (2)
α, β, γ (°)97.86 (3), 90.39 (3), 105.26 (3)
V3)1266.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.10 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2 (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11310, 4713, 3562
Rint0.042
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.152, 1.03
No. of reflections4713
No. of parameters346
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.28

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1i0.892.132.916 (3)147
N1—H1C···O6i0.892.212.899 (3)134
N1—H1D···O5i0.892.062.896 (3)156
N1—H1D···O4i0.892.523.052 (3)119
N1—H1E···O3i0.892.193.046 (3)161
N1—H1E···O2i0.892.352.856 (3)116
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by a Start-up Grant of Southeast University, China.

References

First citationFu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011). Adv. Mater. 23, 5658–5662.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds