metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m279-m280

{4-Bromo-2-[(2-{(ethyl­sulfan­yl)[(2-oxido­benzyl­­idene-κO)amino-κN]methyl­idene}hydrazinyl­­idene-κN1)meth­yl]phenolato-κO}(butan-2-ol-κO)dioxidouranium(VI)

aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, 91775-1436 Mashhad, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 5 February 2012; accepted 5 February 2012; online 10 February 2012)

The UVI cation in the title complex, [U(C17H14BrN3O2S)O2(C4H10O)], exists within a distorted penta­gonal–bipyramidal geometry, where the oxide atoms occupy the axial positions [O—U—O = 179.8 (3)°] and the penta­gonal plane is defined by the N2O2 atoms of the tetra­dentate Schiff base ligand and the O atom of the 2-butanol mol­ecule. In the crystal, centrosymmetric aggregates are formed via pairs of hy­droxy–phenolate O—H⋯O hydrogen bonds. The azomethine C=N atoms, the ethyl­thiolyl group, the 2-butanol mol­ecule and Br atom are disordered over two positions in a 0.627 (3):0.373 (3) ratio.

Related literature

For background to uranyl Schiff base complexes, see: Şahin et al. (2010[Şahin, M., Koca, A., Özdemir, N., Dinçer, M., Büyükgüngör, O., Bal-Demirci, T. & Ülküseven, B. (2010). Dalton Trans. 39, 10228-10237.]); Özdemir et al. (2011[Özdemir, N., Şahin, M., Bal-Demirci, T. & Ülküseven, B. (2011). Polyhedron, 30, 515-521.]). For a related structure, see: Takjoo et al. (2012[Takjoo, R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m244-m245.]).

[Scheme 1]

Experimental

Crystal data
  • [U(C17H14BrN3O2)O2(C4H10O)]

  • Mr = 748.43

  • Monoclinic, P 21 /c

  • a = 11.4795 (2) Å

  • b = 14.6450 (3) Å

  • c = 14.3383 (6) Å

  • β = 98.094 (3)°

  • V = 2386.50 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.60 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.182, Tmax = 0.673

  • 17329 measured reflections

  • 5495 independent reflections

  • 4365 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.102

  • S = 1.18

  • 5495 reflections

  • 326 parameters

  • 44 restraints

  • H-atom parameters constrained

  • Δρmax = 1.58 e Å−3

  • Δρmin = −0.97 e Å−3

Table 1
Selected bond lengths (Å)

U—O1 2.297 (6)
U—O2 2.232 (6)
U—O3 1.777 (5)
U—O4 1.777 (5)
U—O5 2.411 (5)
U—N1 2.572 (7)
U—N3 2.563 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5O⋯O1i 0.84 1.88 2.667 (8) 155
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recent studies of uranyl Schiff base complexes (Şahin et al., 2010) motivated the synthesis of the title complex, (I), in continuation of related structural studies (Takjoo et al., 2012).

The U atom in (I), Fig. 1, exists within a distorted pentagonal bipyramidal geometry with the axial positions occupied by the oxido-O atoms, O3—U—O4 = 179.8 (3)°. The pentagonal plane is defined by the N2O2 atoms, derived from the tetradentate Schiff base ligand, and the O atom of the 2-butanol molecule, Table 1. The Schiff base ligand is somewhat twisted with the dihedral angle between the terminal benzene rings being 31.9 (4)°.

In the crystal structure, centrosymmetric pairs of molecules are linked via O—H···O hydrogen bonds formed between the hydroxyl and O1-phenoxide atoms, Fig. 2 and Table 2. The dimeric aggregates stack into columns parallel to a, Fig. 3.

Related literature top

For background to uranyl Schiff base complexes, see: Şahin et al. (2010); Özdemir et al. (2011). For a related structure, see: Takjoo et al. (2012).

Experimental top

UO2(OAc)2.2H2O (0.42 g, 1.0 mmol) was added to a butanol solution (20 ml) of 5-bromosalicylaldehyde mono-S-ethylisothiosemicarbazone hydrobromide (0.38 g, 1.0 mmol) and salicylaldehyde (0.12 g, 1.0 mmol). The red solution was heated under reflux for 1 h at 70 °C. Red prisms were isolated after four days, collected by filtration, washed with diethyl ether and dried in air. m.p. 493 K (dec,). Yield: 33%.

Refinement top

Carbon-bound H atoms were placed in calculated positions [O—H = 0.84 Å and C—H 0.95 to 0.99 Å, Uiso(H) = 1.2 to 1.5Ueq(O,C)] and were included in the refinement in the riding model approximation.

The ethylthiolyl unit is disordered over two positions; the minor component refined to a site occupancy of 0.373 (3). The isotropic displacement parameters of the atoms of the minor component were constrained to be equal to Ueq of the major component. Pairs of S—C and C—C distances were restrained to within 0.01 Å of each other. The azomethine CN unit is also disordered; the positions and anisotropic displacement parameters of the primed atoms were set to those of the unprimed ones. The bromine substituent is also similarly disordered over two benzene rings.

The 2-butanol molecule is also disordered over two positions, and the occupancies were set to those of the ethylthiolyl unit. The isotropic displacement parameters of the atoms of the minor component were constrained to be equal to Ueq of the major component; the C19, C20 and C21 atoms were restrained to be nearly isotropic. Pairs of C—O and C—C distances were restrained to within 0.01 Å of each other. The C—C distances were restrained to 1.54±0.01 Å and the non-bonded C···C distances to 2.51±0.01 Å.

The final difference Fourier map had a peak at 0.24 Å from H4 and a hole at 0.66 Å from U.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 70% probability level. Only the major component of the disordered residues are shown.
[Figure 2] Fig. 2. A view of the centrosymmetric aggregate in (I). The O—H···O hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents of (I).
{4-Bromo-2-[(2-{(ethylsulfanyl)[(2-oxidobenzylidene-κO)amino- κN]methylidene}hydrazinylidene-κN1)methyl]phenolato- κO}(butan-2-ol-κO)dioxidouranium(VI) top
Crystal data top
[U(C17H14BrN3O2)O2(C4H10O)]F(000) = 1416
Mr = 748.43Dx = 2.083 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5878 reflections
a = 11.4795 (2) Åθ = 2.3–27.5°
b = 14.6450 (3) ŵ = 8.60 mm1
c = 14.3383 (6) ÅT = 100 K
β = 98.094 (3)°Prism, red
V = 2386.50 (12) Å30.30 × 0.10 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
5495 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4365 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.3°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1919
Tmin = 0.182, Tmax = 0.673l = 1418
17329 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0173P)2 + 17.3449P]
where P = (Fo2 + 2Fc2)/3
5495 reflections(Δ/σ)max = 0.001
326 parametersΔρmax = 1.58 e Å3
44 restraintsΔρmin = 0.97 e Å3
Crystal data top
[U(C17H14BrN3O2)O2(C4H10O)]V = 2386.50 (12) Å3
Mr = 748.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4795 (2) ŵ = 8.60 mm1
b = 14.6450 (3) ÅT = 100 K
c = 14.3383 (6) Å0.30 × 0.10 × 0.05 mm
β = 98.094 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
5495 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4365 reflections with I > 2σ(I)
Tmin = 0.182, Tmax = 0.673Rint = 0.046
17329 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05244 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0173P)2 + 17.3449P]
where P = (Fo2 + 2Fc2)/3
5495 reflectionsΔρmax = 1.58 e Å3
326 parametersΔρmin = 0.97 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
U0.71638 (2)0.51761 (2)0.61360 (2)0.03255 (10)
Br10.89529 (14)0.43057 (14)0.11495 (12)0.0647 (6)0.627 (2)
Br1'0.6959 (2)0.67063 (17)1.12727 (18)0.0459 (8)0.373 (2)
S11.0253 (4)0.7635 (3)0.7352 (4)0.0648 (13)0.627 (2)
S1'1.0601 (4)0.7180 (3)0.5330 (4)0.0285 (12)0.373 (2)
O10.6612 (4)0.5191 (4)0.4533 (4)0.0417 (14)
O20.7143 (5)0.4871 (4)0.7659 (4)0.0395 (14)
O30.8190 (4)0.4273 (3)0.6093 (4)0.0366 (14)
O40.6138 (4)0.6079 (4)0.6175 (4)0.0364 (14)
O50.5534 (5)0.4123 (4)0.5981 (5)0.0418 (15)0.627 (2)
H5O0.49140.44320.59650.063*0.627 (2)
O5'0.5534 (5)0.4123 (4)0.5981 (5)0.0418 (15)0.373
H5O'0.48590.43040.57530.063*0.627 (2)
N10.8701 (5)0.6029 (4)0.5323 (5)0.0343 (16)
N20.9460 (6)0.6668 (5)0.5850 (5)0.0363 (18)0.627 (2)
C8'0.9460 (6)0.6668 (5)0.5850 (5)0.0363 (18)0.373
N30.8540 (5)0.6299 (4)0.7120 (5)0.0313 (15)
C10.7170 (7)0.4970 (5)0.3816 (6)0.035 (2)
C20.6604 (7)0.4462 (6)0.3064 (7)0.044 (2)
H20.58290.42430.30840.052*
C30.7155 (8)0.4273 (6)0.2288 (7)0.045 (2)
H30.67570.39280.17790.054*
C40.8294 (8)0.4590 (7)0.2250 (7)0.053 (3)
H40.86700.44660.17140.063*0.373 (2)
C50.8863 (7)0.5075 (6)0.2985 (6)0.042 (2)
H50.96410.52810.29550.050*
C60.8338 (6)0.5282 (5)0.3788 (6)0.0344 (18)
C70.8987 (7)0.5843 (5)0.4495 (6)0.0344 (19)
H70.96950.61060.43470.041*
C80.9367 (6)0.6810 (5)0.6703 (6)0.0336 (18)0.627 (2)
N2'0.9367 (6)0.6810 (5)0.6703 (6)0.0336 (18)0.373
C91.0718 (19)0.8414 (15)0.6368 (19)0.080 (6)0.627 (2)
H9A1.01150.84640.58040.097*0.627 (2)
H9B1.10000.90250.65940.097*0.627 (2)
C101.160 (2)0.7813 (18)0.626 (2)0.114 (9)0.627 (2)
H10A1.20250.80200.57550.171*0.627 (2)
H10B1.12680.72070.61110.171*0.627 (2)
H10C1.21510.77800.68540.171*0.627 (2)
C9'1.116 (3)0.800 (2)0.636 (3)0.080 (6)0.373
H9'A1.09560.77730.69660.097*0.373 (2)
H9'B1.20280.80820.64200.097*0.373 (2)
C10'1.059 (4)0.881 (3)0.610 (4)0.114 (9)0.373
H10D1.09780.93110.64660.171*0.373 (2)
H10E0.97690.87620.62230.171*0.373 (2)
H10F1.05980.89150.54280.171*0.373 (2)
C110.8440 (7)0.6554 (6)0.7987 (6)0.038 (2)
H110.89010.70660.82190.046*
C120.7717 (7)0.6153 (6)0.8632 (6)0.039 (2)
C130.7703 (8)0.6596 (7)0.9479 (7)0.051 (2)
H130.81410.71440.96050.061*
C140.7061 (8)0.6254 (8)1.0150 (7)0.053 (3)
H140.70450.65681.07280.064*0.373 (2)
C150.6442 (8)0.5449 (8)0.9963 (7)0.058 (3)
H150.60040.52081.04210.069*
C160.6451 (7)0.4991 (7)0.9129 (7)0.047 (2)
H160.60160.44410.90150.056*
C170.7098 (6)0.5329 (5)0.8440 (6)0.0345 (19)
C180.6029 (13)0.2716 (10)0.5306 (11)0.057 (4)0.627 (2)
H18A0.61220.31100.47690.085*0.627 (2)
H18B0.57030.21260.50750.085*0.627 (2)
H18C0.67970.26210.56870.085*0.627 (2)
C190.5196 (13)0.3168 (7)0.5904 (9)0.056 (4)0.627 (2)
H190.43940.31460.55280.067*0.627 (2)
C200.512 (2)0.2656 (13)0.6807 (13)0.100 (7)0.627 (2)
H20A0.59240.25670.71490.120*0.627 (2)
H20B0.47750.20450.66540.120*0.627 (2)
C210.4374 (14)0.3160 (11)0.7449 (10)0.062 (4)0.627 (2)
H21A0.42680.27700.79860.093*0.627 (2)
H21B0.36040.33060.70930.093*0.627 (2)
H21C0.47720.37250.76770.093*0.627 (2)
C18'0.484 (2)0.2953 (18)0.6972 (18)0.057 (4)0.373
H18D0.49650.33730.75100.085*0.373 (2)
H18E0.49570.23240.71960.085*0.373 (2)
H18F0.40280.30230.66520.085*0.373 (2)
C19'0.5709 (19)0.3176 (9)0.6280 (14)0.056 (4)0.373
H19'0.65320.30940.66040.067*0.373 (2)
C20'0.548 (3)0.252 (2)0.544 (2)0.100 (7)0.373
H20C0.55470.18800.56680.120*0.373 (2)
H20D0.46780.26130.51040.120*0.373 (2)
C21'0.638 (2)0.269 (2)0.4770 (17)0.062 (4)0.373
H21D0.62450.22640.42390.093*0.373 (2)
H21E0.71790.25980.51070.093*0.373 (2)
H21F0.63040.33180.45340.093*0.373 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U0.01734 (14)0.03167 (16)0.0468 (2)0.00210 (12)0.00192 (11)0.00001 (15)
Br10.0434 (9)0.1021 (14)0.0438 (10)0.0328 (9)0.0099 (7)0.0256 (9)
Br1'0.0460 (15)0.0473 (15)0.0454 (16)0.0007 (11)0.0102 (11)0.0049 (11)
S10.049 (2)0.067 (3)0.082 (4)0.024 (2)0.020 (2)0.025 (2)
S1'0.022 (2)0.035 (3)0.031 (3)0.016 (2)0.012 (2)0.010 (2)
O10.022 (3)0.052 (4)0.048 (4)0.005 (3)0.003 (3)0.005 (3)
O20.029 (3)0.043 (3)0.046 (4)0.005 (3)0.002 (3)0.003 (3)
O30.022 (3)0.030 (3)0.058 (4)0.004 (2)0.006 (3)0.003 (3)
O40.017 (2)0.033 (3)0.059 (4)0.001 (2)0.002 (2)0.004 (3)
O50.026 (3)0.030 (3)0.068 (5)0.006 (2)0.001 (3)0.005 (3)
O5'0.026 (3)0.030 (3)0.068 (5)0.006 (2)0.001 (3)0.005 (3)
N10.022 (3)0.032 (4)0.045 (5)0.007 (3)0.005 (3)0.000 (3)
N20.025 (4)0.036 (4)0.047 (5)0.007 (3)0.005 (3)0.010 (3)
C8'0.025 (4)0.036 (4)0.047 (5)0.007 (3)0.005 (3)0.010 (3)
N30.019 (3)0.035 (4)0.038 (4)0.004 (3)0.003 (3)0.003 (3)
C10.024 (4)0.029 (5)0.049 (5)0.002 (3)0.007 (4)0.005 (4)
C20.031 (4)0.043 (5)0.054 (6)0.002 (4)0.006 (4)0.001 (4)
C30.043 (5)0.043 (5)0.044 (6)0.001 (4)0.008 (4)0.001 (4)
C40.050 (6)0.067 (7)0.038 (6)0.013 (5)0.007 (4)0.015 (5)
C50.029 (4)0.048 (5)0.046 (5)0.006 (4)0.003 (4)0.005 (4)
C60.022 (4)0.037 (5)0.041 (5)0.001 (3)0.003 (3)0.001 (4)
C70.021 (4)0.042 (5)0.038 (5)0.002 (3)0.002 (3)0.002 (4)
C80.025 (4)0.029 (4)0.046 (5)0.010 (3)0.002 (3)0.010 (3)
N2'0.025 (4)0.029 (4)0.046 (5)0.010 (3)0.002 (3)0.010 (3)
C90.061 (9)0.090 (10)0.091 (9)0.046 (8)0.010 (7)0.001 (8)
C100.116 (12)0.091 (11)0.128 (12)0.017 (9)0.011 (9)0.009 (8)
C9'0.061 (9)0.090 (10)0.091 (9)0.046 (8)0.010 (7)0.001 (8)
C10'0.116 (12)0.091 (11)0.128 (12)0.017 (9)0.011 (9)0.009 (8)
C110.023 (4)0.047 (5)0.043 (6)0.005 (4)0.001 (4)0.006 (4)
C120.023 (4)0.044 (5)0.046 (6)0.001 (4)0.005 (4)0.004 (4)
C130.031 (5)0.070 (7)0.051 (7)0.005 (4)0.003 (4)0.008 (5)
C140.038 (5)0.092 (8)0.032 (6)0.001 (5)0.010 (4)0.001 (5)
C150.028 (5)0.103 (9)0.041 (6)0.007 (5)0.004 (4)0.019 (6)
C160.028 (4)0.066 (7)0.044 (6)0.001 (4)0.002 (4)0.011 (5)
C170.020 (4)0.040 (5)0.043 (5)0.005 (3)0.000 (3)0.006 (4)
C180.046 (9)0.033 (7)0.089 (13)0.008 (6)0.005 (8)0.027 (8)
C190.061 (8)0.047 (6)0.057 (8)0.005 (6)0.000 (6)0.003 (6)
C200.102 (11)0.091 (10)0.108 (11)0.013 (8)0.016 (8)0.005 (8)
C210.061 (7)0.062 (7)0.063 (8)0.009 (6)0.009 (6)0.012 (6)
C18'0.046 (9)0.033 (7)0.089 (13)0.008 (6)0.005 (8)0.027 (8)
C19'0.061 (8)0.047 (6)0.057 (8)0.005 (6)0.000 (6)0.003 (6)
C20'0.102 (11)0.091 (10)0.108 (11)0.013 (8)0.016 (8)0.005 (8)
C21'0.061 (7)0.062 (7)0.063 (8)0.009 (6)0.009 (6)0.012 (6)
Geometric parameters (Å, º) top
U—O12.297 (6)C9'—H9'B0.9900
U—O22.232 (6)C10'—H10D0.9800
U—O31.777 (5)C10'—H10E0.9800
U—O41.777 (5)C10'—H10F0.9800
U—O52.411 (5)C11—C121.451 (12)
U—N12.572 (7)C11—H110.9500
U—N32.563 (6)C12—C131.380 (13)
Br1—C41.889 (10)C12—C171.408 (11)
Br1'—C141.760 (10)C13—C141.384 (13)
S1—C81.759 (7)C13—H130.9500
S1—C91.95 (2)C14—C151.383 (14)
S1'—C9'1.94 (2)C14—H140.9500
O1—C11.324 (10)C15—C161.373 (14)
O2—C171.313 (10)C15—H150.9500
O5—C191.452 (12)C16—C171.406 (12)
O5—H5O0.8400C16—H160.9500
N1—C71.304 (10)C18—C191.522 (9)
N1—N21.421 (9)C18—H18A0.9800
N2—C81.261 (10)C18—H18B0.9800
N3—C111.317 (10)C18—H18C0.9800
N3—C81.406 (9)C19—C201.510 (9)
C1—C21.394 (12)C19—H191.0000
C1—C61.423 (10)C20—C211.532 (9)
C2—C31.383 (13)C20—H20A0.9900
C2—H20.9500C20—H20B0.9900
C3—C41.396 (13)C21—H21A0.9800
C3—H30.9500C21—H21B0.9800
C4—C51.359 (12)C21—H21C0.9800
C4—H40.9500C18'—C19'1.542 (10)
C5—C61.406 (12)C18'—H18D0.9800
C5—H50.9500C18'—H18E0.9800
C6—C71.430 (11)C18'—H18F0.9800
C7—H70.9500C19'—C20'1.535 (10)
C9—C101.37 (3)C19'—H19'1.0000
C9—H9A0.9900C20'—C21'1.528 (10)
C9—H9B0.9900C20'—H20C0.9900
C10—H10A0.9800C20'—H20D0.9900
C10—H10B0.9800C21'—H21D0.9800
C10—H10C0.9800C21'—H21E0.9800
C9'—C10'1.38 (3)C21'—H21F0.9800
C9'—H9'A0.9900
O3—U—O4179.8 (3)S1'—C9'—H9'B111.1
O3—U—O289.0 (2)H9'A—C9'—H9'B109.1
O4—U—O291.1 (2)C9'—C10'—H10D109.5
O3—U—O193.6 (2)C9'—C10'—H10E109.5
O4—U—O186.2 (2)H10D—C10'—H10E109.5
O2—U—O1160.29 (19)C9'—C10'—H10F109.5
O3—U—O591.8 (2)H10D—C10'—H10F109.5
O4—U—O588.3 (2)H10E—C10'—H10F109.5
O2—U—O581.2 (2)N3—C11—C12128.3 (8)
O1—U—O579.2 (2)N3—C11—H11115.8
O3—U—N397.8 (2)C12—C11—H11115.8
O4—U—N382.2 (2)C13—C12—C17120.5 (9)
O2—U—N371.4 (2)C13—C12—C11116.7 (8)
O1—U—N3127.4 (2)C17—C12—C11122.7 (8)
O5—U—N3150.7 (2)C12—C13—C14121.0 (10)
O3—U—N181.1 (2)C12—C13—H13119.5
O4—U—N198.8 (2)C14—C13—H13119.5
O2—U—N1130.0 (2)C15—C14—C13118.9 (10)
O1—U—N169.6 (2)C15—C14—Br1'113.5 (8)
O5—U—N1147.4 (2)C13—C14—Br1'127.6 (9)
N3—U—N161.9 (2)C15—C14—H14120.6
C8—S1—C9102.5 (8)C13—C14—H14120.6
C1—O1—U132.8 (5)C16—C15—C14121.2 (9)
C17—O2—U137.6 (5)C16—C15—H15119.4
C19—O5—U145.0 (7)C14—C15—H15119.4
C19—O5—H5O107.5C15—C16—C17120.7 (9)
U—O5—H5O107.5C15—C16—H16119.7
C7—N1—N2114.0 (6)C17—C16—H16119.7
C7—N1—U126.0 (5)O2—C17—C16120.5 (8)
N2—N1—U119.2 (5)O2—C17—C12121.7 (8)
C8—N2—N1119.7 (6)C16—C17—C12117.8 (9)
C11—N3—C8113.8 (6)C19—C18—H18A109.5
C11—N3—U124.9 (5)C19—C18—H18B109.5
C8—N3—U120.5 (5)H18A—C18—H18B109.5
O1—C1—C2120.5 (7)C19—C18—H18C109.5
O1—C1—C6120.2 (7)H18A—C18—H18C109.5
C2—C1—C6119.2 (8)H18B—C18—H18C109.5
C3—C2—C1120.9 (8)O5—C19—C20117.4 (13)
C3—C2—H2119.6O5—C19—C18106.2 (10)
C1—C2—H2119.6C20—C19—C18112.6 (8)
C2—C3—C4120.1 (8)O5—C19—H19106.7
C2—C3—H3119.9C20—C19—H19106.7
C4—C3—H3119.9C18—C19—H19106.7
C5—C4—C3119.6 (9)C19—C20—C21112.4 (9)
C5—C4—Br1123.9 (8)C19—C20—H20A109.1
C3—C4—Br1116.5 (7)C21—C20—H20A109.1
C5—C4—H4120.2C19—C20—H20B109.1
C3—C4—H4120.2C21—C20—H20B109.1
C4—C5—C6122.3 (8)H20A—C20—H20B107.9
C4—C5—H5118.9C20—C21—H21A109.5
C6—C5—H5118.9C20—C21—H21B109.5
C5—C6—C1117.9 (8)H21A—C21—H21B109.5
C5—C6—C7117.6 (7)C20—C21—H21C109.5
C1—C6—C7124.3 (8)H21A—C21—H21C109.5
N1—C7—C6126.3 (7)H21B—C21—H21C109.5
N1—C7—H7116.8C19'—C18'—H18D109.5
C6—C7—H7116.8C19'—C18'—H18E109.5
N2—C8—N3118.7 (6)H18D—C18'—H18E109.5
N2—C8—S1120.3 (6)C19'—C18'—H18F109.5
N3—C8—S1121.0 (6)H18D—C18'—H18F109.5
C10—C9—S189.2 (18)H18E—C18'—H18F109.5
C10—C9—H9A113.8C20'—C19'—C18'108.6 (9)
S1—C9—H9A113.8C20'—C19'—H19'109.5
C10—C9—H9B113.8C18'—C19'—H19'109.5
S1—C9—H9B113.8C21'—C20'—C19'109.6 (10)
H9A—C9—H9B111.0C21'—C20'—H20C109.7
C9—C10—H10A109.5C19'—C20'—H20C109.7
C9—C10—H10B109.5C21'—C20'—H20D109.7
H10A—C10—H10B109.5C19'—C20'—H20D109.7
C9—C10—H10C109.5H20C—C20'—H20D108.2
H10A—C10—H10C109.5C20'—C21'—H21D109.5
H10B—C10—H10C109.5C20'—C21'—H21E109.5
C10'—C9'—S1'103 (3)H21D—C21'—H21E109.5
C10'—C9'—H9'A111.1C20'—C21'—H21F109.5
S1'—C9'—H9'A111.1H21D—C21'—H21F109.5
C10'—C9'—H9'B111.1H21E—C21'—H21F109.5
O3—U—O1—C128.2 (7)C1—C2—C3—C40.2 (13)
O4—U—O1—C1151.8 (7)C2—C3—C4—C50.7 (14)
O2—U—O1—C1125.4 (7)C2—C3—C4—Br1179.2 (7)
O5—U—O1—C1119.3 (7)C3—C4—C5—C60.7 (14)
N3—U—O1—C174.5 (7)Br1—C4—C5—C6179.2 (7)
N1—U—O1—C150.9 (6)C4—C5—C6—C10.3 (13)
O3—U—O2—C17141.6 (7)C4—C5—C6—C7176.3 (8)
O4—U—O2—C1738.4 (7)O1—C1—C6—C5176.2 (7)
O1—U—O2—C17120.3 (8)C2—C1—C6—C51.1 (11)
O5—U—O2—C17126.4 (7)O1—C1—C6—C70.4 (12)
N3—U—O2—C1743.0 (7)C2—C1—C6—C7176.9 (8)
N1—U—O2—C1764.1 (8)N2—N1—C7—C6175.0 (7)
O3—U—O5—C192.1 (11)U—N1—C7—C615.4 (11)
O4—U—O5—C19178.1 (11)C5—C6—C7—N1172.5 (8)
O2—U—O5—C1986.7 (11)C1—C6—C7—N111.7 (13)
O1—U—O5—C1995.4 (11)N1—N2—C8—N32.6 (11)
N3—U—O5—C19107.4 (11)N1—N2—C8—S1177.1 (6)
N1—U—O5—C1978.2 (12)C11—N3—C8—N2174.4 (7)
O3—U—N1—C764.1 (6)U—N3—C8—N23.8 (9)
O4—U—N1—C7115.8 (6)C11—N3—C8—S15.3 (9)
O2—U—N1—C7145.3 (6)U—N3—C8—S1175.9 (4)
O1—U—N1—C733.1 (6)C9—S1—C8—N221.2 (11)
O5—U—N1—C715.1 (8)C9—S1—C8—N3158.5 (9)
N3—U—N1—C7168.0 (7)C8—S1—C9—C1083.3 (15)
O3—U—N1—N2105.0 (5)C8—N3—C11—C12177.0 (8)
O4—U—N1—N275.1 (5)U—N3—C11—C1212.8 (12)
O2—U—N1—N223.8 (6)N3—C11—C12—C13175.1 (8)
O1—U—N1—N2157.8 (6)N3—C11—C12—C178.0 (13)
O5—U—N1—N2175.8 (4)C17—C12—C13—C141.6 (13)
N3—U—N1—N21.1 (5)C11—C12—C13—C14178.5 (8)
C7—N1—N2—C8170.7 (7)C12—C13—C14—C151.0 (14)
U—N1—N2—C80.3 (9)C12—C13—C14—Br1'178.6 (7)
O3—U—N3—C11112.5 (7)C13—C14—C15—C160.4 (15)
O4—U—N3—C1167.6 (7)Br1'—C14—C15—C16178.3 (7)
O2—U—N3—C1126.2 (6)C14—C15—C16—C170.3 (14)
O1—U—N3—C11146.8 (6)U—O2—C17—C16142.7 (6)
O5—U—N3—C114.6 (9)U—O2—C17—C1239.3 (11)
N1—U—N3—C11172.0 (7)C15—C16—C17—O2177.2 (8)
O3—U—N3—C877.9 (6)C15—C16—C17—C120.9 (12)
O4—U—N3—C8102.0 (5)C13—C12—C17—O2176.6 (8)
O2—U—N3—C8164.2 (6)C11—C12—C17—O20.1 (12)
O1—U—N3—C822.8 (6)C13—C12—C17—C161.5 (12)
O5—U—N3—C8174.2 (5)C11—C12—C17—C16178.2 (7)
N1—U—N3—C82.4 (5)U—O5—C19—C2089.9 (15)
U—O1—C1—C2136.4 (7)U—O5—C19—C1837.1 (16)
U—O1—C1—C646.3 (10)O5—C19—C20—C2151 (2)
O1—C1—C2—C3176.2 (8)C18—C19—C20—C21174.6 (17)
C6—C1—C2—C31.1 (12)C18'—C19'—C20'—C21'177 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O1i0.841.882.667 (8)155
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[U(C17H14BrN3O2)O2(C4H10O)]
Mr748.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.4795 (2), 14.6450 (3), 14.3383 (6)
β (°) 98.094 (3)
V3)2386.50 (12)
Z4
Radiation typeMo Kα
µ (mm1)8.60
Crystal size (mm)0.30 × 0.10 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.182, 0.673
No. of measured, independent and
observed [I > 2σ(I)] reflections
17329, 5495, 4365
Rint0.046
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.102, 1.18
No. of reflections5495
No. of parameters326
No. of restraints44
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0173P)2 + 17.3449P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.58, 0.97

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
U—O12.297 (6)U—O52.411 (5)
U—O22.232 (6)U—N12.572 (7)
U—O31.777 (5)U—N32.563 (6)
U—O41.777 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O1i0.841.882.667 (8)155
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: rezatakjoo@yahoo.com.

Acknowledgements

The authors gratefully acknowledge financial support of this study by Ferdowsi University of Mashhad, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research Scheme (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationÖzdemir, N., Şahin, M., Bal-Demirci, T. & Ülküseven, B. (2011). Polyhedron, 30, 515–521.  Google Scholar
First citationŞahin, M., Koca, A., Özdemir, N., Dinçer, M., Büyükgüngör, O., Bal-Demirci, T. & Ülküseven, B. (2010). Dalton Trans. 39, 10228–10237.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakjoo, R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m244–m245.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m279-m280
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds