organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o734-o735

2-Methyl-3-(2-methyl­phen­yl)-4-oxo-3,4-di­hydro­quinazolin-8-yl 4-methyl­benzoate

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt, cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 February 2012; accepted 12 February 2012; online 17 February 2012)

In the title quinazolin-4-one derivative, C24H20N2O3, both the 4-methyl­benzoate [dihedral angle = 83.90 (9)°] and 2-tolyl [87.88 (9)°] groups are almost orthogonal to the central fused ring system. These aryl groups are oriented towards the quinazolin-4-one-bound methyl group. In the crystal, mol­ecules are connected into a three-dimensional architecture by C—H⋯O, C—H⋯π and ππ [ring centroid-to-centroid separation = 3.6458 (13) Å] inter­actions.

Related literature

For the pharmacological activity of substituted quinazoline-4(3H)-ones, see: El-Azab & ElTahir (2012[El-Azab, A. S. & ElTahir, K. H. (2012). Bioorg. Med. Chem. Lett. 22, 327-333.]); El-Azab et al. (2011[El-Azab, A. S., ElTahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837-848.]); Al-Omary et al. (2010[Al-Omary, F. A., Abou-Zeid, L. A., Nagi, M. N., Habib, S. E., Abdel-Aziz, A. A.-M., Hamide, S. G., Al-Omar, M. A., Al-Obaid, A. M. & El-Subbagh, H. I. (2010). Bioorg. Med. Chem. 18, 2849-2863.]); Al-Obaid et al. (2009[Al-Obaid, A. M., Abdel-Hamide, S. G., El-Kashef, H. A., Abdel-Aziz, A. A.-M., El-Azab, A. S., Al-Khamees, H. A. & El-Subbagh, H. I. (2009). Eur. J. Med. Chem. 44, 2379-2391.]); Aziza et al. (1996[Aziza, M. A., Nassar, M. W. I., Abdel Hamid, S. G., El-Hakim, A. E. & El-Azab, A. S. (1996). Indian J. Heterocycl. Chem, 6, 25-30.]). For the synthesis and evaluation of the anti­convulsant activity of the title compound, see: El-Azab et al. (2010[El-Azab, A. S., Al-Omar, M. A., Abdel-Aziz, A. A.-M., Abdel-Aziz, N. I., El-Sayed, M. A.-A., Aleisa, A. M., Sayed-Ahmed, M. M. & Abdel-Hamide, S. G. (2010). Eur. J. Med. Chem. 45, 4188-4198.]). For the structure of the benzoate derivative, see: El-Azab et al. (2012[El-Azab, A. S., Abdel-Aziz, A. A.-M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o732-o733.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20N2O3

  • Mr = 384.42

  • Monoclinic, P 21 /c

  • a = 18.8216 (5) Å

  • b = 7.6332 (2) Å

  • c = 13.3092 (3) Å

  • β = 97.286 (2)°

  • V = 1896.68 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.72 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.755, Tmax = 1.000

  • 7966 measured reflections

  • 3883 independent reflections

  • 3478 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.186

  • S = 1.06

  • 3883 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 1.09 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C18–C23 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17C⋯O2i 0.98 2.55 3.434 (3) 150
C21—H21⋯O3ii 0.95 2.47 3.299 (3) 146
C12—H12⋯Cg1iii 0.95 2.79 3.658 (2) 153
Symmetry codes: (i) x, y-1, z; (ii) -x, -y, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), a methaqualone analogue, was recently synthesized and evaluated for its anti-convulsant activity (El-Azab et al., 2010). Herein, the crystal structure determination of 3,4-dihydro-2-methyl-3-(2-methylphenyl)-4-oxoquinazolin-8-yl 4-methylbenzoate (I) is reported. These studies were motivated by the observation that substituted quinazoline-4(3H)-ones are known to display various biological activities (El-Azab & ElTahir, 2012; El-Azab et al., 2011; El-Azab et al., 2010; Al-Omary et al., 2010; Al-Obaid et al., 2009; Aziza et al., 1996).

In (I), Fig. 1, the carboxylate residue is co-planar to the benzene ring to which it is connected as seen in the value of the C2—C1—C8—O1 torsion angle -3.8 (3)°. With respect to the central quinazolin-4-one fused ring system [r.m.s. deviation = 0.045 Å for the 10 atoms], both the 4-methylbenzoate and 2-tolyl groups are orthogonal: the dihedral angles between the central plane and six-membered rings being 83.90 (9) and 87.88 (9)°, respectively. Both aryl substituents are orientated towards the methyl group bound to the quinazolin-4-one system and the dihedral angle between the two six-membered rings is 77.04 (11)°. The molecular structure resembles closely that of the benzoate derivative (El-Azab et al., 2012).

In the crystal packing, C—H···O [involving both carbonyl-O atoms] and C—H···π [involving the (C18···C23) benzene ring] interactions, Table 1, lead to the formation of layers in the bc plane. These interdigitate to allow for the formation of ππ interactions between the 4-methylbenzoate rings [ring centroid···centroid separation = 3.6458 (13) Å between centrosymmetrically related (C1–C6) rings; symmetry operation: 1 - x, 2 - y, 1 - z]. The combination of intermolecular interactions leads to a three-dimensional architecture, Fig. 2.

Related literature top

For the pharmacological activity of substituted quinazoline-4(3H)-ones, see: El-Azab & ElTahir (2012); El-Azab et al. (2011); Al-Omary et al. (2010); Al-Obaid et al. (2009); Aziza et al. (1996). For the synthesis and evaluation of the anticonvulsant activity of the title compound, see: El-Azab et al. (2010). For the structure of the benzoate derivative, see: El-Azab et al. (2012).

Experimental top

A mixture of 8-hydroxymethaqualone (532 mg, 0.002 M) and 4-methylbenzoyl chloride (325 mg, 0.0021 mmol) in 15 ml pyridine was stirred at room temperature for 12 h. The solvent was removed under reduced pressure, and the residue was triturated with water and filtered. The solid obtained was dried and recrystallized from EtOH to yield colourless prisms. m.p. 465–467 K. Yield: 95%. 1H NMR (500 MHz, CDCl3): δ = 8.25–8.22 (m, 3H), 7.64 (d, 1H, J = 7.5 Hz), 7.52 (t, 1H, J = 7.5 Hz), 7.43–7.28 (m, 5H), 7.15 (d, 1H, J = 7.5 Hz), 2.49 (s, 3H), 2.15 (s, 3H), 2.11 (s, 3H) p.p.m.. 13C NMR (CDCl3): δ = 17.4, 21.8, 24.3, 120.7, 124.9, 126.4, 126.7, 127.4, 127.6, 127.9, 129.3, 129.6, 130.5, 131.5, 135.4, 136.8, 141.0, 144.5, 146.3, 154.7, 161.2, 165.3 p.p.m.. MS (70 eV): m/z = 384.

Refinement top

Carbon-bound H atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The maximum and minimum residual electron density peaks of 1.09 and 0.33 e Å-3, respectively, were located 0.92 Å and 0.56 Å from the C18 and C23 atoms, respectively.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the c axis of the unit-cell contents for (I). The C—H···O, C—H···π and ππ interactions are shown as orange, brown and purple dashed lines, respectively.
2-Methyl-3-(2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-8-yl 4-methylbenzoate top
Crystal data top
C24H20N2O3F(000) = 808
Mr = 384.42Dx = 1.346 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 3857 reflections
a = 18.8216 (5) Åθ = 3.4–76.5°
b = 7.6332 (2) ŵ = 0.72 mm1
c = 13.3092 (3) ÅT = 100 K
β = 97.286 (2)°Prism, colourless
V = 1896.68 (8) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3883 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3478 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4041 pixels mm-1θmax = 76.7°, θmin = 4.7°
ω scansh = 2323
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 99
Tmin = 0.755, Tmax = 1.000l = 168
7966 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0962P)2 + 2.188P]
where P = (Fo2 + 2Fc2)/3
3883 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 1.09 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C24H20N2O3V = 1896.68 (8) Å3
Mr = 384.42Z = 4
Monoclinic, P21/cCu Kα radiation
a = 18.8216 (5) ŵ = 0.72 mm1
b = 7.6332 (2) ÅT = 100 K
c = 13.3092 (3) Å0.25 × 0.20 × 0.15 mm
β = 97.286 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3883 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3478 reflections with I > 2σ(I)
Tmin = 0.755, Tmax = 1.000Rint = 0.027
7966 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.06Δρmax = 1.09 e Å3
3883 reflectionsΔρmin = 0.33 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37531 (7)0.7195 (2)0.60223 (11)0.0223 (3)
O20.31966 (8)0.9210 (2)0.49638 (12)0.0279 (4)
O30.10542 (9)0.3305 (2)0.65096 (12)0.0339 (4)
N10.27420 (9)0.4903 (2)0.50849 (12)0.0211 (4)
N20.17341 (10)0.3084 (3)0.52035 (13)0.0267 (4)
C10.43599 (11)0.8207 (3)0.46864 (15)0.0212 (4)
C20.49532 (11)0.7190 (3)0.50441 (16)0.0238 (4)
H20.49580.65520.56580.029*
C30.55359 (11)0.7105 (3)0.45073 (16)0.0246 (4)
H30.59390.64140.47600.030*
C40.55385 (11)0.8024 (3)0.35973 (16)0.0237 (4)
C50.49471 (12)0.9054 (3)0.32543 (16)0.0254 (5)
H50.49430.96950.26420.030*
C60.43625 (11)0.9158 (3)0.37932 (16)0.0235 (4)
H60.39650.98770.35530.028*
C70.61739 (12)0.7901 (3)0.30194 (17)0.0277 (5)
H7A0.63240.66740.29880.041*
H7B0.65690.85990.33630.041*
H7C0.60420.83480.23310.041*
C80.37095 (11)0.8299 (3)0.52067 (15)0.0209 (4)
C90.31180 (11)0.6918 (3)0.64461 (15)0.0210 (4)
C100.30198 (11)0.7733 (3)0.73413 (15)0.0233 (4)
H100.33600.85660.76340.028*
C110.24158 (12)0.7332 (3)0.78214 (15)0.0255 (5)
H110.23400.79210.84280.031*
C120.19361 (11)0.6093 (3)0.74151 (15)0.0236 (4)
H120.15330.58080.77460.028*
C130.20422 (11)0.5243 (3)0.65079 (15)0.0214 (4)
C140.26278 (10)0.5673 (3)0.59976 (14)0.0195 (4)
C150.15613 (11)0.3839 (3)0.61094 (15)0.0252 (5)
C160.23027 (11)0.3681 (3)0.47275 (15)0.0228 (4)
C170.24100 (12)0.2818 (3)0.37470 (16)0.0270 (5)
H17A0.28010.34020.34580.040*
H17B0.19680.29060.32730.040*
H17C0.25310.15810.38690.040*
C180.12952 (13)0.1602 (3)0.47919 (16)0.0311 (5)
C190.15047 (12)0.0095 (3)0.50999 (18)0.0316 (5)
H190.19220.02880.55670.038*
C200.10838 (14)0.1495 (3)0.47021 (19)0.0348 (5)
H200.12190.26650.48800.042*
C210.04685 (13)0.1168 (4)0.40471 (19)0.0362 (6)
H210.01770.21270.37940.043*
C220.02648 (14)0.0491 (4)0.37508 (18)0.0350 (6)
H220.01580.06690.32910.042*
C230.06853 (13)0.1950 (4)0.41299 (18)0.0333 (5)
C240.04695 (14)0.3739 (4)0.3848 (2)0.0406 (6)
H24A0.04570.44430.44610.061*
H24B0.00080.37250.34550.061*
H24C0.08140.42500.34370.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0183 (7)0.0267 (8)0.0224 (7)0.0018 (6)0.0046 (5)0.0041 (6)
O20.0240 (7)0.0329 (9)0.0279 (8)0.0037 (6)0.0072 (6)0.0059 (6)
O30.0299 (8)0.0486 (11)0.0258 (8)0.0159 (7)0.0138 (6)0.0061 (7)
N10.0214 (8)0.0249 (9)0.0181 (8)0.0008 (7)0.0062 (6)0.0012 (7)
N20.0267 (9)0.0356 (11)0.0194 (8)0.0107 (8)0.0094 (7)0.0046 (7)
C10.0214 (10)0.0221 (10)0.0205 (9)0.0031 (8)0.0043 (7)0.0025 (8)
C20.0239 (10)0.0247 (11)0.0233 (10)0.0016 (8)0.0044 (8)0.0014 (8)
C30.0232 (10)0.0225 (11)0.0286 (11)0.0005 (8)0.0054 (8)0.0004 (8)
C40.0246 (10)0.0235 (10)0.0243 (10)0.0048 (8)0.0083 (8)0.0056 (8)
C50.0290 (11)0.0271 (11)0.0209 (10)0.0024 (9)0.0065 (8)0.0012 (8)
C60.0230 (10)0.0247 (10)0.0227 (10)0.0004 (8)0.0032 (8)0.0008 (8)
C70.0283 (11)0.0281 (11)0.0286 (11)0.0006 (9)0.0113 (9)0.0020 (9)
C80.0212 (9)0.0223 (10)0.0193 (9)0.0029 (8)0.0030 (7)0.0009 (7)
C90.0189 (9)0.0239 (10)0.0209 (9)0.0005 (8)0.0057 (7)0.0044 (8)
C100.0269 (10)0.0209 (10)0.0218 (10)0.0011 (8)0.0015 (8)0.0013 (8)
C110.0321 (11)0.0273 (11)0.0183 (9)0.0010 (9)0.0080 (8)0.0001 (8)
C120.0238 (10)0.0286 (11)0.0195 (9)0.0006 (8)0.0075 (8)0.0018 (8)
C130.0205 (9)0.0266 (10)0.0178 (9)0.0003 (8)0.0054 (7)0.0024 (8)
C140.0201 (9)0.0231 (10)0.0159 (9)0.0013 (8)0.0040 (7)0.0022 (7)
C150.0237 (10)0.0344 (12)0.0188 (9)0.0042 (9)0.0074 (8)0.0003 (8)
C160.0241 (10)0.0273 (11)0.0183 (9)0.0028 (8)0.0078 (8)0.0016 (8)
C170.0309 (11)0.0317 (12)0.0203 (10)0.0060 (9)0.0108 (8)0.0036 (8)
C180.0319 (12)0.0415 (14)0.0218 (10)0.0080 (10)0.0102 (9)0.0064 (9)
C190.0276 (11)0.0339 (13)0.0347 (12)0.0023 (9)0.0096 (9)0.0011 (10)
C200.0356 (12)0.0355 (13)0.0355 (12)0.0007 (10)0.0131 (10)0.0001 (10)
C210.0293 (12)0.0482 (15)0.0334 (12)0.0061 (11)0.0128 (9)0.0019 (11)
C220.0357 (12)0.0456 (14)0.0254 (11)0.0019 (11)0.0106 (9)0.0053 (10)
C230.0307 (12)0.0432 (14)0.0276 (11)0.0010 (10)0.0106 (9)0.0032 (10)
C240.0332 (13)0.0548 (17)0.0332 (13)0.0001 (12)0.0013 (10)0.0041 (12)
Geometric parameters (Å, º) top
O1—C81.368 (2)C10—C111.407 (3)
O1—C91.401 (2)C10—H100.9500
O2—C81.201 (3)C11—C121.370 (3)
O3—C151.220 (3)C11—H110.9500
N1—C161.296 (3)C12—C131.407 (3)
N1—C141.390 (3)C12—H120.9500
N2—C161.388 (3)C13—C141.405 (3)
N2—C151.411 (3)C13—C151.459 (3)
N2—C181.465 (3)C16—C171.498 (3)
C1—C61.393 (3)C17—H17A0.9800
C1—C21.394 (3)C17—H17B0.9800
C1—C81.483 (3)C17—H17C0.9800
C2—C31.384 (3)C18—C231.381 (3)
C2—H20.9500C18—C191.400 (4)
C3—C41.400 (3)C19—C201.394 (3)
C3—H30.9500C19—H190.9500
C4—C51.391 (3)C20—C211.381 (4)
C4—C71.505 (3)C20—H200.9500
C5—C61.390 (3)C21—C221.367 (4)
C5—H50.9500C21—H210.9500
C6—H60.9500C22—C231.421 (4)
C7—H7A0.9800C22—H220.9500
C7—H7B0.9800C23—C241.460 (4)
C7—H7C0.9800C24—H24A0.9800
C9—C101.377 (3)C24—H24B0.9800
C9—C141.404 (3)C24—H24C0.9800
C8—O1—C9116.36 (15)C13—C12—H12120.0
C16—N1—C14117.56 (17)C14—C13—C12120.85 (19)
C16—N2—C15122.04 (18)C14—C13—C15118.97 (18)
C16—N2—C18120.91 (17)C12—C13—C15120.12 (18)
C15—N2—C18117.04 (17)N1—C14—C9119.44 (17)
C6—C1—C2119.51 (19)N1—C14—C13122.78 (18)
C6—C1—C8117.80 (19)C9—C14—C13117.77 (18)
C2—C1—C8122.68 (19)O3—C15—N2121.0 (2)
C3—C2—C1120.2 (2)O3—C15—C13124.76 (19)
C3—C2—H2119.9N2—C15—C13114.28 (17)
C1—C2—H2119.9N1—C16—N2124.17 (18)
C2—C3—C4120.9 (2)N1—C16—C17119.07 (18)
C2—C3—H3119.6N2—C16—C17116.75 (18)
C4—C3—H3119.6C16—C17—H17A109.5
C5—C4—C3118.45 (19)C16—C17—H17B109.5
C5—C4—C7121.5 (2)H17A—C17—H17B109.5
C3—C4—C7120.1 (2)C16—C17—H17C109.5
C6—C5—C4121.1 (2)H17A—C17—H17C109.5
C6—C5—H5119.5H17B—C17—H17C109.5
C4—C5—H5119.5C23—C18—C19123.1 (2)
C5—C6—C1119.9 (2)C23—C18—N2118.2 (2)
C5—C6—H6120.0C19—C18—N2118.7 (2)
C1—C6—H6120.0C20—C19—C18118.2 (2)
C4—C7—H7A109.5C20—C19—H19120.9
C4—C7—H7B109.5C18—C19—H19120.9
H7A—C7—H7B109.5C21—C20—C19119.4 (2)
C4—C7—H7C109.5C21—C20—H20120.3
H7A—C7—H7C109.5C19—C20—H20120.3
H7B—C7—H7C109.5C22—C21—C20122.1 (3)
O2—C8—O1122.40 (18)C22—C21—H21118.9
O2—C8—C1125.79 (19)C20—C21—H21118.9
O1—C8—C1111.81 (17)C21—C22—C23120.0 (2)
C10—C9—O1119.68 (18)C21—C22—H22120.0
C10—C9—C14121.38 (18)C23—C22—H22120.0
O1—C9—C14118.63 (18)C18—C23—C22117.1 (2)
C9—C10—C11120.0 (2)C18—C23—C24121.7 (2)
C9—C10—H10120.0C22—C23—C24121.2 (2)
C11—C10—H10120.0C23—C24—H24A109.5
C12—C11—C10120.06 (19)C23—C24—H24B109.5
C12—C11—H11120.0H24A—C24—H24B109.5
C10—C11—H11120.0C23—C24—H24C109.5
C11—C12—C13119.92 (19)H24A—C24—H24C109.5
C11—C12—H12120.0H24B—C24—H24C109.5
C6—C1—C2—C31.0 (3)C12—C13—C14—C92.7 (3)
C8—C1—C2—C3177.69 (19)C15—C13—C14—C9174.38 (18)
C1—C2—C3—C40.4 (3)C16—N2—C15—O3179.2 (2)
C2—C3—C4—C51.2 (3)C18—N2—C15—O32.1 (3)
C2—C3—C4—C7179.4 (2)C16—N2—C15—C131.9 (3)
C3—C4—C5—C60.7 (3)C18—N2—C15—C13176.80 (19)
C7—C4—C5—C6180.0 (2)C14—C13—C15—O3176.9 (2)
C4—C5—C6—C10.7 (3)C12—C13—C15—O30.3 (3)
C2—C1—C6—C51.5 (3)C14—C13—C15—N22.0 (3)
C8—C1—C6—C5177.18 (19)C12—C13—C15—N2179.15 (19)
C9—O1—C8—O212.0 (3)C14—N1—C16—N20.8 (3)
C9—O1—C8—C1167.83 (17)C14—N1—C16—C17179.84 (18)
C6—C1—C8—O25.0 (3)C15—N2—C16—N13.5 (3)
C2—C1—C8—O2176.3 (2)C18—N2—C16—N1175.1 (2)
C6—C1—C8—O1174.84 (17)C15—N2—C16—C17177.4 (2)
C2—C1—C8—O13.8 (3)C18—N2—C16—C174.0 (3)
C8—O1—C9—C10103.9 (2)C16—N2—C18—C2392.2 (3)
C8—O1—C9—C1482.5 (2)C15—N2—C18—C2389.1 (3)
O1—C9—C10—C11173.89 (18)C16—N2—C18—C1988.9 (3)
C14—C9—C10—C110.4 (3)C15—N2—C18—C1989.7 (3)
C9—C10—C11—C121.9 (3)C23—C18—C19—C201.3 (3)
C10—C11—C12—C131.1 (3)N2—C18—C19—C20179.9 (2)
C11—C12—C13—C141.3 (3)C18—C19—C20—C211.9 (3)
C11—C12—C13—C15175.8 (2)C19—C20—C21—C221.8 (4)
C16—N1—C14—C9175.77 (19)C20—C21—C22—C230.9 (4)
C16—N1—C14—C133.4 (3)C19—C18—C23—C220.5 (3)
C10—C9—C14—N1178.96 (19)N2—C18—C23—C22179.30 (19)
O1—C9—C14—N17.5 (3)C19—C18—C23—C24178.1 (2)
C10—C9—C14—C131.9 (3)N2—C18—C23—C240.7 (3)
O1—C9—C14—C13171.66 (17)C21—C22—C23—C180.3 (3)
C12—C13—C14—N1178.11 (18)C21—C22—C23—C24178.3 (2)
C15—C13—C14—N14.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C18–C23 benzene ring.
D—H···AD—HH···AD···AD—H···A
C17—H17C···O2i0.982.553.434 (3)150
C21—H21···O3ii0.952.473.299 (3)146
C12—H12···Cg1iii0.952.793.658 (2)153
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H20N2O3
Mr384.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)18.8216 (5), 7.6332 (2), 13.3092 (3)
β (°) 97.286 (2)
V3)1896.68 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.72
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.755, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7966, 3883, 3478
Rint0.027
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.186, 1.06
No. of reflections3883
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.09, 0.33

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C18–C23 benzene ring.
D—H···AD—HH···AD···AD—H···A
C17—H17C···O2i0.982.553.434 (3)150
C21—H21···O3ii0.952.473.299 (3)146
C12—H12···Cg1iii0.952.793.658 (2)153
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1; (iii) x, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: adelazaba@yahoo.com.

Acknowledgements

This work was supported by the Research Center of Pharmacy, King Saud University, Riyadh, Saudi Arabia. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research Scheme (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAl-Obaid, A. M., Abdel-Hamide, S. G., El-Kashef, H. A., Abdel-Aziz, A. A.-M., El-Azab, A. S., Al-Khamees, H. A. & El-Subbagh, H. I. (2009). Eur. J. Med. Chem. 44, 2379–2391.  Web of Science PubMed CAS Google Scholar
First citationAl-Omary, F. A., Abou-Zeid, L. A., Nagi, M. N., Habib, S. E., Abdel-Aziz, A. A.-M., Hamide, S. G., Al-Omar, M. A., Al-Obaid, A. M. & El-Subbagh, H. I. (2010). Bioorg. Med. Chem. 18, 2849–2863.  Web of Science CAS PubMed Google Scholar
First citationAziza, M. A., Nassar, M. W. I., Abdel Hamid, S. G., El-Hakim, A. E. & El-Azab, A. S. (1996). Indian J. Heterocycl. Chem, 6, 25–30.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Azab, A. S., Abdel-Aziz, A. A.-M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o732–o733.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Azab, A. S., Al-Omar, M. A., Abdel-Aziz, A. A.-M., Abdel-Aziz, N. I., El-Sayed, M. A.-A., Aleisa, A. M., Sayed-Ahmed, M. M. & Abdel-Hamide, S. G. (2010). Eur. J. Med. Chem. 45, 4188–4198.  Web of Science CAS PubMed Google Scholar
First citationEl-Azab, A. S. & ElTahir, K. H. (2012). Bioorg. Med. Chem. Lett. 22, 327–333.  Web of Science CAS PubMed Google Scholar
First citationEl-Azab, A. S., ElTahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837–848.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o734-o735
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds