organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o759-o760

2-Methyl-3-(2-methyl­phen­yl)-4-oxo-3,4-di­hydro­quinazolin-8-yl 4-bromo­benzene-1-sulfonate

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt, cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 February 2012; accepted 12 February 2012; online 17 February 2012)

The title mol­ecule, C22H17BrN2O4S, has a twisted U shape, the dihedral angle between the quinazolin-4-one and bromo­benzene ring systems being 46.25 (8)°. In order to avoid steric clashes with adjacent substituents on the quinazolin-4-one ring, the N-bound tolyl group occupies an orthogonal position [dihedral angle = 89.59 (8)°]. In the crystal, mol­ecules are connected into a three-dimensional architecture by C—H⋯O inter­actions, with the ketone O atom accepting two such bonds and a sulfonate O atom one.

Related literature

For the pharmacological activity of substituted quinazoline-4(3H)-ones, see: El-Azab & El-Tahir (2012[El-Azab, A. S. & El-Tahir, K. H. (2012). Bioorg. Med. Chem. Lett. 22, 327-333.]); El-Azab et al. (2011[El-Azab, A. S., El-Tahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837-848.]); Al-Omary et al. (2010[Al-Omary, F. A., Abou-Zeid, L. A., Nagi, M. N., Habib, S. E., Abdel-Aziz, A. A.-M., Hamide, S. G., Al-Omar, M. A., Al-Obaid, A. M. & El-Subbagh, H. I. (2010). Bioorg. Med. Chem. 18, 2849-2863.]); Al-Obaid et al. (2009[Al-Obaid, A. M., Abdel-Hamide, S. G., El-Kashef, H. A., Abdel-Aziz, A. A.-M., El-Azab, A. S., Al-Khamees, H. A. & El-Subbagh, H. I. (2009). Eur. J. Med. Chem. 44, 2379-2391.]); Aziza et al. (1996[Aziza, M. A., Nassar, M. W. I., Abdel Hamid, S. G., El-Hakim, A. E. & El-Azab, A. S. (1996). Indian J. Heterocycl. Chem. 6, 25-30.]). For the synthesis and evaluation of the anti-convulsant activity of the title compound, see: El-Azab et al. (2010[El-Azab, A. S., Al-Omar, M. A., Abdel-Aziz, A. A.-M., Abdel-Aziz, N. I., El-Sayed, M. A.-A., Aleisa, A. M., Sayed-Ahmed, M. M. & Abdel-Hamide, S. G. (2010). Eur. J. Med. Chem. 45, 4188-4198.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17BrN2O4S

  • Mr = 485.35

  • Monoclinic, P 21 /c

  • a = 11.0587 (3) Å

  • b = 14.4794 (3) Å

  • c = 13.1357 (3) Å

  • β = 102.804 (2)°

  • V = 2051.03 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.96 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.438, Tmax = 1.000

  • 8236 measured reflections

  • 4208 independent reflections

  • 3952 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.07

  • 4208 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.95 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 0.95 2.31 3.236 (3) 164
C8—H8⋯O3ii 0.95 2.49 3.375 (3) 155
C9—H9⋯O4iii 0.95 2.43 3.328 (3) 158
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+2; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The biological activity of substituted quinazoline-4(3H)-ones is well documented (El-Azab & El-Tahir, 2012; El-Azab et al., 2011; El-Azab et al., 2010; Al-Omary et al., 2010; Al-Obaid et al., 2009; Aziza et al., 1996). In this connection, the title compound, 3,4-dihydro-2-methyl-3-(2-methylphenyl)-4-oxoquinazolin-8-yl 4-bromobenzenesulfonate (I), a methaqualone analogue, was recently synthesized and evaluated for its anti-convulsant activity (El-Azab et al., 2010). The crystal structure determination of (I) is reported herein.

Overall, the shape of (I), Fig. 1, is of a twisted U as the bromobenzene ring is folded over towards the quinazolin-4-one group. The dihedral angle between the bromobenzene and quinazolin-4-one [r.m.s. deviation = 0.040 Å for the ten atoms] groups is 46.25 (8)°. The dihedral angle between the quinazolin-4-one and N-bound tolyl group is 89.59 (8)° indicating an orthogonal arrangement, an orientation which precludes steric clashes with the substituents on the quinazolin-4-one group.

In the crystal packing, C—H···O interactions involving bifurcated ketone-O and one of the sulfonate-O atoms are formed, Table 1. These lead to a three-dimensional architecture, Fig. 2.

Related literature top

For the pharmacological activity of substituted quinazoline-4(3H)-ones, see: El-Azab & El-Tahir (2012); El-Azab et al. (2011); Al-Omary et al. (2010); Al-Obaid et al. (2009); Aziza et al. (1996). For the synthesis and evaluation of the anti-convulsant activity of the title compound, see: El-Azab et al. (2010).

Experimental top

A mixture of 8-hydroxymethaqualone (532 mg, 0.0002 M) and 4-bromobenzenesulfonyl chloride (534 mg, 0.0021 mmol) in 15 ml pyridine was stirred at room temperature for 11 h. The solvent was removed under reduced pressure, and the residue was triturated with water and filtered. The solid obtained was dried and recrystallized from EtOH. M.pt. 451–453 K. Yield: 93%. 1H NMR (500 MHz, CDCl3): δ = 8.21 (d, 1H, J = 8.0 Hz), 7.80–7.75 (m, 3H), 7.62 (d, 2H, J = 9.0 Hz), 7.48–7.36 (m, 4H), 7.10 (d, 1H, J = 6.5 Hz), 2.05 (s, 3H), 1.95 (s, 3H) p.p.m.. 13C NMR (CDCl3): δ = 17.2, 23.7, 122.5, 126.4, 127.7, 129.1, 129.3, 129.8, 130.6, 131.6, 132.0, 135.0, 135.1, 136.3, 140.9, 143.6, 155.0, 160.5 p.p.m.. MS (70 eV): m/z = 484, 486 (M+2).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents for (I). The C—H···O interactions are shown as orange dashed lines.
2-Methyl-3-(2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-8-yl 4-bromobenzene-1-sulfonate top
Crystal data top
C22H17BrN2O4SF(000) = 984
Mr = 485.35Dx = 1.572 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 4968 reflections
a = 11.0587 (3) Åθ = 3.1–76.3°
b = 14.4794 (3) ŵ = 3.96 mm1
c = 13.1357 (3) ÅT = 100 K
β = 102.804 (2)°Block, colourless
V = 2051.03 (8) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4208 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3952 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.4041 pixels mm-1θmax = 76.5°, θmin = 4.1°
ω scanh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1318
Tmin = 0.438, Tmax = 1.000l = 1516
8236 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0605P)2 + 1.0031P]
where P = (Fo2 + 2Fc2)/3
4208 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.95 e Å3
Crystal data top
C22H17BrN2O4SV = 2051.03 (8) Å3
Mr = 485.35Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.0587 (3) ŵ = 3.96 mm1
b = 14.4794 (3) ÅT = 100 K
c = 13.1357 (3) Å0.30 × 0.25 × 0.20 mm
β = 102.804 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4208 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3952 reflections with I > 2σ(I)
Tmin = 0.438, Tmax = 1.000Rint = 0.021
8236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.07Δρmax = 0.40 e Å3
4208 reflectionsΔρmin = 0.95 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.55786 (2)0.803520 (16)0.479620 (16)0.02586 (10)
O10.95920 (14)0.53185 (10)0.82122 (10)0.0193 (3)
O20.81926 (17)0.56446 (12)0.93880 (12)0.0291 (4)
O30.99573 (17)0.66569 (12)0.92714 (12)0.0291 (4)
S10.89405 (5)0.60873 (4)0.87820 (3)0.02064 (13)
N10.88588 (16)0.53757 (12)0.60644 (12)0.0162 (3)
N20.77713 (16)0.46955 (12)0.44884 (12)0.0158 (3)
O40.69320 (15)0.32500 (10)0.44155 (11)0.0204 (3)
C10.7994 (2)0.66819 (15)0.77401 (15)0.0188 (4)
C20.6754 (2)0.64461 (15)0.74360 (16)0.0218 (4)
H20.64070.60000.78200.026*
C30.6019 (2)0.68678 (16)0.65633 (17)0.0227 (4)
H30.51640.67190.63420.027*
C40.6564 (2)0.75095 (15)0.60266 (15)0.0205 (4)
C50.7798 (2)0.77732 (15)0.63407 (16)0.0209 (4)
H50.81350.82340.59690.025*
C60.8529 (2)0.73486 (15)0.72109 (15)0.0202 (4)
H60.93780.75090.74420.024*
C70.88853 (19)0.45840 (14)0.76930 (15)0.0174 (4)
C80.8594 (2)0.38427 (15)0.82488 (16)0.0220 (4)
H80.88270.38440.89900.026*
C90.7954 (2)0.30868 (15)0.77233 (18)0.0240 (5)
H90.77490.25770.81080.029*
C100.7620 (2)0.30825 (14)0.66447 (17)0.0211 (4)
H100.71970.25670.62840.025*
C110.79106 (19)0.38491 (14)0.60856 (15)0.0162 (4)
C120.85457 (19)0.46112 (14)0.65901 (15)0.0154 (4)
C130.74931 (19)0.38693 (14)0.49465 (15)0.0159 (4)
C140.84603 (19)0.53990 (14)0.50603 (15)0.0163 (4)
C150.8748 (2)0.62223 (14)0.44701 (16)0.0203 (4)
H15A0.92820.66470.49510.030*
H15B0.79750.65370.41430.030*
H15C0.91750.60230.39290.030*
C160.7300 (2)0.47748 (14)0.33657 (15)0.0171 (4)
C170.8015 (2)0.44417 (15)0.27003 (16)0.0194 (4)
H170.88060.41780.29760.023*
C180.7562 (2)0.44979 (15)0.16290 (16)0.0227 (4)
H180.80410.42720.11650.027*
C190.6406 (2)0.48863 (16)0.12407 (16)0.0234 (4)
H190.60920.49250.05080.028*
C200.5708 (2)0.52162 (15)0.19111 (16)0.0226 (4)
H200.49220.54860.16300.027*
C210.6131 (2)0.51634 (14)0.29958 (16)0.0202 (4)
C220.5361 (2)0.55171 (18)0.37228 (18)0.0282 (5)
H22A0.58490.59570.42150.042*
H22B0.51100.49990.41090.042*
H22C0.46210.58260.33180.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03211 (16)0.02299 (14)0.01724 (14)0.00025 (8)0.00581 (10)0.00386 (8)
O10.0227 (8)0.0226 (7)0.0111 (6)0.0019 (6)0.0006 (5)0.0025 (5)
O20.0416 (10)0.0338 (9)0.0140 (7)0.0121 (7)0.0107 (7)0.0059 (6)
O30.0360 (10)0.0279 (8)0.0169 (7)0.0043 (7)0.0078 (6)0.0064 (6)
S10.0284 (3)0.0235 (3)0.0082 (2)0.0058 (2)0.00012 (19)0.00128 (17)
N10.0200 (8)0.0172 (8)0.0105 (7)0.0003 (6)0.0018 (6)0.0006 (6)
N20.0194 (8)0.0189 (8)0.0083 (7)0.0006 (7)0.0011 (6)0.0006 (6)
O40.0266 (8)0.0194 (7)0.0141 (6)0.0042 (6)0.0021 (6)0.0016 (5)
C10.0231 (11)0.0218 (10)0.0101 (8)0.0044 (8)0.0006 (7)0.0007 (7)
C20.0259 (11)0.0241 (10)0.0153 (9)0.0011 (8)0.0039 (8)0.0015 (8)
C30.0222 (11)0.0259 (11)0.0182 (10)0.0001 (8)0.0005 (8)0.0000 (8)
C40.0265 (11)0.0200 (9)0.0128 (8)0.0048 (8)0.0004 (8)0.0003 (7)
C50.0270 (11)0.0203 (9)0.0144 (9)0.0013 (8)0.0027 (8)0.0002 (8)
C60.0232 (11)0.0211 (10)0.0149 (9)0.0009 (8)0.0014 (8)0.0031 (8)
C70.0199 (10)0.0200 (9)0.0114 (9)0.0032 (8)0.0013 (7)0.0017 (7)
C80.0271 (11)0.0261 (11)0.0124 (9)0.0053 (9)0.0035 (8)0.0047 (8)
C90.0314 (12)0.0227 (11)0.0175 (10)0.0004 (9)0.0047 (9)0.0066 (8)
C100.0254 (11)0.0197 (10)0.0175 (10)0.0005 (8)0.0035 (8)0.0019 (8)
C110.0188 (10)0.0182 (9)0.0109 (8)0.0027 (7)0.0018 (7)0.0007 (7)
C120.0174 (9)0.0174 (9)0.0113 (8)0.0031 (7)0.0027 (7)0.0019 (7)
C130.0185 (10)0.0174 (9)0.0113 (9)0.0022 (7)0.0026 (7)0.0001 (7)
C140.0188 (9)0.0169 (9)0.0127 (8)0.0010 (7)0.0023 (7)0.0002 (7)
C150.0267 (11)0.0187 (10)0.0149 (9)0.0039 (8)0.0032 (8)0.0015 (7)
C160.0222 (10)0.0181 (9)0.0093 (8)0.0027 (8)0.0005 (7)0.0015 (7)
C170.0204 (10)0.0225 (10)0.0142 (9)0.0004 (8)0.0015 (8)0.0011 (7)
C180.0287 (11)0.0265 (11)0.0128 (9)0.0025 (9)0.0047 (8)0.0034 (8)
C190.0275 (12)0.0265 (11)0.0131 (9)0.0071 (9)0.0025 (8)0.0021 (8)
C200.0241 (11)0.0233 (10)0.0178 (10)0.0019 (8)0.0010 (8)0.0043 (8)
C210.0223 (10)0.0200 (10)0.0175 (9)0.0009 (8)0.0028 (8)0.0005 (8)
C220.0298 (12)0.0326 (12)0.0219 (10)0.0056 (10)0.0054 (9)0.0007 (9)
Geometric parameters (Å, º) top
Br1—C41.897 (2)C8—H80.9500
O1—C71.404 (2)C9—C101.383 (3)
O1—S11.5991 (15)C9—H90.9500
O2—S11.4214 (18)C10—C111.407 (3)
O3—S11.4273 (18)C10—H100.9500
S1—C11.754 (2)C11—C121.394 (3)
N1—C141.295 (2)C11—C131.465 (3)
N1—C121.388 (3)C14—C151.494 (3)
N2—C141.389 (3)C15—H15A0.9800
N2—C131.403 (3)C15—H15B0.9800
N2—C161.456 (2)C15—H15C0.9800
O4—C131.218 (3)C16—C211.394 (3)
C1—C21.384 (3)C16—C171.389 (3)
C1—C61.395 (3)C17—C181.387 (3)
C2—C31.391 (3)C17—H170.9500
C2—H20.9500C18—C191.387 (3)
C3—C41.383 (3)C18—H180.9500
C3—H30.9500C19—C201.378 (3)
C4—C51.389 (3)C19—H190.9500
C5—C61.389 (3)C20—C211.400 (3)
C5—H50.9500C20—H200.9500
C6—H60.9500C21—C221.504 (3)
C7—C81.376 (3)C22—H22A0.9800
C7—C121.414 (3)C22—H22B0.9800
C8—C91.399 (3)C22—H22C0.9800
C7—O1—S1119.65 (13)C12—C11—C13118.76 (18)
O2—S1—O3120.43 (10)C10—C11—C13119.48 (19)
O2—S1—O1109.07 (9)N1—C12—C11123.33 (17)
O3—S1—O1102.79 (9)N1—C12—C7119.52 (18)
O2—S1—C1109.73 (10)C11—C12—C7117.15 (18)
O3—S1—C1110.01 (10)O4—C13—N2120.95 (17)
O1—S1—C1103.26 (9)O4—C13—C11125.12 (19)
C14—N1—C12117.46 (18)N2—C13—C11113.92 (17)
C14—N2—C13122.64 (16)N1—C14—N2123.62 (18)
C14—N2—C16121.36 (16)N1—C14—C15119.06 (18)
C13—N2—C16115.99 (16)N2—C14—C15117.32 (17)
C2—C1—C6121.96 (19)C14—C15—H15A109.5
C2—C1—S1119.09 (17)C14—C15—H15B109.5
C6—C1—S1118.87 (16)H15A—C15—H15B109.5
C1—C2—C3119.4 (2)C14—C15—H15C109.5
C1—C2—H2120.3H15A—C15—H15C109.5
C3—C2—H2120.3H15B—C15—H15C109.5
C4—C3—C2118.3 (2)C21—C16—C17122.27 (18)
C4—C3—H3120.9C21—C16—N2118.76 (18)
C2—C3—H3120.9C17—C16—N2118.95 (18)
C3—C4—C5122.96 (19)C18—C17—C16119.4 (2)
C3—C4—Br1118.08 (17)C18—C17—H17120.3
C5—C4—Br1118.95 (16)C16—C17—H17120.3
C4—C5—C6118.5 (2)C17—C18—C19119.5 (2)
C4—C5—H5120.8C17—C18—H18120.2
C6—C5—H5120.8C19—C18—H18120.2
C5—C6—C1118.9 (2)C20—C19—C18120.44 (19)
C5—C6—H6120.6C20—C19—H19119.8
C1—C6—H6120.6C18—C19—H19119.8
C8—C7—O1120.25 (17)C19—C20—C21121.6 (2)
C8—C7—C12121.67 (19)C19—C20—H20119.2
O1—C7—C12118.00 (18)C21—C20—H20119.2
C7—C8—C9120.04 (19)C16—C21—C20116.9 (2)
C7—C8—H8120.0C16—C21—C22121.87 (19)
C9—C8—H8120.0C20—C21—C22121.3 (2)
C10—C9—C8120.0 (2)C21—C22—H22A109.5
C10—C9—H9120.0C21—C22—H22B109.5
C8—C9—H9120.0H22A—C22—H22B109.5
C9—C10—C11119.4 (2)C21—C22—H22C109.5
C9—C10—H10120.3H22A—C22—H22C109.5
C11—C10—H10120.3H22B—C22—H22C109.5
C12—C11—C10121.71 (18)
C7—O1—S1—O246.87 (16)C8—C7—C12—N1179.87 (19)
C7—O1—S1—O3175.77 (14)O1—C7—C12—N13.4 (3)
C7—O1—S1—C169.77 (16)C8—C7—C12—C110.6 (3)
O2—S1—C1—C219.3 (2)O1—C7—C12—C11176.13 (17)
O3—S1—C1—C2153.96 (17)C14—N2—C13—O4176.82 (19)
O1—S1—C1—C296.90 (18)C16—N2—C13—O42.8 (3)
O2—S1—C1—C6163.76 (16)C14—N2—C13—C114.5 (3)
O3—S1—C1—C629.1 (2)C16—N2—C13—C11175.88 (17)
O1—S1—C1—C680.07 (18)C12—C11—C13—O4180.0 (2)
C6—C1—C2—C31.5 (3)C10—C11—C13—O42.6 (3)
S1—C1—C2—C3175.36 (17)C12—C11—C13—N21.4 (3)
C1—C2—C3—C40.3 (3)C10—C11—C13—N2176.04 (18)
C2—C3—C4—C52.3 (3)C12—N1—C14—N21.7 (3)
C2—C3—C4—Br1176.82 (16)C12—N1—C14—C15178.31 (18)
C3—C4—C5—C62.4 (3)C13—N2—C14—N13.1 (3)
Br1—C4—C5—C6176.64 (15)C16—N2—C14—N1177.25 (19)
C4—C5—C6—C10.6 (3)C13—N2—C14—C15176.87 (18)
C2—C1—C6—C51.3 (3)C16—N2—C14—C152.7 (3)
S1—C1—C6—C5175.54 (16)C14—N2—C16—C2189.8 (2)
S1—O1—C7—C879.5 (2)C13—N2—C16—C2190.6 (2)
S1—O1—C7—C12103.79 (18)C14—N2—C16—C1791.7 (2)
O1—C7—C8—C9176.1 (2)C13—N2—C16—C1787.9 (2)
C12—C7—C8—C90.5 (3)C21—C16—C17—C180.3 (3)
C7—C8—C9—C100.3 (3)N2—C16—C17—C18178.74 (19)
C8—C9—C10—C111.0 (3)C16—C17—C18—C190.1 (3)
C9—C10—C11—C120.9 (3)C17—C18—C19—C200.1 (3)
C9—C10—C11—C13176.4 (2)C18—C19—C20—C210.7 (3)
C14—N1—C12—C114.9 (3)C17—C16—C21—C200.8 (3)
C14—N1—C12—C7175.62 (19)N2—C16—C21—C20179.26 (18)
C10—C11—C12—N1179.4 (2)C17—C16—C21—C22179.6 (2)
C13—C11—C12—N13.2 (3)N2—C16—C21—C221.2 (3)
C10—C11—C12—C70.1 (3)C19—C20—C21—C161.0 (3)
C13—C11—C12—C7177.24 (18)C19—C20—C21—C22179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.952.313.236 (3)164
C8—H8···O3ii0.952.493.375 (3)155
C9—H9···O4iii0.952.433.328 (3)158
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H17BrN2O4S
Mr485.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.0587 (3), 14.4794 (3), 13.1357 (3)
β (°) 102.804 (2)
V3)2051.03 (8)
Z4
Radiation typeCu Kα
µ (mm1)3.96
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.438, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8236, 4208, 3952
Rint0.021
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.07
No. of reflections4208
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.95

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.952.313.236 (3)164
C8—H8···O3ii0.952.493.375 (3)155
C9—H9···O4iii0.952.433.328 (3)158
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+2; (iii) x, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: adelazaba@yahoo.com.

Acknowledgements

This work was supported by the Research Center of Pharmacy, King Saud University, Riyadh, Saudi Arabia. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAl-Obaid, A. M., Abdel-Hamide, S. G., El-Kashef, H. A., Abdel-Aziz, A. A.-M., El-Azab, A. S., Al-Khamees, H. A. & El-Subbagh, H. I. (2009). Eur. J. Med. Chem. 44, 2379–2391.  Web of Science PubMed CAS Google Scholar
First citationAl-Omary, F. A., Abou-Zeid, L. A., Nagi, M. N., Habib, S. E., Abdel-Aziz, A. A.-M., Hamide, S. G., Al-Omar, M. A., Al-Obaid, A. M. & El-Subbagh, H. I. (2010). Bioorg. Med. Chem. 18, 2849–2863.  Web of Science CAS PubMed Google Scholar
First citationAziza, M. A., Nassar, M. W. I., Abdel Hamid, S. G., El-Hakim, A. E. & El-Azab, A. S. (1996). Indian J. Heterocycl. Chem. 6, 25–30.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Azab, A. S., Al-Omar, M. A., Abdel-Aziz, A. A.-M., Abdel-Aziz, N. I., El-Sayed, M. A.-A., Aleisa, A. M., Sayed-Ahmed, M. M. & Abdel-Hamide, S. G. (2010). Eur. J. Med. Chem. 45, 4188–4198.  Web of Science CAS PubMed Google Scholar
First citationEl-Azab, A. S. & El-Tahir, K. H. (2012). Bioorg. Med. Chem. Lett. 22, 327–333.  Web of Science CAS PubMed Google Scholar
First citationEl-Azab, A. S., El-Tahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837–848.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o759-o760
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds