organic compounds
2-Methyl-3-(2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-8-yl 4-methylbenzoate
aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt, cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com
In the title quinazolin-4-one derivative, C24H20N2O3, both the 4-methylbenzoate [dihedral angle = 83.90 (9)°] and 2-tolyl [87.88 (9)°] groups are almost orthogonal to the central fused ring system. These are oriented towards the quinazolin-4-one-bound methyl group. In the crystal, molecules are connected into a three-dimensional architecture by C—H⋯O, C—H⋯π and π–π [ring centroid-to-centroid separation = 3.6458 (13) Å] interactions.
Related literature
For the pharmacological activity of substituted quinazoline-4(3H)-ones, see: El-Azab & ElTahir (2012); El-Azab et al. (2011); Al-Omary et al. (2010); Al-Obaid et al. (2009); Aziza et al. (1996). For the synthesis and evaluation of the anticonvulsant activity of the title compound, see: El-Azab et al. (2010). For the structure of the benzoate derivative, see: El-Azab et al. (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812006265/hb6636sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812006265/hb6636Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812006265/hb6636Isup3.cml
A mixture of 8-hydroxymethaqualone (532 mg, 0.002 M) and 4-methylbenzoyl chloride (325 mg, 0.0021 mmol) in 15 ml pyridine was stirred at room temperature for 12 h. The solvent was removed under reduced pressure, and the residue was triturated with water and filtered. The solid obtained was dried and recrystallized from EtOH to yield colourless prisms. m.p. 465–467 K. Yield: 95%. 1H NMR (500 MHz, CDCl3): δ = 8.25–8.22 (m, 3H), 7.64 (d, 1H, J = 7.5 Hz), 7.52 (t, 1H, J = 7.5 Hz), 7.43–7.28 (m, 5H), 7.15 (d, 1H, J = 7.5 Hz), 2.49 (s, 3H), 2.15 (s, 3H), 2.11 (s, 3H) p.p.m.. 13C NMR (CDCl3): δ = 17.4, 21.8, 24.3, 120.7, 124.9, 126.4, 126.7, 127.4, 127.6, 127.9, 129.3, 129.6, 130.5, 131.5, 135.4, 136.8, 141.0, 144.5, 146.3, 154.7, 161.2, 165.3 p.p.m.. MS (70 eV): m/z = 384.
Carbon-bound H atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the
in the riding model approximation. The maximum and minimum residual electron density peaks of 1.09 and 0.33 e Å-3, respectively, were located 0.92 Å and 0.56 Å from the C18 and C23 atoms, respectively.Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C24H20N2O3 | F(000) = 808 |
Mr = 384.42 | Dx = 1.346 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.5418 Å |
Hall symbol: -P 2ybc | Cell parameters from 3857 reflections |
a = 18.8216 (5) Å | θ = 3.4–76.5° |
b = 7.6332 (2) Å | µ = 0.72 mm−1 |
c = 13.3092 (3) Å | T = 100 K |
β = 97.286 (2)° | Prism, colourless |
V = 1896.68 (8) Å3 | 0.25 × 0.20 × 0.15 mm |
Z = 4 |
Agilent SuperNova Dual diffractometer with an Atlas detector | 3883 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 3478 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.027 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 76.7°, θmin = 4.7° |
ω scans | h = −23→23 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −9→9 |
Tmin = 0.755, Tmax = 1.000 | l = −16→8 |
7966 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.067 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.186 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0962P)2 + 2.188P] where P = (Fo2 + 2Fc2)/3 |
3883 reflections | (Δ/σ)max < 0.001 |
265 parameters | Δρmax = 1.09 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
C24H20N2O3 | V = 1896.68 (8) Å3 |
Mr = 384.42 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 18.8216 (5) Å | µ = 0.72 mm−1 |
b = 7.6332 (2) Å | T = 100 K |
c = 13.3092 (3) Å | 0.25 × 0.20 × 0.15 mm |
β = 97.286 (2)° |
Agilent SuperNova Dual diffractometer with an Atlas detector | 3883 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 3478 reflections with I > 2σ(I) |
Tmin = 0.755, Tmax = 1.000 | Rint = 0.027 |
7966 measured reflections |
R[F2 > 2σ(F2)] = 0.067 | 0 restraints |
wR(F2) = 0.186 | H-atom parameters constrained |
S = 1.06 | Δρmax = 1.09 e Å−3 |
3883 reflections | Δρmin = −0.33 e Å−3 |
265 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.37531 (7) | 0.7195 (2) | 0.60223 (11) | 0.0223 (3) | |
O2 | 0.31966 (8) | 0.9210 (2) | 0.49638 (12) | 0.0279 (4) | |
O3 | 0.10542 (9) | 0.3305 (2) | 0.65096 (12) | 0.0339 (4) | |
N1 | 0.27420 (9) | 0.4903 (2) | 0.50849 (12) | 0.0211 (4) | |
N2 | 0.17341 (10) | 0.3084 (3) | 0.52035 (13) | 0.0267 (4) | |
C1 | 0.43599 (11) | 0.8207 (3) | 0.46864 (15) | 0.0212 (4) | |
C2 | 0.49532 (11) | 0.7190 (3) | 0.50441 (16) | 0.0238 (4) | |
H2 | 0.4958 | 0.6552 | 0.5658 | 0.029* | |
C3 | 0.55359 (11) | 0.7105 (3) | 0.45073 (16) | 0.0246 (4) | |
H3 | 0.5939 | 0.6414 | 0.4760 | 0.030* | |
C4 | 0.55385 (11) | 0.8024 (3) | 0.35973 (16) | 0.0237 (4) | |
C5 | 0.49471 (12) | 0.9054 (3) | 0.32543 (16) | 0.0254 (5) | |
H5 | 0.4943 | 0.9695 | 0.2642 | 0.030* | |
C6 | 0.43625 (11) | 0.9158 (3) | 0.37932 (16) | 0.0235 (4) | |
H6 | 0.3965 | 0.9877 | 0.3553 | 0.028* | |
C7 | 0.61739 (12) | 0.7901 (3) | 0.30194 (17) | 0.0277 (5) | |
H7A | 0.6324 | 0.6674 | 0.2988 | 0.041* | |
H7B | 0.6569 | 0.8599 | 0.3363 | 0.041* | |
H7C | 0.6042 | 0.8348 | 0.2331 | 0.041* | |
C8 | 0.37095 (11) | 0.8299 (3) | 0.52067 (15) | 0.0209 (4) | |
C9 | 0.31180 (11) | 0.6918 (3) | 0.64461 (15) | 0.0210 (4) | |
C10 | 0.30198 (11) | 0.7733 (3) | 0.73413 (15) | 0.0233 (4) | |
H10 | 0.3360 | 0.8566 | 0.7634 | 0.028* | |
C11 | 0.24158 (12) | 0.7332 (3) | 0.78214 (15) | 0.0255 (5) | |
H11 | 0.2340 | 0.7921 | 0.8428 | 0.031* | |
C12 | 0.19361 (11) | 0.6093 (3) | 0.74151 (15) | 0.0236 (4) | |
H12 | 0.1533 | 0.5808 | 0.7746 | 0.028* | |
C13 | 0.20422 (11) | 0.5243 (3) | 0.65079 (15) | 0.0214 (4) | |
C14 | 0.26278 (10) | 0.5673 (3) | 0.59976 (14) | 0.0195 (4) | |
C15 | 0.15613 (11) | 0.3839 (3) | 0.61094 (15) | 0.0252 (5) | |
C16 | 0.23027 (11) | 0.3681 (3) | 0.47275 (15) | 0.0228 (4) | |
C17 | 0.24100 (12) | 0.2818 (3) | 0.37470 (16) | 0.0270 (5) | |
H17A | 0.2801 | 0.3402 | 0.3458 | 0.040* | |
H17B | 0.1968 | 0.2906 | 0.3273 | 0.040* | |
H17C | 0.2531 | 0.1581 | 0.3869 | 0.040* | |
C18 | 0.12952 (13) | 0.1602 (3) | 0.47919 (16) | 0.0311 (5) | |
C19 | 0.15047 (12) | −0.0095 (3) | 0.50999 (18) | 0.0316 (5) | |
H19 | 0.1922 | −0.0288 | 0.5567 | 0.038* | |
C20 | 0.10838 (14) | −0.1495 (3) | 0.47021 (19) | 0.0348 (5) | |
H20 | 0.1219 | −0.2665 | 0.4880 | 0.042* | |
C21 | 0.04685 (13) | −0.1168 (4) | 0.40471 (19) | 0.0362 (6) | |
H21 | 0.0177 | −0.2127 | 0.3794 | 0.043* | |
C22 | 0.02648 (14) | 0.0491 (4) | 0.37508 (18) | 0.0350 (6) | |
H22 | −0.0158 | 0.0669 | 0.3291 | 0.042* | |
C23 | 0.06853 (13) | 0.1950 (4) | 0.41299 (18) | 0.0333 (5) | |
C24 | 0.04695 (14) | 0.3739 (4) | 0.3848 (2) | 0.0406 (6) | |
H24A | 0.0457 | 0.4443 | 0.4461 | 0.061* | |
H24B | −0.0008 | 0.3725 | 0.3455 | 0.061* | |
H24C | 0.0814 | 0.4250 | 0.3437 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0183 (7) | 0.0267 (8) | 0.0224 (7) | −0.0018 (6) | 0.0046 (5) | 0.0041 (6) |
O2 | 0.0240 (7) | 0.0329 (9) | 0.0279 (8) | 0.0037 (6) | 0.0072 (6) | 0.0059 (6) |
O3 | 0.0299 (8) | 0.0486 (11) | 0.0258 (8) | −0.0159 (7) | 0.0138 (6) | −0.0061 (7) |
N1 | 0.0214 (8) | 0.0249 (9) | 0.0181 (8) | −0.0008 (7) | 0.0062 (6) | 0.0012 (7) |
N2 | 0.0267 (9) | 0.0356 (11) | 0.0194 (8) | −0.0107 (8) | 0.0094 (7) | −0.0046 (7) |
C1 | 0.0214 (10) | 0.0221 (10) | 0.0205 (9) | −0.0031 (8) | 0.0043 (7) | −0.0025 (8) |
C2 | 0.0239 (10) | 0.0247 (11) | 0.0233 (10) | −0.0016 (8) | 0.0044 (8) | 0.0014 (8) |
C3 | 0.0232 (10) | 0.0225 (11) | 0.0286 (11) | 0.0005 (8) | 0.0054 (8) | 0.0004 (8) |
C4 | 0.0246 (10) | 0.0235 (10) | 0.0243 (10) | −0.0048 (8) | 0.0083 (8) | −0.0056 (8) |
C5 | 0.0290 (11) | 0.0271 (11) | 0.0209 (10) | −0.0024 (9) | 0.0065 (8) | 0.0012 (8) |
C6 | 0.0230 (10) | 0.0247 (10) | 0.0227 (10) | −0.0004 (8) | 0.0032 (8) | 0.0008 (8) |
C7 | 0.0283 (11) | 0.0281 (11) | 0.0286 (11) | −0.0006 (9) | 0.0113 (9) | −0.0020 (9) |
C8 | 0.0212 (9) | 0.0223 (10) | 0.0193 (9) | −0.0029 (8) | 0.0030 (7) | −0.0009 (7) |
C9 | 0.0189 (9) | 0.0239 (10) | 0.0209 (9) | 0.0005 (8) | 0.0057 (7) | 0.0044 (8) |
C10 | 0.0269 (10) | 0.0209 (10) | 0.0218 (10) | −0.0011 (8) | 0.0015 (8) | 0.0013 (8) |
C11 | 0.0321 (11) | 0.0273 (11) | 0.0183 (9) | 0.0010 (9) | 0.0080 (8) | −0.0001 (8) |
C12 | 0.0238 (10) | 0.0286 (11) | 0.0195 (9) | 0.0006 (8) | 0.0075 (8) | 0.0018 (8) |
C13 | 0.0205 (9) | 0.0266 (10) | 0.0178 (9) | −0.0003 (8) | 0.0054 (7) | 0.0024 (8) |
C14 | 0.0201 (9) | 0.0231 (10) | 0.0159 (9) | 0.0013 (8) | 0.0040 (7) | 0.0022 (7) |
C15 | 0.0237 (10) | 0.0344 (12) | 0.0188 (9) | −0.0042 (9) | 0.0074 (8) | −0.0003 (8) |
C16 | 0.0241 (10) | 0.0273 (11) | 0.0183 (9) | −0.0028 (8) | 0.0078 (8) | 0.0016 (8) |
C17 | 0.0309 (11) | 0.0317 (12) | 0.0203 (10) | −0.0060 (9) | 0.0108 (8) | −0.0036 (8) |
C18 | 0.0319 (12) | 0.0415 (14) | 0.0218 (10) | −0.0080 (10) | 0.0102 (9) | −0.0064 (9) |
C19 | 0.0276 (11) | 0.0339 (13) | 0.0347 (12) | −0.0023 (9) | 0.0096 (9) | −0.0011 (10) |
C20 | 0.0356 (12) | 0.0355 (13) | 0.0355 (12) | −0.0007 (10) | 0.0131 (10) | 0.0001 (10) |
C21 | 0.0293 (12) | 0.0482 (15) | 0.0334 (12) | −0.0061 (11) | 0.0128 (9) | −0.0019 (11) |
C22 | 0.0357 (12) | 0.0456 (14) | 0.0254 (11) | 0.0019 (11) | 0.0106 (9) | −0.0053 (10) |
C23 | 0.0307 (12) | 0.0432 (14) | 0.0276 (11) | −0.0010 (10) | 0.0106 (9) | −0.0032 (10) |
C24 | 0.0332 (13) | 0.0548 (17) | 0.0332 (13) | 0.0001 (12) | 0.0013 (10) | −0.0041 (12) |
O1—C8 | 1.368 (2) | C10—C11 | 1.407 (3) |
O1—C9 | 1.401 (2) | C10—H10 | 0.9500 |
O2—C8 | 1.201 (3) | C11—C12 | 1.370 (3) |
O3—C15 | 1.220 (3) | C11—H11 | 0.9500 |
N1—C16 | 1.296 (3) | C12—C13 | 1.407 (3) |
N1—C14 | 1.390 (3) | C12—H12 | 0.9500 |
N2—C16 | 1.388 (3) | C13—C14 | 1.405 (3) |
N2—C15 | 1.411 (3) | C13—C15 | 1.459 (3) |
N2—C18 | 1.465 (3) | C16—C17 | 1.498 (3) |
C1—C6 | 1.393 (3) | C17—H17A | 0.9800 |
C1—C2 | 1.394 (3) | C17—H17B | 0.9800 |
C1—C8 | 1.483 (3) | C17—H17C | 0.9800 |
C2—C3 | 1.384 (3) | C18—C23 | 1.381 (3) |
C2—H2 | 0.9500 | C18—C19 | 1.400 (4) |
C3—C4 | 1.400 (3) | C19—C20 | 1.394 (3) |
C3—H3 | 0.9500 | C19—H19 | 0.9500 |
C4—C5 | 1.391 (3) | C20—C21 | 1.381 (4) |
C4—C7 | 1.505 (3) | C20—H20 | 0.9500 |
C5—C6 | 1.390 (3) | C21—C22 | 1.367 (4) |
C5—H5 | 0.9500 | C21—H21 | 0.9500 |
C6—H6 | 0.9500 | C22—C23 | 1.421 (4) |
C7—H7A | 0.9800 | C22—H22 | 0.9500 |
C7—H7B | 0.9800 | C23—C24 | 1.460 (4) |
C7—H7C | 0.9800 | C24—H24A | 0.9800 |
C9—C10 | 1.377 (3) | C24—H24B | 0.9800 |
C9—C14 | 1.404 (3) | C24—H24C | 0.9800 |
C8—O1—C9 | 116.36 (15) | C13—C12—H12 | 120.0 |
C16—N1—C14 | 117.56 (17) | C14—C13—C12 | 120.85 (19) |
C16—N2—C15 | 122.04 (18) | C14—C13—C15 | 118.97 (18) |
C16—N2—C18 | 120.91 (17) | C12—C13—C15 | 120.12 (18) |
C15—N2—C18 | 117.04 (17) | N1—C14—C9 | 119.44 (17) |
C6—C1—C2 | 119.51 (19) | N1—C14—C13 | 122.78 (18) |
C6—C1—C8 | 117.80 (19) | C9—C14—C13 | 117.77 (18) |
C2—C1—C8 | 122.68 (19) | O3—C15—N2 | 121.0 (2) |
C3—C2—C1 | 120.2 (2) | O3—C15—C13 | 124.76 (19) |
C3—C2—H2 | 119.9 | N2—C15—C13 | 114.28 (17) |
C1—C2—H2 | 119.9 | N1—C16—N2 | 124.17 (18) |
C2—C3—C4 | 120.9 (2) | N1—C16—C17 | 119.07 (18) |
C2—C3—H3 | 119.6 | N2—C16—C17 | 116.75 (18) |
C4—C3—H3 | 119.6 | C16—C17—H17A | 109.5 |
C5—C4—C3 | 118.45 (19) | C16—C17—H17B | 109.5 |
C5—C4—C7 | 121.5 (2) | H17A—C17—H17B | 109.5 |
C3—C4—C7 | 120.1 (2) | C16—C17—H17C | 109.5 |
C6—C5—C4 | 121.1 (2) | H17A—C17—H17C | 109.5 |
C6—C5—H5 | 119.5 | H17B—C17—H17C | 109.5 |
C4—C5—H5 | 119.5 | C23—C18—C19 | 123.1 (2) |
C5—C6—C1 | 119.9 (2) | C23—C18—N2 | 118.2 (2) |
C5—C6—H6 | 120.0 | C19—C18—N2 | 118.7 (2) |
C1—C6—H6 | 120.0 | C20—C19—C18 | 118.2 (2) |
C4—C7—H7A | 109.5 | C20—C19—H19 | 120.9 |
C4—C7—H7B | 109.5 | C18—C19—H19 | 120.9 |
H7A—C7—H7B | 109.5 | C21—C20—C19 | 119.4 (2) |
C4—C7—H7C | 109.5 | C21—C20—H20 | 120.3 |
H7A—C7—H7C | 109.5 | C19—C20—H20 | 120.3 |
H7B—C7—H7C | 109.5 | C22—C21—C20 | 122.1 (3) |
O2—C8—O1 | 122.40 (18) | C22—C21—H21 | 118.9 |
O2—C8—C1 | 125.79 (19) | C20—C21—H21 | 118.9 |
O1—C8—C1 | 111.81 (17) | C21—C22—C23 | 120.0 (2) |
C10—C9—O1 | 119.68 (18) | C21—C22—H22 | 120.0 |
C10—C9—C14 | 121.38 (18) | C23—C22—H22 | 120.0 |
O1—C9—C14 | 118.63 (18) | C18—C23—C22 | 117.1 (2) |
C9—C10—C11 | 120.0 (2) | C18—C23—C24 | 121.7 (2) |
C9—C10—H10 | 120.0 | C22—C23—C24 | 121.2 (2) |
C11—C10—H10 | 120.0 | C23—C24—H24A | 109.5 |
C12—C11—C10 | 120.06 (19) | C23—C24—H24B | 109.5 |
C12—C11—H11 | 120.0 | H24A—C24—H24B | 109.5 |
C10—C11—H11 | 120.0 | C23—C24—H24C | 109.5 |
C11—C12—C13 | 119.92 (19) | H24A—C24—H24C | 109.5 |
C11—C12—H12 | 120.0 | H24B—C24—H24C | 109.5 |
C6—C1—C2—C3 | −1.0 (3) | C12—C13—C14—C9 | 2.7 (3) |
C8—C1—C2—C3 | 177.69 (19) | C15—C13—C14—C9 | −174.38 (18) |
C1—C2—C3—C4 | −0.4 (3) | C16—N2—C15—O3 | 179.2 (2) |
C2—C3—C4—C5 | 1.2 (3) | C18—N2—C15—O3 | −2.1 (3) |
C2—C3—C4—C7 | −179.4 (2) | C16—N2—C15—C13 | −1.9 (3) |
C3—C4—C5—C6 | −0.7 (3) | C18—N2—C15—C13 | 176.80 (19) |
C7—C4—C5—C6 | 180.0 (2) | C14—C13—C15—O3 | 176.9 (2) |
C4—C5—C6—C1 | −0.7 (3) | C12—C13—C15—O3 | −0.3 (3) |
C2—C1—C6—C5 | 1.5 (3) | C14—C13—C15—N2 | −2.0 (3) |
C8—C1—C6—C5 | −177.18 (19) | C12—C13—C15—N2 | −179.15 (19) |
C9—O1—C8—O2 | 12.0 (3) | C14—N1—C16—N2 | −0.8 (3) |
C9—O1—C8—C1 | −167.83 (17) | C14—N1—C16—C17 | −179.84 (18) |
C6—C1—C8—O2 | −5.0 (3) | C15—N2—C16—N1 | 3.5 (3) |
C2—C1—C8—O2 | 176.3 (2) | C18—N2—C16—N1 | −175.1 (2) |
C6—C1—C8—O1 | 174.84 (17) | C15—N2—C16—C17 | −177.4 (2) |
C2—C1—C8—O1 | −3.8 (3) | C18—N2—C16—C17 | 4.0 (3) |
C8—O1—C9—C10 | −103.9 (2) | C16—N2—C18—C23 | −92.2 (3) |
C8—O1—C9—C14 | 82.5 (2) | C15—N2—C18—C23 | 89.1 (3) |
O1—C9—C10—C11 | −173.89 (18) | C16—N2—C18—C19 | 88.9 (3) |
C14—C9—C10—C11 | −0.4 (3) | C15—N2—C18—C19 | −89.7 (3) |
C9—C10—C11—C12 | 1.9 (3) | C23—C18—C19—C20 | 1.3 (3) |
C10—C11—C12—C13 | −1.1 (3) | N2—C18—C19—C20 | −179.9 (2) |
C11—C12—C13—C14 | −1.3 (3) | C18—C19—C20—C21 | −1.9 (3) |
C11—C12—C13—C15 | 175.8 (2) | C19—C20—C21—C22 | 1.8 (4) |
C16—N1—C14—C9 | 175.77 (19) | C20—C21—C22—C23 | −0.9 (4) |
C16—N1—C14—C13 | −3.4 (3) | C19—C18—C23—C22 | −0.5 (3) |
C10—C9—C14—N1 | 178.96 (19) | N2—C18—C23—C22 | −179.30 (19) |
O1—C9—C14—N1 | −7.5 (3) | C19—C18—C23—C24 | 178.1 (2) |
C10—C9—C14—C13 | −1.9 (3) | N2—C18—C23—C24 | −0.7 (3) |
O1—C9—C14—C13 | 171.66 (17) | C21—C22—C23—C18 | 0.3 (3) |
C12—C13—C14—N1 | −178.11 (18) | C21—C22—C23—C24 | −178.3 (2) |
C15—C13—C14—N1 | 4.8 (3) |
Cg1 is the centroid of the C18–C23 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17C···O2i | 0.98 | 2.55 | 3.434 (3) | 150 |
C21—H21···O3ii | 0.95 | 2.47 | 3.299 (3) | 146 |
C12—H12···Cg1iii | 0.95 | 2.79 | 3.658 (2) | 153 |
Symmetry codes: (i) x, y−1, z; (ii) −x, −y, −z+1; (iii) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C24H20N2O3 |
Mr | 384.42 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 18.8216 (5), 7.6332 (2), 13.3092 (3) |
β (°) | 97.286 (2) |
V (Å3) | 1896.68 (8) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.72 |
Crystal size (mm) | 0.25 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Agilent SuperNova Dual diffractometer with an Atlas detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.755, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7966, 3883, 3478 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.631 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.067, 0.186, 1.06 |
No. of reflections | 3883 |
No. of parameters | 265 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.09, −0.33 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Cg1 is the centroid of the C18–C23 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17C···O2i | 0.98 | 2.55 | 3.434 (3) | 150 |
C21—H21···O3ii | 0.95 | 2.47 | 3.299 (3) | 146 |
C12—H12···Cg1iii | 0.95 | 2.79 | 3.658 (2) | 153 |
Symmetry codes: (i) x, y−1, z; (ii) −x, −y, −z+1; (iii) x, −y+1/2, z+1/2. |
Footnotes
‡Additional correspondence author, e-mail: adelazaba@yahoo.com.
Acknowledgements
This work was supported by the Research Center of Pharmacy, King Saud University, Riyadh, Saudi Arabia. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research Scheme (grant No. UM.C/HIR/MOHE/SC/12).
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England. Google Scholar
Al-Obaid, A. M., Abdel-Hamide, S. G., El-Kashef, H. A., Abdel-Aziz, A. A.-M., El-Azab, A. S., Al-Khamees, H. A. & El-Subbagh, H. I. (2009). Eur. J. Med. Chem. 44, 2379–2391. Web of Science PubMed CAS Google Scholar
Al-Omary, F. A., Abou-Zeid, L. A., Nagi, M. N., Habib, S. E., Abdel-Aziz, A. A.-M., Hamide, S. G., Al-Omar, M. A., Al-Obaid, A. M. & El-Subbagh, H. I. (2010). Bioorg. Med. Chem. 18, 2849–2863. Web of Science CAS PubMed Google Scholar
Aziza, M. A., Nassar, M. W. I., Abdel Hamid, S. G., El-Hakim, A. E. & El-Azab, A. S. (1996). Indian J. Heterocycl. Chem, 6, 25–30. CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
El-Azab, A. S., Abdel-Aziz, A. A.-M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o732–o733. CSD CrossRef IUCr Journals Google Scholar
El-Azab, A. S., Al-Omar, M. A., Abdel-Aziz, A. A.-M., Abdel-Aziz, N. I., El-Sayed, M. A.-A., Aleisa, A. M., Sayed-Ahmed, M. M. & Abdel-Hamide, S. G. (2010). Eur. J. Med. Chem. 45, 4188–4198. Web of Science CAS PubMed Google Scholar
El-Azab, A. S. & ElTahir, K. H. (2012). Bioorg. Med. Chem. Lett. 22, 327–333. Web of Science CAS PubMed Google Scholar
El-Azab, A. S., ElTahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837–848. CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, (I), a methaqualone analogue, was recently synthesized and evaluated for its anti-convulsant activity (El-Azab et al., 2010). Herein, the crystal structure determination of 3,4-dihydro-2-methyl-3-(2-methylphenyl)-4-oxoquinazolin-8-yl 4-methylbenzoate (I) is reported. These studies were motivated by the observation that substituted quinazoline-4(3H)-ones are known to display various biological activities (El-Azab & ElTahir, 2012; El-Azab et al., 2011; El-Azab et al., 2010; Al-Omary et al., 2010; Al-Obaid et al., 2009; Aziza et al., 1996).
In (I), Fig. 1, the carboxylate residue is co-planar to the benzene ring to which it is connected as seen in the value of the C2—C1—C8—O1 torsion angle -3.8 (3)°. With respect to the central quinazolin-4-one fused ring system [r.m.s. deviation = 0.045 Å for the 10 atoms], both the 4-methylbenzoate and 2-tolyl groups are orthogonal: the dihedral angles between the central plane and six-membered rings being 83.90 (9) and 87.88 (9)°, respectively. Both aryl substituents are orientated towards the methyl group bound to the quinazolin-4-one system and the dihedral angle between the two six-membered rings is 77.04 (11)°. The molecular structure resembles closely that of the benzoate derivative (El-Azab et al., 2012).
In the crystal packing, C—H···O [involving both carbonyl-O atoms] and C—H···π [involving the (C18···C23) benzene ring] interactions, Table 1, lead to the formation of layers in the bc plane. These interdigitate to allow for the formation of π–π interactions between the 4-methylbenzoate rings [ring centroid···centroid separation = 3.6458 (13) Å between centrosymmetrically related (C1–C6) rings; symmetry operation: 1 - x, 2 - y, 1 - z]. The combination of intermolecular interactions leads to a three-dimensional architecture, Fig. 2.