organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(4-Methyl-4H-1,2,4-triazole-3,5-di­yl)di­benzene­sulfonamide

aUniversity of Sargodha, Department of Chemistry, Sargodha, Pakistan, and bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 5 February 2012; accepted 11 February 2012; online 17 February 2012)

In the title compound, C15H15N5O4S2, the dihedral angles between the central 1,2,4-triazole ring and the pendant benzene rings are 55.61 (10) and 68.59 (10)°; the dihedral angle between the benzene rings is 63.66 (9)°. Intra­molecular N—H⋯N and N—H⋯O hydrogen bonds generate S(7) and S(12) rings, respectively. In the crystal, sheets extending in the (101) plane arise, with the mol­ecules linked by C—H⋯O, N—H⋯N and N—H⋯O inter­actions. A C—H⋯π inter­action further consolidates the structure.

Related literature

For background to benzisothia­zole derivatives, see: Siddiqui et al. (2007[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4001.]); Siddiqui, Ahmad, Khan et al. (2008[Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o286-o289.]); Siddiqui, Ahmad, Siddiqui & Parvez (2008[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. E64, o724.]). For related crystal structures, see: Carlsen et al. (1995[Carlsen, P. H. J., Jorgensen, K. B., Gautun, O. R., Jagner, S. & Hakansson, M. (1995). Acta Chem. Scand. 49, 676-682.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N5O4S2

  • Mr = 393.44

  • Monoclinic, P 21 /n

  • a = 13.4190 (6) Å

  • b = 6.9043 (2) Å

  • c = 19.0498 (9) Å

  • β = 102.243 (2)°

  • V = 1724.80 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 296 K

  • 0.35 × 0.25 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 0.938

  • 15158 measured reflections

  • 4055 independent reflections

  • 2526 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.158

  • S = 1.03

  • 4055 reflections

  • 239 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the C7/N2/C8/N3/N4 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.82 (4) 2.33 (4) 3.082 (4) 153 (3)
N1—H1B⋯N4i 0.95 (4) 1.96 (4) 2.899 (4) 171 (3)
N5—H5A⋯O4ii 0.94 (4) 2.10 (4) 3.011 (4) 164 (3)
N5—H5B⋯N3 0.83 (4) 2.14 (4) 2.876 (4) 148 (4)
C9—H9B⋯O2iii 0.96 2.17 2.990 (3) 142
C14—H14⋯Cg3iv 0.93 2.68 3.583 (4) 163
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+2, -z+1; (iii) x, y-1, z; (iv) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation to our research work on the synthesis of benzisothiazole derivatives (Siddiqui, Ahmad, Khan et al., 2008; Siddiqui, Ahmad, Siddiqui & Parvez, 2008), the title compound (I), (Fig. 1) is prepared from hydrazine and commercial source of saccharin.

The crystal structures of 4-methyl-3,5-diphenyl-4H-1,2,4-triazolethe has been published which is also related to (I).

In (I), the phenyl rings A (C1–C6), B (C10—C15) and the 4-methyl-4H- 1,2,4-triazole moiety C (C7–C9/N2–N4) are planar with r. m. s. deviation of 0.0079 Å, 0.0051 Å and 0.0310 Å, respectively. The dihedral angle between A/B, A/C and B/C is 63.66 (9)°, 68.59 (1)° and 55.61 (10)°, respectively. There exist intramolecular H-bonding of N—H···N and N—H···O types (Table 1, Fig. 1) forming S (7) and S (12) ring motifs (Bernstein et al., 1995), respectively. There exist intermolecular H-bondings of C—H···.O, N—H···N and N—H···O types (Table 1, Fig. 2) which consolidates the molecules in the form two-dimensional polymeric network extending along the (101) plane. There exist C—H···π (Table 1) interactions which also play role in establishing the structure.

Related literature top

For background to benzisothiazole derivatives, see: Siddiqui et al. (2007); Siddiqui, Ahmad, Khan et al. (2008); Siddiqui, Ahmad, Siddiqui & Parvez (2008). For related crystal structures, see: Carlsen et al. (1995). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

For the synthesis of title compound, hydrazine monohydrate and saccharin were used as the starting materials following a reported procedure (Siddiqui et al., 2007). Colourless needles of (I) suitable for X-ray crystallographic study were grown from methanol at room temperature. m. p. = 483–484 K. FT—IR: (KBr, cm-1): 3296, 3263 (NH and NH2), 2987 (Ar. CH), 1651 (C N), 1541 (NH def.), 1454 (CH def.), 1315, 1151 (SO2).

Refinement top

The coordinates of H-atoms of amino groups were refined. The H-atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl groups and x = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted lines represent the intramolecular hydrogen bonds.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form two dimensional polymeric network in the plane (101).
2,2'-(4-Methyl-4H-1,2,4-triazole-3,5-diyl)dibenzenesulfonamide top
Crystal data top
C15H15N5O4S2F(000) = 816
Mr = 393.44Dx = 1.515 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2526 reflections
a = 13.4190 (6) Åθ = 2.1–27.9°
b = 6.9043 (2) ŵ = 0.34 mm1
c = 19.0498 (9) ÅT = 296 K
β = 102.243 (2)°Prism, colourless
V = 1724.80 (12) Å30.35 × 0.25 × 0.22 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4055 independent reflections
Radiation source: fine-focus sealed tube2526 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 7.60 pixels mm-1θmax = 27.9°, θmin = 2.1°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 59
Tmin = 0.915, Tmax = 0.938l = 2425
15158 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0762P)2]
where P = (Fo2 + 2Fc2)/3
4055 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C15H15N5O4S2V = 1724.80 (12) Å3
Mr = 393.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.4190 (6) ŵ = 0.34 mm1
b = 6.9043 (2) ÅT = 296 K
c = 19.0498 (9) Å0.35 × 0.25 × 0.22 mm
β = 102.243 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4055 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2526 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.938Rint = 0.060
15158 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.63 e Å3
4055 reflectionsΔρmin = 0.66 e Å3
239 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.05268 (6)1.38253 (11)0.12266 (4)0.0315 (3)
S20.01231 (6)1.09870 (12)0.38488 (4)0.0358 (3)
O10.04824 (15)1.3040 (3)0.11187 (13)0.0438 (8)
O20.06566 (19)1.5630 (3)0.08924 (13)0.0470 (9)
O30.00582 (18)1.2207 (3)0.32800 (12)0.0444 (8)
O40.06624 (19)1.1753 (4)0.43601 (13)0.0509 (9)
N10.0933 (2)1.4069 (4)0.20696 (16)0.0362 (9)
N20.03107 (18)0.9092 (3)0.18915 (13)0.0266 (8)
N30.12821 (19)0.8730 (4)0.29572 (14)0.0340 (8)
N40.18700 (19)0.9443 (4)0.25015 (14)0.0327 (8)
N50.0966 (2)1.0255 (5)0.42979 (16)0.0423 (10)
C10.1333 (2)1.2155 (4)0.08967 (16)0.0286 (9)
C20.1717 (2)1.2741 (5)0.03096 (17)0.0369 (11)
C30.2396 (3)1.1553 (5)0.00495 (18)0.0408 (11)
C40.2696 (3)0.9836 (5)0.03807 (19)0.0447 (12)
C50.2307 (2)0.9214 (5)0.09593 (18)0.0379 (11)
C60.1620 (2)1.0357 (4)0.12269 (16)0.0292 (9)
C70.1277 (2)0.9661 (4)0.18635 (16)0.0287 (9)
C80.0343 (2)0.8550 (4)0.25834 (16)0.0286 (9)
C90.05428 (11)0.8905 (4)0.13235 (8)0.0214 (8)
C100.05358 (11)0.7942 (3)0.28739 (8)0.0307 (10)
C110.08105 (11)0.8909 (3)0.34553 (8)0.0330 (10)
C120.16186 (11)0.8275 (3)0.37385 (8)0.0438 (11)
C130.2172 (3)0.6684 (6)0.3451 (2)0.0513 (14)
C140.1922 (3)0.5723 (5)0.2878 (2)0.0480 (14)
C150.1123 (3)0.6349 (5)0.25875 (19)0.0400 (11)
H1A0.063 (3)1.330 (5)0.2279 (18)0.0435*
H1B0.164 (3)1.434 (5)0.2203 (18)0.0435*
H20.152071.392420.009000.0442*
H30.264441.193030.034960.0490*
H40.316850.907080.021560.0538*
H50.250640.802280.117060.0454*
H5A0.085 (3)0.941 (5)0.466 (2)0.0509*
H5B0.128 (3)0.971 (6)0.402 (2)0.0509*
H9A0.113000.857530.151210.0321*
H9B0.041910.790240.100320.0321*
H9C0.066241.010820.106720.0321*
H120.178810.892590.412430.0524*
H130.271550.625530.364270.0613*
H140.229610.464180.268570.0577*
H150.097300.570060.219470.0480*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0307 (4)0.0274 (4)0.0364 (5)0.0039 (3)0.0074 (3)0.0018 (3)
S20.0423 (5)0.0348 (5)0.0332 (5)0.0007 (3)0.0148 (4)0.0013 (3)
O10.0263 (11)0.0412 (13)0.0614 (16)0.0034 (10)0.0036 (11)0.0089 (12)
O20.0642 (16)0.0277 (12)0.0519 (16)0.0059 (11)0.0186 (13)0.0070 (11)
O30.0603 (15)0.0357 (13)0.0417 (14)0.0005 (11)0.0209 (12)0.0067 (11)
O40.0629 (16)0.0508 (15)0.0467 (15)0.0013 (12)0.0293 (12)0.0079 (12)
N10.0323 (15)0.0407 (17)0.0381 (17)0.0015 (12)0.0128 (12)0.0058 (13)
N20.0264 (12)0.0258 (13)0.0283 (14)0.0021 (10)0.0076 (10)0.0016 (11)
N30.0288 (13)0.0396 (16)0.0343 (15)0.0012 (12)0.0084 (11)0.0036 (12)
N40.0281 (13)0.0381 (15)0.0329 (15)0.0027 (11)0.0089 (11)0.0039 (12)
N50.0444 (17)0.050 (2)0.0328 (17)0.0027 (15)0.0087 (13)0.0014 (14)
C10.0262 (15)0.0314 (17)0.0273 (16)0.0010 (13)0.0038 (12)0.0009 (13)
C20.0411 (18)0.0367 (19)0.0317 (18)0.0037 (15)0.0053 (14)0.0017 (15)
C30.0415 (19)0.051 (2)0.0340 (19)0.0078 (16)0.0171 (15)0.0034 (17)
C40.043 (2)0.049 (2)0.047 (2)0.0085 (17)0.0205 (16)0.0061 (18)
C50.0394 (18)0.0351 (19)0.043 (2)0.0096 (14)0.0170 (15)0.0021 (15)
C60.0262 (15)0.0291 (17)0.0326 (17)0.0019 (13)0.0069 (13)0.0053 (14)
C70.0262 (15)0.0273 (16)0.0332 (17)0.0045 (12)0.0080 (13)0.0027 (13)
C80.0303 (15)0.0260 (16)0.0302 (17)0.0036 (12)0.0077 (13)0.0024 (13)
C90.0180 (13)0.0237 (15)0.0206 (14)0.0009 (11)0.0002 (11)0.0030 (12)
C100.0279 (15)0.0306 (17)0.0346 (18)0.0041 (13)0.0092 (13)0.0040 (14)
C110.0305 (16)0.0385 (19)0.0300 (17)0.0013 (13)0.0065 (13)0.0054 (14)
C120.0427 (19)0.057 (2)0.0361 (19)0.0083 (17)0.0182 (15)0.0004 (17)
C130.040 (2)0.062 (3)0.055 (2)0.0150 (18)0.0174 (18)0.010 (2)
C140.040 (2)0.043 (2)0.060 (3)0.0113 (16)0.0085 (18)0.0022 (19)
C150.0381 (18)0.0349 (19)0.048 (2)0.0011 (15)0.0111 (16)0.0046 (16)
Geometric parameters (Å, º) top
S1—O11.433 (2)C4—C51.384 (5)
S1—O21.427 (2)C5—C61.390 (4)
S1—N11.592 (3)C6—C71.466 (4)
S1—C11.784 (3)C8—C101.466 (3)
S2—O31.433 (2)C10—C111.408 (2)
S2—O41.432 (3)C10—C151.395 (4)
S2—N51.610 (3)C11—C121.381 (2)
S2—C111.783 (2)C12—C131.373 (4)
N2—C71.367 (4)C13—C141.378 (5)
N2—C81.362 (4)C14—C151.376 (6)
N2—C91.405 (3)C2—H20.9300
N3—N41.382 (4)C3—H30.9300
N3—C81.315 (4)C4—H40.9300
N4—C71.313 (4)C5—H50.9300
N1—H1B0.95 (4)C9—H9A0.9600
N1—H1A0.82 (4)C9—H9B0.9600
N5—H5B0.83 (4)C9—H9C0.9600
N5—H5A0.94 (4)C12—H120.9300
C1—C61.408 (4)C13—H130.9300
C1—C21.387 (4)C14—H140.9300
C2—C31.393 (5)C15—H150.9300
C3—C41.363 (5)
O1—S1—O2117.89 (15)N2—C8—N3109.2 (2)
O1—S1—N1107.21 (15)N3—C8—C10125.3 (3)
O1—S1—C1109.28 (13)N2—C8—C10125.5 (2)
O2—S1—N1108.05 (15)C11—C10—C15117.5 (2)
O2—S1—C1105.47 (14)C8—C10—C15120.7 (2)
N1—S1—C1108.68 (14)C8—C10—C11121.80 (19)
O3—S2—O4119.23 (15)C10—C11—C12121.03 (17)
O3—S2—N5107.80 (15)S2—C11—C10120.94 (13)
O3—S2—C11108.10 (11)S2—C11—C12118.04 (13)
O4—S2—N5106.69 (15)C11—C12—C13120.1 (2)
O4—S2—C11106.99 (13)C12—C13—C14119.9 (3)
N5—S2—C11107.53 (14)C13—C14—C15120.6 (3)
C7—N2—C8106.3 (2)C10—C15—C14120.9 (3)
C7—N2—C9128.4 (2)C1—C2—H2120.00
C8—N2—C9125.0 (2)C3—C2—H2120.00
N4—N3—C8107.6 (2)C2—C3—H3120.00
N3—N4—C7107.9 (2)C4—C3—H3120.00
H1A—N1—H1B125 (3)C3—C4—H4120.00
S1—N1—H1A109 (2)C5—C4—H4119.00
S1—N1—H1B114 (2)C4—C5—H5120.00
H5A—N5—H5B112 (4)C6—C5—H5120.00
S2—N5—H5B109 (3)N2—C9—H9A109.00
S2—N5—H5A108 (3)N2—C9—H9B109.00
C2—C1—C6120.3 (3)N2—C9—H9C109.00
S1—C1—C2116.9 (2)H9A—C9—H9B109.00
S1—C1—C6122.8 (2)H9A—C9—H9C109.00
C1—C2—C3119.9 (3)H9B—C9—H9C109.00
C2—C3—C4119.9 (3)C11—C12—H12120.00
C3—C4—C5121.0 (3)C13—C12—H12120.00
C4—C5—C6120.5 (3)C12—C13—H13120.00
C5—C6—C7117.8 (3)C14—C13—H13120.00
C1—C6—C5118.5 (3)C13—C14—H14120.00
C1—C6—C7123.7 (3)C15—C14—H14120.00
N2—C7—N4109.0 (3)C10—C15—H15120.00
N4—C7—C6124.6 (3)C14—C15—H15119.00
N2—C7—C6126.4 (3)
O1—S1—C1—C2114.3 (2)S1—C1—C6—C71.0 (4)
O1—S1—C1—C668.8 (3)C2—C1—C6—C51.2 (4)
O2—S1—C1—C213.3 (3)C2—C1—C6—C7177.8 (3)
O2—S1—C1—C6163.6 (2)C1—C2—C3—C41.2 (5)
N1—S1—C1—C2129.0 (2)C2—C3—C4—C52.4 (6)
N1—S1—C1—C647.9 (3)C3—C4—C5—C61.7 (5)
O3—S2—C11—C1043.59 (19)C4—C5—C6—C10.1 (5)
O3—S2—C11—C12136.53 (16)C4—C5—C6—C7176.9 (3)
O4—S2—C11—C10173.16 (17)C1—C6—C7—N269.9 (4)
O4—S2—C11—C126.95 (19)C1—C6—C7—N4111.8 (3)
N5—S2—C11—C1072.55 (19)C5—C6—C7—N2113.4 (3)
N5—S2—C11—C12107.34 (18)C5—C6—C7—N464.8 (4)
C8—N2—C7—N41.1 (3)N2—C8—C10—C11121.9 (3)
C8—N2—C7—C6179.6 (3)N2—C8—C10—C1559.2 (4)
C9—N2—C7—N4173.4 (3)N3—C8—C10—C1155.4 (4)
C9—N2—C7—C65.1 (4)N3—C8—C10—C15123.6 (3)
C7—N2—C8—N31.4 (3)C8—C10—C11—S22.2 (3)
C7—N2—C8—C10176.2 (2)C8—C10—C11—C12177.68 (19)
C9—N2—C8—N3173.3 (2)C15—C10—C11—S2178.9 (2)
C9—N2—C8—C109.2 (4)C15—C10—C11—C121.3 (3)
C8—N3—N4—C70.5 (3)C8—C10—C15—C14177.2 (3)
N4—N3—C8—N21.2 (3)C11—C10—C15—C141.7 (4)
N4—N3—C8—C10176.4 (2)S2—C11—C12—C13179.8 (2)
N3—N4—C7—N20.4 (3)C10—C11—C12—C130.3 (3)
N3—N4—C7—C6178.9 (3)C11—C12—C13—C140.2 (5)
S1—C1—C2—C3176.5 (3)C12—C13—C14—C150.3 (6)
C6—C1—C2—C30.6 (5)C13—C14—C15—C101.3 (6)
S1—C1—C6—C5175.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the C7/N2/C8/N3/N4 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.82 (4)2.33 (4)3.082 (4)153 (3)
N1—H1B···N4i0.95 (4)1.96 (4)2.899 (4)171 (3)
N5—H5A···O4ii0.94 (4)2.10 (4)3.011 (4)164 (3)
N5—H5B···N30.83 (4)2.14 (4)2.876 (4)148 (4)
C9—H9B···O2iii0.962.172.990 (3)142
C14—H14···Cg3iv0.932.683.583 (4)163
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+2, z+1; (iii) x, y1, z; (iv) x1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H15N5O4S2
Mr393.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)13.4190 (6), 6.9043 (2), 19.0498 (9)
β (°) 102.243 (2)
V3)1724.80 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.35 × 0.25 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.915, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
15158, 4055, 2526
Rint0.060
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.158, 1.03
No. of reflections4055
No. of parameters239
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.66

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the C7/N2/C8/N3/N4 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.82 (4)2.33 (4)3.082 (4)153 (3)
N1—H1B···N4i0.95 (4)1.96 (4)2.899 (4)171 (3)
N5—H5A···O4ii0.94 (4)2.10 (4)3.011 (4)164 (3)
N5—H5B···N30.83 (4)2.14 (4)2.876 (4)148 (4)
C9—H9B···O2iii0.962.172.990 (3)142
C14—H14···Cg3iv0.932.683.583 (4)163
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+2, z+1; (iii) x, y1, z; (iv) x1/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlsen, P. H. J., Jorgensen, K. B., Gautun, O. R., Jagner, S. & Hakansson, M. (1995). Acta Chem. Scand. 49, 676–682.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o286–o289.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. E64, o724.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4001.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds