organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Meth­­oxy-2-phenyl-4,4a,6,7,8,8a-hexa­hydro-2H-pyrano[3,2-d][1,3]dioxine-7,8-diyl bis­­(4-methyl­benzene-1-sulfonate)

aCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Avenida Brasil 4365, 21040-900, Rio de Janeiro, RJ, Brazil, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 February 2012; accepted 12 February 2012; online 17 February 2012)

In the title α-D-glucopyran­oside derivative, C28H30O10S2, each heterocyclic ring adopts a chair conformation. In the tri­substituted ring, the meth­oxy and one sulfonate group occupy axial positions, whereas the second sulfonate group occupies an axial position. The phenyl group on the other ring is in an equatorial position. In the crystal, supra­molecular chains propagating along [100] are formed through C—H⋯O and C—H⋯π inter­actions.

Related literature

For the synthesis of the title compound, see: Brown et al. (1995[Brown, M. A., Cox, P. J., Howie, R. A., Melvin, O. A., Taylor, O. J. & Wardell, J. L. (1995). J. Organomet. Chem. 498, 275-282.]); Whistler (1962[Whistler, R. (1962). Methods in Carbohydrate Chemistry, Vol. 1, pp. 308-351. New York: Academic Press.]). For the 13C NMR spectrum, see: Sugiyama et al. (1978[Sugiyama, H., Yamasaki, T., Senda, Y., Ishiyama, J., Matsuda, K. & Seto, S. (1978). Bull. Chem. Soc. Jpn, 51, 3659-3660.]).

[Scheme 1]

Experimental

Crystal data
  • C28H30O10S2

  • Mr = 590.64

  • Orthorhombic, P 21 21 21

  • a = 5.7031 (16) Å

  • b = 17.020 (5) Å

  • c = 28.084 (8) Å

  • V = 2726.0 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.20 × 0.01 × 0.01 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.747, Tmax = 1.000

  • 25991 measured reflections

  • 6262 independent reflections

  • 5326 reflections with I > 2σ(I)

  • Rint = 0.103

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.147

  • S = 1.18

  • 6262 reflections

  • 364 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 2656 Friedel pairs

  • Flack parameter: 0.21 (11)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C23–C28 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O7i 1.00 2.59 3.548 (5) 162
C8—H8B⋯O1i 0.98 2.50 3.325 (6) 142
C10—H10⋯O7i 0.95 2.47 3.023 (6) 117
C20—H20⋯Cg1i 0.95 2.79 3.479 (5) 130
Symmetry code: (i) x-1, y, z.

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was prepared initially as a precursor for a series of 2-metallated derivatives of methyl 4,6-O-benzylidene-2-deoxy-α-D-altropyranosides (Brown et al., 1995).

In (I), Fig. 1, both heterocyclic rings adopt a chair conformation. With respect to the fused heterocyclic rings, the phenyl and S2-sulfonate groups are approximately co-planar but, the S1-sulfonate group lies to one side, and the methoxy group to the other. In the O1-ring, the O4 and O5 substituents occupy axial positions whereas the O5 substituent is equatorial. In the O2-ring, the phenyl group is in an equatorial position.

In the crystal, C—H···O and C—H···π interactions link translationally related molecules into a supramolecular chain along [100], Fig. 2 and Table 1. Chains pack with no specific intermolecular interactions between them, Fig. 3.

Related literature top

For the synthesis of the title compound, see: Brown et al. (1995); Whistler (1962). For the 13C NMR spectrum, see: Sugiyama et al. (1978).

Experimental top

The title compound was obtained from methyl 4,6-O-benzylidene-α-D-glucopyranoside and p-toluenesulfonyl chloride using a published procedure (Brown et al., 1995; Whistler, 1962), m.p. 426–428 K. The 13C NMR spectrum was identical with that published (Sugiyama et al., 1978).

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). Owing to poor agreement, the (012) reflection was omitted from the final refinement. The absolute configuration of the molecule matches that of the α-D-glucopyranoside starting material.

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the linear supramolecular chain along [100] in (I). The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively. H atoms not involved in the supramolecular interactions have been omitted for clarity.
[Figure 3] Fig. 3. A view in projection down the a axis of the packing of supramolecular chains in (I). The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively. One supramolecular chain has been highlighted in space-filling mode.
6-Methoxy-2-phenyl-4,4a,6,7,8,8a-hexahydro-2H- pyrano[3,2-d][1,3]dioxine-7,8-diyl bis(4-methylbenzene-1-sulfonate) top
Crystal data top
C28H30O10S2F(000) = 1240
Mr = 590.64Dx = 1.439 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9688 reflections
a = 5.7031 (16) Åθ = 2.4–31.4°
b = 17.020 (5) ŵ = 0.25 mm1
c = 28.084 (8) ÅT = 100 K
V = 2726.0 (14) Å3Needle, colourless
Z = 40.20 × 0.01 × 0.01 mm
Data collection top
Rigaku Saturn724+
diffractometer
6262 independent reflections
Radiation source: Rotating Anode5326 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.103
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.5°
profile data from ω–scansh = 75
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
k = 2222
Tmin = 0.747, Tmax = 1.000l = 3636
25991 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.082H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0335P)2 + 1.481P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
6262 reflectionsΔρmax = 0.30 e Å3
364 parametersΔρmin = 0.38 e Å3
0 restraintsAbsolute structure: Flack (1983), with 2656 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.21 (11)
Crystal data top
C28H30O10S2V = 2726.0 (14) Å3
Mr = 590.64Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.7031 (16) ŵ = 0.25 mm1
b = 17.020 (5) ÅT = 100 K
c = 28.084 (8) Å0.20 × 0.01 × 0.01 mm
Data collection top
Rigaku Saturn724+
diffractometer
6262 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
5326 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 1.000Rint = 0.103
25991 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.082H-atom parameters constrained
wR(F2) = 0.147Δρmax = 0.30 e Å3
S = 1.18Δρmin = 0.38 e Å3
6262 reflectionsAbsolute structure: Flack (1983), with 2656 Friedel pairs
364 parametersAbsolute structure parameter: 0.21 (11)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.5416 (2)0.05008 (7)0.71777 (4)0.0194 (3)
S20.0901 (2)0.09753 (6)0.59013 (4)0.0214 (3)
O10.4150 (6)0.20508 (16)0.61006 (9)0.0164 (7)
O20.4498 (5)0.05358 (16)0.51713 (9)0.0162 (6)
O30.5946 (6)0.17301 (16)0.48707 (10)0.0186 (7)
O40.0148 (5)0.18698 (16)0.62785 (10)0.0158 (7)
O50.5053 (5)0.06571 (16)0.66275 (10)0.0168 (7)
O60.4090 (6)0.10660 (18)0.74447 (10)0.0245 (8)
O70.7922 (5)0.04735 (18)0.72221 (11)0.0232 (7)
O80.3017 (6)0.03820 (16)0.59950 (10)0.0187 (7)
O90.1278 (6)0.05763 (18)0.59845 (12)0.0277 (8)
O100.1498 (7)0.16567 (17)0.61702 (12)0.0306 (9)
C10.2469 (8)0.1719 (2)0.64186 (15)0.0156 (9)
H10.27240.19420.67440.019*
C20.2700 (8)0.0829 (2)0.64421 (15)0.0154 (9)
H20.14660.06000.66530.019*
C30.2614 (8)0.0455 (2)0.59468 (15)0.0161 (9)
H30.10500.05510.57970.019*
C40.4517 (8)0.0828 (2)0.56520 (14)0.0149 (9)
H40.60790.07250.58010.018*
C50.6340 (8)0.0903 (2)0.49103 (15)0.0167 (9)
H50.78640.08100.50770.020*
C60.5940 (9)0.2098 (2)0.53331 (14)0.0190 (10)
H6A0.74910.20340.54860.023*
H6B0.56170.26670.53000.023*
C70.4060 (8)0.1715 (2)0.56347 (14)0.0150 (9)
H70.24860.18160.54900.018*
C80.0436 (9)0.2694 (2)0.63036 (16)0.0232 (11)
H8A0.02140.29670.60260.035*
H8B0.21440.27560.63070.035*
H8C0.02260.29200.65950.035*
C90.4247 (8)0.0431 (3)0.72699 (14)0.0184 (9)
C100.2123 (9)0.0499 (3)0.75107 (16)0.0222 (10)
H100.13890.00470.76430.027*
C110.1086 (10)0.1235 (3)0.75561 (17)0.0270 (11)
H110.03890.12820.77110.032*
C120.2174 (9)0.1902 (3)0.73783 (16)0.0240 (11)
C130.4373 (9)0.1825 (3)0.71563 (17)0.0266 (11)
H130.51740.22810.70490.032*
C140.5373 (9)0.1099 (2)0.70937 (15)0.0217 (10)
H140.68270.10520.69310.026*
C150.1022 (11)0.2697 (3)0.74185 (19)0.0381 (14)
H15A0.06800.26380.73850.057*
H15B0.16140.30420.71660.057*
H15C0.13830.29260.77300.057*
C160.1142 (9)0.1205 (2)0.52932 (15)0.0184 (10)
C170.3093 (9)0.1617 (2)0.51311 (17)0.0212 (10)
H170.43470.17320.53420.025*
C180.3201 (9)0.1857 (2)0.46615 (17)0.0227 (11)
H180.45410.21330.45500.027*
C190.1355 (10)0.1698 (2)0.43491 (16)0.0246 (11)
C200.0548 (9)0.1276 (3)0.45155 (17)0.0267 (11)
H200.17960.11570.43030.032*
C210.0680 (9)0.1023 (2)0.49803 (16)0.0221 (10)
H210.19950.07290.50870.027*
C220.1410 (11)0.2005 (3)0.38427 (18)0.0373 (14)
H22A0.07450.16100.36280.056*
H22B0.30340.21140.37500.056*
H22C0.04850.24890.38220.056*
C230.6480 (8)0.0578 (2)0.44167 (14)0.0161 (9)
C240.4715 (8)0.0126 (2)0.42182 (15)0.0199 (10)
H240.33510.00080.43990.024*
C250.4936 (9)0.0159 (3)0.37499 (16)0.0244 (11)
H250.37200.04690.36150.029*
C260.6925 (9)0.0012 (3)0.34847 (17)0.0269 (12)
H260.70710.01810.31690.032*
C270.8701 (9)0.0465 (3)0.36821 (16)0.0238 (10)
H271.00550.05890.35000.029*
C280.8494 (8)0.0738 (2)0.41477 (15)0.0188 (10)
H280.97310.10360.42840.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0230 (7)0.0209 (5)0.0143 (5)0.0029 (5)0.0011 (5)0.0003 (4)
S20.0258 (7)0.0170 (5)0.0214 (6)0.0064 (5)0.0024 (5)0.0009 (4)
O10.0212 (18)0.0168 (14)0.0112 (14)0.0029 (14)0.0029 (14)0.0018 (11)
O20.0199 (17)0.0173 (14)0.0115 (13)0.0039 (13)0.0027 (13)0.0018 (12)
O30.0251 (19)0.0163 (14)0.0146 (14)0.0010 (14)0.0036 (14)0.0011 (12)
O40.0112 (17)0.0146 (14)0.0216 (15)0.0015 (12)0.0001 (13)0.0007 (12)
O50.0167 (18)0.0201 (15)0.0136 (14)0.0015 (13)0.0009 (13)0.0051 (12)
O60.031 (2)0.0244 (16)0.0183 (16)0.0072 (16)0.0004 (16)0.0053 (13)
O70.0188 (18)0.0279 (17)0.0228 (17)0.0025 (15)0.0030 (15)0.0024 (15)
O80.0248 (18)0.0114 (13)0.0200 (16)0.0011 (13)0.0006 (14)0.0017 (12)
O90.0199 (19)0.0273 (17)0.036 (2)0.0041 (15)0.0104 (16)0.0071 (15)
O100.045 (2)0.0181 (16)0.0287 (18)0.0070 (16)0.0013 (18)0.0059 (14)
C10.014 (2)0.020 (2)0.013 (2)0.0005 (18)0.0020 (18)0.0021 (17)
C20.013 (2)0.019 (2)0.014 (2)0.0028 (18)0.0025 (18)0.0013 (17)
C30.022 (3)0.0128 (19)0.014 (2)0.0015 (18)0.0005 (19)0.0025 (17)
C40.018 (2)0.0164 (19)0.0107 (19)0.0029 (18)0.0004 (18)0.0026 (15)
C50.016 (3)0.0163 (19)0.018 (2)0.0004 (18)0.0011 (19)0.0013 (17)
C60.027 (3)0.0151 (19)0.015 (2)0.001 (2)0.001 (2)0.0022 (17)
C70.015 (2)0.0171 (19)0.0131 (19)0.0035 (18)0.0048 (19)0.0006 (16)
C80.029 (3)0.017 (2)0.024 (2)0.003 (2)0.001 (2)0.0026 (18)
C90.022 (3)0.023 (2)0.0101 (19)0.003 (2)0.0036 (19)0.0075 (17)
C100.025 (3)0.021 (2)0.021 (2)0.008 (2)0.001 (2)0.0062 (19)
C110.021 (3)0.033 (3)0.027 (3)0.006 (2)0.005 (2)0.013 (2)
C120.030 (3)0.025 (2)0.018 (2)0.002 (2)0.002 (2)0.011 (2)
C130.032 (3)0.023 (2)0.025 (2)0.007 (2)0.000 (3)0.002 (2)
C140.029 (3)0.023 (2)0.014 (2)0.004 (2)0.008 (2)0.0013 (17)
C150.043 (4)0.027 (3)0.043 (3)0.000 (3)0.008 (3)0.006 (2)
C160.020 (3)0.0128 (19)0.022 (2)0.0045 (18)0.001 (2)0.0017 (17)
C170.020 (3)0.014 (2)0.030 (3)0.0032 (19)0.007 (2)0.0016 (19)
C180.026 (3)0.013 (2)0.029 (3)0.004 (2)0.001 (2)0.0024 (18)
C190.033 (3)0.018 (2)0.023 (2)0.007 (2)0.001 (2)0.0048 (19)
C200.025 (3)0.026 (2)0.029 (3)0.001 (2)0.011 (2)0.002 (2)
C210.025 (3)0.0129 (19)0.028 (2)0.004 (2)0.000 (2)0.0001 (18)
C220.051 (4)0.029 (3)0.032 (3)0.016 (3)0.005 (3)0.005 (2)
C230.020 (3)0.0150 (19)0.014 (2)0.0004 (18)0.0030 (19)0.0003 (17)
C240.018 (3)0.023 (2)0.018 (2)0.0002 (19)0.004 (2)0.0030 (17)
C250.028 (3)0.027 (2)0.018 (2)0.004 (2)0.005 (2)0.0035 (19)
C260.032 (3)0.030 (2)0.019 (2)0.014 (2)0.004 (2)0.004 (2)
C270.021 (3)0.034 (3)0.017 (2)0.002 (2)0.004 (2)0.002 (2)
C280.019 (3)0.021 (2)0.016 (2)0.0050 (19)0.001 (2)0.0023 (17)
Geometric parameters (Å, º) top
S1—O71.435 (3)C10—C111.392 (6)
S1—O61.435 (3)C10—H100.9500
S1—O51.581 (3)C11—C121.386 (7)
S1—C91.740 (4)C11—H110.9500
S2—O101.425 (3)C12—C131.406 (7)
S2—O91.435 (3)C12—C151.508 (6)
S2—O81.595 (3)C13—C141.372 (6)
S2—C161.757 (4)C13—H130.9500
O1—C11.427 (5)C14—H140.9500
O1—C71.429 (4)C15—H15A0.9800
O2—C51.426 (5)C15—H15B0.9800
O2—C41.439 (4)C15—H15C0.9800
O3—C51.429 (5)C16—C171.392 (6)
O3—C61.442 (5)C16—C211.396 (6)
O4—C11.404 (5)C17—C181.382 (6)
O4—C81.444 (5)C17—H170.9500
O5—C21.469 (5)C18—C191.397 (7)
O8—C31.449 (4)C18—H180.9500
C1—C21.522 (5)C19—C201.383 (7)
C1—H11.0000C19—C221.515 (6)
C2—C31.531 (6)C20—C211.377 (6)
C2—H21.0000C20—H200.9500
C3—C41.505 (6)C21—H210.9500
C3—H31.0000C22—H22A0.9800
C4—C71.532 (5)C22—H22B0.9800
C4—H41.0000C22—H22C0.9800
C5—C231.495 (5)C23—C241.384 (6)
C5—H51.0000C23—C281.402 (6)
C6—C71.514 (6)C24—C251.407 (6)
C6—H6A0.9900C24—H240.9500
C6—H6B0.9900C25—C261.388 (7)
C7—H71.0000C25—H250.9500
C8—H8A0.9800C26—C271.389 (7)
C8—H8B0.9800C26—H260.9500
C8—H8C0.9800C27—C281.393 (6)
C9—C101.392 (6)C27—H270.9500
C9—C141.397 (6)C28—H280.9500
O7—S1—O6120.1 (2)C10—C9—C14120.3 (4)
O7—S1—O5102.74 (18)C10—C9—S1118.8 (4)
O6—S1—O5109.21 (18)C14—C9—S1120.9 (4)
O7—S1—C9109.8 (2)C9—C10—C11119.3 (4)
O6—S1—C9109.3 (2)C9—C10—H10120.4
O5—S1—C9104.40 (18)C11—C10—H10120.4
O10—S2—O9120.4 (2)C12—C11—C10120.9 (5)
O10—S2—O8104.30 (19)C12—C11—H11119.5
O9—S2—O8109.19 (17)C10—C11—H11119.5
O10—S2—C16108.4 (2)C11—C12—C13118.9 (5)
O9—S2—C16109.3 (2)C11—C12—C15120.8 (5)
O8—S2—C16103.98 (19)C13—C12—C15120.3 (5)
C1—O1—C7113.0 (3)C14—C13—C12120.7 (4)
C5—O2—C4109.0 (3)C14—C13—H13119.6
C5—O3—C6111.0 (3)C12—C13—H13119.6
C1—O4—C8112.4 (3)C13—C14—C9119.8 (4)
C2—O5—S1120.0 (3)C13—C14—H14120.1
C3—O8—S2119.1 (3)C9—C14—H14120.1
O4—C1—O1112.7 (3)C12—C15—H15A109.5
O4—C1—C2106.0 (3)C12—C15—H15B109.5
O1—C1—C2111.3 (3)H15A—C15—H15B109.5
O4—C1—H1108.9C12—C15—H15C109.5
O1—C1—H1108.9H15A—C15—H15C109.5
C2—C1—H1108.9H15B—C15—H15C109.5
O5—C2—C1107.0 (3)C17—C16—C21120.1 (4)
O5—C2—C3105.6 (3)C17—C16—S2119.5 (4)
C1—C2—C3111.9 (3)C21—C16—S2120.3 (4)
O5—C2—H2110.7C18—C17—C16119.8 (5)
C1—C2—H2110.7C18—C17—H17120.1
C3—C2—H2110.7C16—C17—H17120.1
O8—C3—C4110.6 (3)C17—C18—C19120.5 (5)
O8—C3—C2108.6 (3)C17—C18—H18119.7
C4—C3—C2107.5 (3)C19—C18—H18119.7
O8—C3—H3110.0C20—C19—C18118.7 (4)
C4—C3—H3110.0C20—C19—C22120.8 (5)
C2—C3—H3110.0C18—C19—C22120.5 (5)
O2—C4—C3111.4 (3)C21—C20—C19121.7 (5)
O2—C4—C7108.0 (3)C21—C20—H20119.1
C3—C4—C7108.1 (4)C19—C20—H20119.1
O2—C4—H4109.8C20—C21—C16119.1 (4)
C3—C4—H4109.8C20—C21—H21120.4
C7—C4—H4109.8C16—C21—H21120.4
O2—C5—O3110.9 (3)C19—C22—H22A109.5
O2—C5—C23110.7 (3)C19—C22—H22B109.5
O3—C5—C23107.5 (3)H22A—C22—H22B109.5
O2—C5—H5109.2C19—C22—H22C109.5
O3—C5—H5109.2H22A—C22—H22C109.5
C23—C5—H5109.2H22B—C22—H22C109.5
O3—C6—C7108.6 (3)C24—C23—C28119.2 (4)
O3—C6—H6A110.0C24—C23—C5122.7 (4)
C7—C6—H6A110.0C28—C23—C5118.1 (4)
O3—C6—H6B110.0C23—C24—C25120.2 (4)
C7—C6—H6B110.0C23—C24—H24119.9
H6A—C6—H6B108.4C25—C24—H24119.9
O1—C7—C6108.3 (3)C26—C25—C24120.1 (5)
O1—C7—C4111.0 (3)C26—C25—H25119.9
C6—C7—C4108.8 (4)C24—C25—H25119.9
O1—C7—H7109.6C25—C26—C27119.9 (4)
C6—C7—H7109.6C25—C26—H26120.1
C4—C7—H7109.6C27—C26—H26120.1
O4—C8—H8A109.5C26—C27—C28119.9 (5)
O4—C8—H8B109.5C26—C27—H27120.1
H8A—C8—H8B109.5C28—C27—H27120.1
O4—C8—H8C109.5C27—C28—C23120.7 (4)
H8A—C8—H8C109.5C27—C28—H28119.7
H8B—C8—H8C109.5C23—C28—H28119.7
O7—S1—O5—C2171.9 (3)O5—S1—C9—C10107.5 (3)
O6—S1—O5—C243.4 (3)O7—S1—C9—C1439.0 (4)
C9—S1—O5—C273.4 (3)O6—S1—C9—C14172.7 (4)
O10—S2—O8—C3155.0 (3)O5—S1—C9—C1470.6 (4)
O9—S2—O8—C325.1 (3)C14—C9—C10—C112.7 (7)
C16—S2—O8—C391.5 (3)S1—C9—C10—C11175.3 (4)
C8—O4—C1—O166.1 (4)C9—C10—C11—C122.0 (7)
C8—O4—C1—C2172.0 (3)C10—C11—C12—C131.0 (7)
C7—O1—C1—O464.3 (4)C10—C11—C12—C15178.7 (5)
C7—O1—C1—C254.6 (5)C11—C12—C13—C143.4 (7)
S1—O5—C2—C195.2 (3)C15—C12—C13—C14176.2 (5)
S1—O5—C2—C3145.5 (3)C12—C13—C14—C92.7 (7)
O4—C1—C2—O5175.3 (3)C10—C9—C14—C130.4 (7)
O1—C1—C2—O561.9 (4)S1—C9—C14—C13177.7 (4)
O4—C1—C2—C369.6 (4)O10—S2—C16—C1745.1 (4)
O1—C1—C2—C353.2 (5)O9—S2—C16—C17178.1 (3)
S2—O8—C3—C4132.3 (3)O8—S2—C16—C1765.4 (4)
S2—O8—C3—C2109.9 (3)O10—S2—C16—C21130.6 (4)
O5—C2—C3—O859.8 (4)O9—S2—C16—C212.4 (4)
C1—C2—C3—O8175.8 (3)O8—S2—C16—C21118.9 (3)
O5—C2—C3—C459.9 (4)C21—C16—C17—C181.2 (6)
C1—C2—C3—C456.1 (5)S2—C16—C17—C18174.5 (3)
C5—O2—C4—C3179.6 (3)C16—C17—C18—C190.7 (7)
C5—O2—C4—C761.9 (4)C17—C18—C19—C201.8 (7)
O8—C3—C4—O264.2 (4)C17—C18—C19—C22176.3 (4)
C2—C3—C4—O2177.4 (3)C18—C19—C20—C211.1 (7)
O8—C3—C4—C7177.3 (3)C22—C19—C20—C21176.9 (4)
C2—C3—C4—C758.8 (4)C19—C20—C21—C160.7 (7)
C4—O2—C5—O364.4 (4)C17—C16—C21—C201.8 (6)
C4—O2—C5—C23176.4 (3)S2—C16—C21—C20173.8 (3)
C6—O3—C5—O262.6 (5)O2—C5—C23—C2413.9 (6)
C6—O3—C5—C23176.3 (4)O3—C5—C23—C24107.3 (4)
C5—O3—C6—C757.9 (5)O2—C5—C23—C28165.9 (4)
C1—O1—C7—C6178.9 (3)O3—C5—C23—C2872.9 (5)
C1—O1—C7—C459.6 (5)C28—C23—C24—C250.8 (6)
O3—C6—C7—O1176.8 (3)C5—C23—C24—C25179.4 (4)
O3—C6—C7—C456.0 (4)C23—C24—C25—C260.0 (7)
O2—C4—C7—O1177.6 (3)C24—C25—C26—C270.0 (7)
C3—C4—C7—O161.7 (5)C25—C26—C27—C280.8 (7)
O2—C4—C7—C658.5 (4)C26—C27—C28—C231.7 (7)
C3—C4—C7—C6179.2 (3)C24—C23—C28—C271.6 (6)
O7—S1—C9—C10143.0 (3)C5—C23—C28—C27178.6 (4)
O6—S1—C9—C109.3 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C23–C28 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O7i1.002.593.548 (5)162
C8—H8B···O1i0.982.503.325 (6)142
C10—H10···O7i0.952.473.023 (6)117
C20—H20···Cg1i0.952.793.479 (5)130
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC28H30O10S2
Mr590.64
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.7031 (16), 17.020 (5), 28.084 (8)
V3)2726.0 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.20 × 0.01 × 0.01
Data collection
DiffractometerRigaku Saturn724+
diffractometer
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2011)
Tmin, Tmax0.747, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
25991, 6262, 5326
Rint0.103
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.147, 1.18
No. of reflections6262
No. of parameters364
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.38
Absolute structureFlack (1983), with 2656 Friedel pairs
Absolute structure parameter0.21 (11)

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C23–C28 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O7i1.002.593.548 (5)162
C8—H8B···O1i0.982.503.325 (6)142
C10—H10···O7i0.952.473.023 (6)117
C20—H20···Cg1i0.952.793.479 (5)130
Symmetry code: (i) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there are gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research Scheme (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, M. A., Cox, P. J., Howie, R. A., Melvin, O. A., Taylor, O. J. & Wardell, J. L. (1995). J. Organomet. Chem. 498, 275–282.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSugiyama, H., Yamasaki, T., Senda, Y., Ishiyama, J., Matsuda, K. & Seto, S. (1978). Bull. Chem. Soc. Jpn, 51, 3659–3660.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhistler, R. (1962). Methods in Carbohydrate Chemistry, Vol. 1, pp. 308–351. New York: Academic Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds