organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-4-(3-Fluoro­phen­yl)-1-(5-nitro-2-oxo­indolin-3-yl­­idene)thio­semicarbazide

aBahauddin Zakariya University, Department of Chemistry, Multan 60800, Pakistan, and bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 5 February 2012; accepted 5 February 2012; online 10 February 2012)

In the title compound, C15H10FN5O3S, an intra­molecular N—H⋯N hydrogen bond generates an S(5) ring, whereas N—H⋯O and C—H⋯S inter­actions complete S(6) ring motifs. The dihedral angle between the isatin ring system and the fluoro­benzene ring is 5.96 (6)° and the complete mol­ecule is close to planar (r.m.s. deviation for all the non-H atoms = 0.112 Å). In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds to form C(8) chains along the [100] direction and C—H⋯O inter­actions are also observed.

Related literature

For background to isatin derivatives, see: Pervez et al. (2010[Pervez, H., Manzoor, N., Yaqub, M., Khan, A., Khan, K. M., Nasim, F. H. & Choudhary, M. I. (2010). Lett. Drug Des. Discov. 7, 102-108.]); Pervez, Ramzan et al. (2011[Pervez, H., Ramzan, M., Yaqub, M. & Khan, K. M. (2011). Lett. Drug Des. Discov. 8, 452-458.]); Pervez, Saira et al. (2011[Pervez, H., Saira, N., Iqbal, M. S., Yaqub, M. & Khan, K. M. (2011). Molecules, 16, 6408-6421.]). For related structures, see: Pervez et al. (2009[Pervez, H., Yaqub, M., Manzoor, N., Tahir, M. N. & Iqbal, M. S. (2009). Acta Cryst. E65, o2858.]); Ramzan et al. (2010[Ramzan, M., Pervez, H., Tahir, M. N. & Yaqub, M. (2010). Acta Cryst. E66, o2494-o2495.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10FN5O3S

  • Mr = 359.34

  • Orthorhombic, P b c a

  • a = 18.2485 (5) Å

  • b = 8.8043 (2) Å

  • c = 18.6913 (5) Å

  • V = 3003.04 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.966

  • 53231 measured reflections

  • 3728 independent reflections

  • 3101 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.06

  • 3728 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3 0.86 2.18 2.6166 (17) 112
N2—H2A⋯O1 0.86 2.06 2.7483 (16) 136
N4—H4A⋯O3i 0.86 2.26 3.0073 (17) 146
C2—H2⋯S1 0.93 2.49 3.1674 (17) 130
C4—H4⋯O1ii 0.93 2.39 3.281 (2) 161
C6—H6⋯O2iii 0.93 2.56 3.392 (2) 149
C12—H12⋯O2iii 0.93 2.59 3.470 (2) 158
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation of our earlier studies on some isatins-thiosemicarbazones (Pervez et al. 2010; Pervez, Ramzan et al., 2011; Pervez, Saira et al., 2011), we report herein the structure and synthesis of the title compound (I), (Fig. 1). When compared with the crystal structures of 1-(5-nitro-2-oxoindolin-3-ylidene)-4-o-tolylthiosemi carbazide (II) (Pervez et al., 2009) and 4-(3-fluorophenyl)-1-(2-oxoindolin-3-yl-idene)thiosemicarbazides (III) (Ramzan et al., 2010), it can be noticed that it differs from (II) by the presence of fluoro function at position-3 instead of methyl at position-2 of the phenyl ring attached to N of the thiosemicarbazone moiety and from (III) by the presence of nitro substituent at position-5 of the isatin scaffold.

In (I) the fluoro-phenyl group A (C1–C6/F1), thiosemicarbazone moiety B (N1/C7/S1/N2/N3) and 5-nitro-1,3-dihydro-2H-indol-2-one group C (C8–C15/N3–N5/O1–O3) are planar with r. m. s. deviations of 0.0019, 0.0245 and 0.0071 Å, respectively. The dihedral angle between A/B, A/C and B/C is 8.67 (7)°, 5.96 (6)° and 4.35 (5)°, respectively. Due to intramolecular H-bondings of N—H···O, N—H···N and C—H···S types (Table 1, Fig. 1), S(6), S(5) and S(6) ring motifs (Bernstein et al., 1995), respectively are formed. The molecules form C(8) chains (Bernstein et al., 1995) due to intermolecular H-bondings of N—H···O type (Table 1, Fig. 2) along [100] direction, where O-atom is of nitro and N–H is of 5-nitro-1,3-dihydro-2H -indol-2-one. The polymeric chains are connected throuh C—H···O bonds to form three-dimensional network (Table 1, Fig. 2).

Related literature top

For background to isatin derivatives, see: Pervez et al. (2010); Pervez, Ramzan et al. (2011); Pervez, Saira et al. (2011). For related structures, see: Pervez et al. (2009); Ramzan et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a hot solution of 5-nitroisatin (0.48 g, 2.5 mmol) in 50% aqueous ethanol (30 ml) containing a catalytic quantity (3–4 drops) of glacial acetic acid was added 3-fluorophenythiosemicarbazide (0.46 g, 2.5 mmol) dissolved in ethanol (10 ml) and the reaction mixture was refluxed for 2 h. The orange crystalline solid formed during refluxing was collected by suction filtration. Thorough washing with hot aqueous ethanol provided the title compound (I) in pure form (0.77 g, 86%), m.p. 511 K. Orange prisms were grown in ethyl acetate-petroleum ether by diffusion method.

Refinement top

The H-atoms were positioned geometrically (N–H = 0.86 Å, C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.2 for all H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted lines indicate the intra-molecular H-bondings.
[Figure 2] Fig. 2. Packing diagram of the title compound (PLATON: Spek, 2009) showing that molecules form one dimensional polymeric chains along [100] and are interlinked.
(Z)-4-(3-Fluorophenyl)-1-(5-nitro-2-oxoindolin-3- ylidene)thiosemicarbazide top
Crystal data top
C15H10FN5O3SF(000) = 1472
Mr = 359.34Dx = 1.590 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3101 reflections
a = 18.2485 (5) Åθ = 2.2–28.3°
b = 8.8043 (2) ŵ = 0.26 mm1
c = 18.6913 (5) ÅT = 296 K
V = 3003.04 (13) Å3Prism, orange
Z = 80.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3728 independent reflections
Radiation source: fine-focus sealed tube3101 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 7.50 pixels mm-1θmax = 28.3°, θmin = 2.2°
ω scansh = 2421
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 811
Tmin = 0.957, Tmax = 0.966l = 2424
53231 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.045P)2 + 1.1466P]
where P = (Fo2 + 2Fc2)/3
3728 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C15H10FN5O3SV = 3003.04 (13) Å3
Mr = 359.34Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 18.2485 (5) ŵ = 0.26 mm1
b = 8.8043 (2) ÅT = 296 K
c = 18.6913 (5) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3728 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3101 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.966Rint = 0.027
53231 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
3728 reflectionsΔρmin = 0.28 e Å3
226 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23197 (2)0.67952 (5)0.04002 (2)0.0468 (1)
F10.41277 (8)1.02225 (17)0.14952 (9)0.1015 (6)
O10.14958 (6)0.37037 (13)0.13575 (6)0.0491 (4)
O20.50290 (8)0.02530 (18)0.34644 (8)0.0759 (5)
O30.53143 (7)0.1873 (2)0.26498 (9)0.0811 (6)
N10.36565 (7)0.62197 (15)0.01839 (7)0.0421 (4)
N20.26518 (6)0.51166 (14)0.06902 (6)0.0388 (3)
N30.31021 (6)0.43761 (13)0.11392 (6)0.0361 (3)
N40.19541 (6)0.21196 (13)0.22400 (7)0.0379 (3)
N50.48641 (8)0.11444 (18)0.29912 (8)0.0531 (4)
C10.41226 (8)0.72152 (17)0.01991 (8)0.0400 (4)
C20.38746 (9)0.8269 (2)0.06921 (10)0.0535 (5)
C30.43845 (11)0.9188 (2)0.10154 (11)0.0600 (6)
C40.51147 (11)0.9129 (2)0.08870 (11)0.0608 (6)
C50.53538 (10)0.8073 (2)0.03948 (10)0.0599 (6)
C60.48660 (9)0.7113 (2)0.00505 (9)0.0493 (5)
C70.29264 (8)0.60528 (15)0.01605 (7)0.0363 (4)
C80.28008 (7)0.34713 (15)0.15985 (7)0.0329 (3)
C90.20008 (7)0.31556 (15)0.16965 (8)0.0358 (4)
C100.26468 (7)0.17306 (15)0.24998 (7)0.0336 (3)
C110.31818 (7)0.25505 (15)0.21213 (7)0.0324 (3)
C120.39169 (7)0.23766 (16)0.22778 (7)0.0365 (4)
C130.40880 (8)0.13552 (17)0.28157 (8)0.0402 (4)
C140.35672 (9)0.05368 (18)0.31899 (8)0.0445 (5)
C150.28301 (8)0.07168 (17)0.30351 (8)0.0412 (4)
H10.387710.562630.047920.0505*
H20.337890.835260.080080.0643*
H2A0.218560.500640.073290.0466*
H40.544020.977350.112050.0730*
H4A0.154950.175420.240130.0455*
H50.585130.800350.029200.0719*
H60.503610.640380.027870.0592*
H120.427740.291650.203490.0438*
H140.371220.013610.354640.0534*
H150.247240.017650.328180.0494*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0420 (2)0.0503 (2)0.0480 (2)0.0007 (2)0.0056 (2)0.0107 (2)
F10.0892 (9)0.0919 (9)0.1234 (12)0.0074 (8)0.0314 (9)0.0678 (9)
O10.0316 (5)0.0552 (7)0.0604 (7)0.0046 (5)0.0063 (5)0.0088 (5)
O20.0683 (9)0.0887 (10)0.0707 (9)0.0296 (8)0.0231 (7)0.0079 (8)
O30.0348 (6)0.1214 (14)0.0871 (10)0.0002 (7)0.0130 (7)0.0148 (10)
N10.0375 (6)0.0419 (7)0.0469 (7)0.0005 (5)0.0005 (5)0.0107 (5)
N20.0337 (6)0.0396 (6)0.0432 (6)0.0012 (5)0.0009 (5)0.0070 (5)
N30.0362 (6)0.0333 (6)0.0389 (6)0.0002 (5)0.0010 (5)0.0017 (5)
N40.0283 (5)0.0390 (6)0.0464 (6)0.0019 (5)0.0049 (5)0.0012 (5)
N50.0425 (7)0.0670 (9)0.0498 (7)0.0149 (7)0.0125 (6)0.0093 (7)
C10.0388 (7)0.0389 (7)0.0424 (7)0.0022 (6)0.0064 (6)0.0028 (6)
C20.0431 (8)0.0528 (10)0.0647 (10)0.0002 (7)0.0091 (8)0.0175 (8)
C30.0615 (11)0.0509 (10)0.0677 (11)0.0007 (8)0.0196 (9)0.0155 (8)
C40.0591 (10)0.0562 (10)0.0672 (11)0.0165 (9)0.0247 (9)0.0065 (9)
C50.0416 (9)0.0712 (12)0.0670 (11)0.0132 (8)0.0075 (8)0.0133 (10)
C60.0422 (8)0.0554 (10)0.0504 (8)0.0035 (7)0.0001 (7)0.0041 (7)
C70.0403 (7)0.0310 (6)0.0376 (7)0.0005 (5)0.0017 (5)0.0013 (5)
C80.0294 (6)0.0326 (6)0.0368 (6)0.0004 (5)0.0009 (5)0.0013 (5)
C90.0299 (6)0.0342 (7)0.0432 (7)0.0005 (5)0.0003 (5)0.0024 (6)
C100.0320 (6)0.0326 (6)0.0362 (6)0.0011 (5)0.0026 (5)0.0045 (5)
C110.0309 (6)0.0316 (6)0.0347 (6)0.0008 (5)0.0007 (5)0.0020 (5)
C120.0308 (6)0.0401 (7)0.0387 (7)0.0002 (5)0.0007 (5)0.0031 (6)
C130.0365 (7)0.0454 (8)0.0388 (7)0.0080 (6)0.0069 (6)0.0068 (6)
C140.0532 (9)0.0428 (8)0.0375 (7)0.0086 (7)0.0030 (6)0.0023 (6)
C150.0457 (8)0.0391 (7)0.0389 (7)0.0001 (6)0.0053 (6)0.0023 (6)
Geometric parameters (Å, º) top
S1—C71.6587 (14)C3—C41.355 (3)
F1—C31.361 (2)C4—C51.379 (3)
O1—C91.2180 (17)C5—C61.386 (2)
O2—N51.220 (2)C8—C91.4974 (18)
O3—N51.222 (2)C8—C111.4476 (18)
N1—C11.416 (2)C10—C151.382 (2)
N1—C71.3411 (19)C10—C111.4053 (18)
N2—N31.3434 (16)C11—C121.3815 (18)
N2—C71.3823 (18)C12—C131.385 (2)
N3—C81.2938 (17)C13—C141.383 (2)
N4—C91.3679 (19)C14—C151.385 (2)
N4—C101.3968 (17)C2—H20.9300
N5—C131.466 (2)C4—H40.9300
N1—H10.8600C5—H50.9300
N2—H2A0.8600C6—H60.9300
N4—H4A0.8600C12—H120.9300
C1—C61.388 (2)C14—H140.9300
C1—C21.384 (2)C15—H150.9300
C2—C31.373 (3)
C1—N1—C7130.41 (13)O1—C9—C8126.90 (13)
N3—N2—C7121.01 (11)N4—C9—C8105.98 (11)
N2—N3—C8116.96 (11)O1—C9—N4127.11 (12)
C9—N4—C10111.43 (11)C11—C10—C15121.88 (12)
O2—N5—O3123.39 (16)N4—C10—C11109.13 (11)
O2—N5—C13118.82 (14)N4—C10—C15128.99 (12)
O3—N5—C13117.79 (14)C8—C11—C12132.17 (12)
C1—N1—H1115.00C8—C11—C10107.09 (11)
C7—N1—H1115.00C10—C11—C12120.74 (12)
N3—N2—H2A119.00C11—C12—C13116.41 (12)
C7—N2—H2A119.00N5—C13—C12117.56 (13)
C9—N4—H4A124.00N5—C13—C14119.02 (14)
C10—N4—H4A124.00C12—C13—C14123.42 (14)
N1—C1—C2123.74 (14)C13—C14—C15120.15 (14)
N1—C1—C6116.49 (14)C10—C15—C14117.40 (13)
C2—C1—C6119.77 (14)C1—C2—H2121.00
C1—C2—C3117.81 (16)C3—C2—H2121.00
F1—C3—C4118.74 (17)C3—C4—H4121.00
C2—C3—C4124.46 (18)C5—C4—H4121.00
F1—C3—C2116.80 (17)C4—C5—H5119.00
C3—C4—C5117.08 (18)C6—C5—H5119.00
C4—C5—C6121.18 (17)C1—C6—H6120.00
C1—C6—C5119.70 (16)C5—C6—H6120.00
S1—C7—N2116.46 (11)C11—C12—H12122.00
S1—C7—N1129.83 (11)C13—C12—H12122.00
N1—C7—N2113.71 (12)C13—C14—H14120.00
C9—C8—C11106.36 (11)C15—C14—H14120.00
N3—C8—C9127.58 (12)C10—C15—H15121.00
N3—C8—C11126.06 (12)C14—C15—H15121.00
C7—N1—C1—C20.8 (3)C2—C3—C4—C50.3 (3)
C7—N1—C1—C6179.82 (15)C3—C4—C5—C60.3 (3)
C1—N1—C7—S18.9 (2)C4—C5—C6—C10.3 (3)
C1—N1—C7—N2170.96 (14)N3—C8—C9—O10.1 (2)
C7—N2—N3—C8177.01 (12)N3—C8—C9—N4179.51 (13)
N3—N2—C7—S1175.28 (10)C11—C8—C9—O1179.74 (14)
N3—N2—C7—N14.80 (18)C11—C8—C9—N40.17 (15)
N2—N3—C8—C90.6 (2)N3—C8—C11—C10179.13 (13)
N2—N3—C8—C11179.00 (12)N3—C8—C11—C120.3 (2)
C10—N4—C9—O1179.28 (14)C9—C8—C11—C100.57 (14)
C10—N4—C9—C80.30 (15)C9—C8—C11—C12179.97 (16)
C9—N4—C10—C110.67 (16)N4—C10—C11—C80.76 (15)
C9—N4—C10—C15179.04 (14)N4—C10—C11—C12179.74 (12)
O2—N5—C13—C12179.84 (15)C15—C10—C11—C8178.98 (13)
O2—N5—C13—C140.1 (2)C15—C10—C11—C120.5 (2)
O3—N5—C13—C120.5 (2)N4—C10—C15—C14179.89 (14)
O3—N5—C13—C14179.53 (16)C11—C10—C15—C140.2 (2)
N1—C1—C2—C3178.66 (16)C8—C11—C12—C13178.85 (14)
C6—C1—C2—C30.3 (3)C10—C11—C12—C130.5 (2)
N1—C1—C6—C5178.74 (15)C11—C12—C13—N5179.80 (13)
C2—C1—C6—C50.3 (2)C11—C12—C13—C140.2 (2)
C1—C2—C3—F1179.61 (16)N5—C13—C14—C15179.91 (14)
C1—C2—C3—C40.3 (3)C12—C13—C14—C150.1 (2)
F1—C3—C4—C5179.64 (17)C13—C14—C15—C100.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N30.862.182.6166 (17)112
N2—H2A···O10.862.062.7483 (16)136
N4—H4A···O3i0.862.263.0073 (17)146
C2—H2···S10.932.493.1674 (17)130
C4—H4···O1ii0.932.393.281 (2)161
C6—H6···O2iii0.932.563.392 (2)149
C12—H12···O2iii0.932.593.470 (2)158
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1/2, y+3/2, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H10FN5O3S
Mr359.34
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)18.2485 (5), 8.8043 (2), 18.6913 (5)
V3)3003.04 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.957, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
53231, 3728, 3101
Rint0.027
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.06
No. of reflections3728
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N30.862.182.6166 (17)112
N2—H2A···O10.862.062.7483 (16)136
N4—H4A···O3i0.862.263.0073 (17)146
C2—H2···S10.932.493.1674 (17)130
C4—H4···O1ii0.932.393.281 (2)161
C6—H6···O2iii0.932.563.392 (2)149
C12—H12···O2iii0.932.593.470 (2)158
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1/2, y+3/2, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We acknowledge partial funding of this research work and the award of an Indigenous PhD scholarship to NM by the Higher Education Commission, Islamabad, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPervez, H., Manzoor, N., Yaqub, M., Khan, A., Khan, K. M., Nasim, F. H. & Choudhary, M. I. (2010). Lett. Drug Des. Discov. 7, 102–108.  CrossRef CAS Google Scholar
First citationPervez, H., Ramzan, M., Yaqub, M. & Khan, K. M. (2011). Lett. Drug Des. Discov. 8, 452–458.  CrossRef CAS Google Scholar
First citationPervez, H., Saira, N., Iqbal, M. S., Yaqub, M. & Khan, K. M. (2011). Molecules, 16, 6408–6421.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPervez, H., Yaqub, M., Manzoor, N., Tahir, M. N. & Iqbal, M. S. (2009). Acta Cryst. E65, o2858.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRamzan, M., Pervez, H., Tahir, M. N. & Yaqub, M. (2010). Acta Cryst. E66, o2494–o2495.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds