organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Hy­dr­oxy­eth­yl)-5-(4-meth­­oxy­phen­yl)-4H-pyrazole-3-carboxamide

aDepartment of Pharmacognosy, School of Food Science, Fujian Agriculture and Forestry University, Fujian 350002, People's Republic of China, and bDepartment of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China
*Correspondence e-mail: ljg20060508@yahoo.com.cn, zi99289@yeah.net

(Received 14 February 2012; accepted 21 February 2012; online 29 February 2012)

In the title compound, C13H15N3O3, the dihedral angle between the benzene and pyrazole rings is 7.7 (1)° and the O—C—C—N torsion angle of the side chain is 74.1 (2)°. In the crystal, mol­ecules are linked by O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds.

Related literature

For the biological activities of pyrazole derivatives, see: Qi et al. (2011[Qi, J. J., Zhu, J., Liu, X. F., Ding, L. L., Zheng, C. H., Han, G. Q., Lv, J. G. & Zhou, Y. J. (2011). Bioorg. Med. Chem. Lett. 21, 5822-5825.]). For a related structure, see: Shi & Xie (2011[Shi, C.-X. & Xie, Y.-M. (2011). Acta Cryst. E67, o1084.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15N3O3

  • Mr = 261.28

  • Monoclinic, C 2/c

  • a = 21.82 (5) Å

  • b = 10.08 (2) Å

  • c = 12.28 (3) Å

  • β = 110.53 (3)°

  • V = 2531 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.06 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.994

  • 5292 measured reflections

  • 2366 independent reflections

  • 1841 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.156

  • S = 1.05

  • 2366 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 1.88 2.668 (5) 162
N3—H3B⋯N2ii 0.86 2.54 3.318 (7) 151
N1—H1D⋯O3ii 0.86 1.90 2.739 (5) 166
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For the biological activities of pyrazole derivatives, see: Qi et al. (2011). For a related structure, see: Shi & Xie (2011).

Experimental top

A mixture of diethyl oxalate (0.1 mol), 1-(4-methoxyphenyl)ethanone (0.05 mol) and sodium ethylate (400 ml 0.1 mol) were stirred for 8 h at room temperature. It was then poured into diluted acetic acid and was further stirred for 20 min and then filtered to give the yellow solid and dried. Then this dried solid and hydrazine (0.05 mol) in ethanol (200 ml) refluxed for 3.5 h and then stood for 8 h yielded the yellow solid. The solid (0.004 mol) subsequently was reacted with ethanolamine (20 ml) for 4 h at 80 °C in the presence of pyridine (20 ml). The mixture was then poured into ice cold water to afford the white solid. The compound was recrystallized from methanol as colourless slabs. Yield: 0.75 g, 70.7%. M. p.: 470 K.

Refinement top

All hydrogen atoms were placed in calculated positions using a riding model, with d(C—H) = 0.93 Å for aromatic, 0.97 Å for CH2 and 0.96 Å for CH3 atoms, and with Uiso(H) = 1.2–1.5Ueq(C, O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Hydrogen bonds in the title compound.
N-(2-Hydroxyethyl)-5-(4-methoxyphenyl)-4H-pyrazole-3-carboxamide top
Crystal data top
C13H15N3O3Dx = 1.372 Mg m3
Mr = 261.28Melting point: 470 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.82 (5) ÅCell parameters from 925 reflections
b = 10.08 (2) Åθ = 3.1–26.4°
c = 12.28 (3) ŵ = 0.10 mm1
β = 110.53 (3)°T = 293 K
V = 2531 (11) Å3Slab, colorless
Z = 80.20 × 0.15 × 0.06 mm
F(000) = 1104
Data collection top
Bruker SMART CCD
diffractometer
2366 independent reflections
Radiation source: fine-focus sealed tube1841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
phi and ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2610
Tmin = 0.980, Tmax = 0.994k = 1212
5292 measured reflectionsl = 1314
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0917P)2 + 0.0958P]
whereP = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2366 reflectionsΔρmax = 0.26 e Å3
175 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (8)
Crystal data top
C13H15N3O3V = 2531 (11) Å3
Mr = 261.28Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.82 (5) ŵ = 0.10 mm1
b = 10.08 (2) ÅT = 293 K
c = 12.28 (3) Å0.20 × 0.15 × 0.06 mm
β = 110.53 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2366 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1841 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.994Rint = 0.074
5292 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
2366 reflectionsΔρmin = 0.30 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.29642 (7)0.24543 (15)0.29533 (13)0.0426 (4)
H1D0.33310.28660.32410.051*
N20.25083 (7)0.24377 (15)0.34610 (13)0.0433 (4)
N30.13697 (7)0.21072 (15)0.39238 (13)0.0414 (4)
H3B0.17200.24100.44410.050*
O10.44500 (7)0.12084 (15)0.06540 (14)0.0593 (5)
O20.09398 (6)0.09459 (14)0.22772 (11)0.0526 (4)
O30.09522 (7)0.10663 (15)0.58747 (12)0.0575 (4)
H30.09040.03610.61680.086*
C10.42987 (12)0.0298 (2)0.15960 (19)0.0621 (6)
H1A0.42440.05730.13290.093*
H1B0.46490.02860.18980.093*
H1C0.39010.05670.21970.093*
C20.40166 (9)0.13059 (18)0.00812 (17)0.0435 (5)
C30.34387 (9)0.06118 (19)0.03558 (17)0.0470 (5)
H3A0.33120.00340.09860.056*
C40.30463 (9)0.0776 (2)0.03073 (18)0.0455 (5)
H40.26600.02920.01200.055*
C50.32117 (8)0.16408 (18)0.12430 (15)0.0387 (4)
C60.37895 (10)0.23460 (19)0.14879 (18)0.0481 (5)
H60.39090.29490.21000.058*
C70.41911 (10)0.2177 (2)0.08479 (19)0.0512 (6)
H70.45810.26490.10410.061*
C80.27897 (9)0.17627 (17)0.19481 (15)0.0382 (4)
C90.21809 (9)0.12518 (19)0.17982 (16)0.0416 (5)
H90.19240.07200.11920.050*
C100.20311 (8)0.17037 (18)0.27537 (16)0.0386 (4)
C110.14091 (8)0.15331 (17)0.29704 (15)0.0377 (4)
C120.07505 (9)0.22326 (18)0.41093 (16)0.0400 (5)
H12A0.04070.23740.33620.048*
H12B0.07690.30150.45790.048*
C130.05641 (9)0.10679 (19)0.46890 (16)0.0426 (5)
H13A0.01050.11260.46000.051*
H13B0.06300.02500.43290.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0394 (8)0.0550 (10)0.0340 (9)0.0095 (7)0.0135 (7)0.0065 (7)
N20.0441 (9)0.0540 (10)0.0343 (9)0.0066 (7)0.0169 (7)0.0064 (7)
N30.0376 (8)0.0561 (10)0.0301 (8)0.0080 (7)0.0114 (7)0.0086 (7)
O10.0660 (10)0.0645 (10)0.0627 (10)0.0145 (7)0.0417 (9)0.0168 (7)
O20.0388 (8)0.0742 (10)0.0420 (8)0.0095 (6)0.0107 (6)0.0206 (7)
O30.0585 (9)0.0622 (10)0.0378 (8)0.0229 (7)0.0006 (7)0.0077 (6)
C10.0806 (16)0.0644 (14)0.0562 (14)0.0077 (12)0.0429 (13)0.0116 (11)
C20.0514 (11)0.0425 (10)0.0417 (11)0.0008 (8)0.0229 (9)0.0007 (8)
C30.0550 (12)0.0480 (11)0.0410 (11)0.0055 (9)0.0205 (10)0.0091 (9)
C40.0432 (10)0.0507 (11)0.0427 (11)0.0080 (8)0.0152 (9)0.0054 (9)
C50.0413 (10)0.0416 (10)0.0336 (10)0.0009 (8)0.0134 (8)0.0027 (8)
C60.0537 (12)0.0507 (11)0.0441 (11)0.0116 (9)0.0225 (10)0.0121 (9)
C70.0520 (12)0.0549 (12)0.0527 (13)0.0147 (9)0.0257 (10)0.0094 (10)
C80.0418 (10)0.0413 (9)0.0301 (10)0.0004 (8)0.0108 (8)0.0003 (7)
C90.0403 (10)0.0514 (11)0.0318 (10)0.0060 (8)0.0110 (8)0.0068 (8)
C100.0367 (9)0.0458 (10)0.0320 (9)0.0017 (7)0.0102 (8)0.0015 (8)
C110.0379 (10)0.0443 (10)0.0298 (9)0.0006 (8)0.0106 (8)0.0013 (7)
C120.0388 (10)0.0486 (11)0.0320 (10)0.0018 (8)0.0118 (8)0.0009 (8)
C130.0390 (10)0.0499 (11)0.0355 (10)0.0082 (8)0.0087 (8)0.0044 (8)
Geometric parameters (Å, º) top
N1—N21.347 (3)C3—H3A0.9300
N1—C81.351 (3)C4—C51.386 (4)
N1—H1D0.8600C4—H40.9300
N2—C101.324 (3)C5—C61.385 (4)
N3—C111.336 (4)C5—C81.474 (3)
N3—C121.452 (4)C6—C71.378 (4)
N3—H3B0.8600C6—H60.9300
O1—C21.366 (3)C7—H70.9300
O1—C11.422 (4)C8—C91.376 (4)
O2—C111.230 (3)C9—C101.400 (4)
O3—C131.405 (4)C9—H90.9300
O3—H30.8200C10—C111.482 (4)
C1—H1A0.9600C12—C131.502 (4)
C1—H1B0.9600C12—H12A0.9700
C1—H1C0.9600C12—H12B0.9700
C2—C31.377 (4)C13—H13A0.9700
C2—C71.383 (4)C13—H13B0.9700
C3—C41.383 (3)
N2—N1—C8113.55 (19)C5—C6—H6119.2
N2—N1—H1D123.2C6—C7—C2120.2 (2)
C8—N1—H1D123.2C6—C7—H7119.9
C10—N2—N1104.0 (2)C2—C7—H7119.9
C11—N3—C12121.65 (15)N1—C8—C9105.35 (16)
C11—N3—H3B119.2N1—C8—C5123.1 (2)
C12—N3—H3B119.2C9—C8—C5131.5 (2)
C2—O1—C1117.42 (19)C8—C9—C10105.33 (19)
C13—O3—H3109.5C8—C9—H9127.3
O1—C1—H1A109.5C10—C9—H9127.3
O1—C1—H1B109.5N2—C10—C9111.8 (2)
H1A—C1—H1B109.5N2—C10—C11120.4 (2)
O1—C1—H1C109.5C9—C10—C11127.62 (17)
H1A—C1—H1C109.5O2—C11—N3121.4 (2)
H1B—C1—H1C109.5O2—C11—C10121.6 (2)
O1—C2—C3125.3 (2)N3—C11—C10116.86 (16)
O1—C2—C7115.5 (2)N3—C12—C13115.33 (17)
C3—C2—C7119.21 (18)N3—C12—H12A108.4
C2—C3—C4119.9 (2)C13—C12—H12A108.4
C2—C3—H3A120.1N3—C12—H12B108.4
C4—C3—H3A120.1C13—C12—H12B108.4
C3—C4—C5121.9 (2)H12A—C12—H12B107.5
C3—C4—H4119.0O3—C13—C12109.12 (19)
C5—C4—H4119.0O3—C13—H13A109.9
C6—C5—C4117.09 (18)C12—C13—H13A109.9
C6—C5—C8122.5 (2)O3—C13—H13B109.9
C4—C5—C8120.3 (2)C12—C13—H13B109.9
C7—C6—C5121.7 (2)H13A—C13—H13B108.3
C7—C6—H6119.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.882.668 (5)162
N3—H3B···N2ii0.862.543.318 (7)151
N1—H1D···O3ii0.861.902.739 (5)166
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H15N3O3
Mr261.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)21.82 (5), 10.08 (2), 12.28 (3)
β (°) 110.53 (3)
V3)2531 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.15 × 0.06
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.980, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
5292, 2366, 1841
Rint0.074
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.156, 1.05
No. of reflections2366
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.30

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.882.668 (5)162
N3—H3B···N2ii0.862.543.318 (7)151
N1—H1D···O3ii0.861.902.739 (5)166
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+1.
 

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationQi, J. J., Zhu, J., Liu, X. F., Ding, L. L., Zheng, C. H., Han, G. Q., Lv, J. G. & Zhou, Y. J. (2011). Bioorg. Med. Chem. Lett. 21, 5822–5825.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, C.-X. & Xie, Y.-M. (2011). Acta Cryst. E67, o1084.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds