organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di­chloro-N-(4-chloro­phen­yl)benzamide

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 18 February 2012; accepted 20 February 2012; online 24 February 2012)

In the title compound, C13H8Cl3NO, the dihedral angle between the benzene rings is 63.2 (2)°. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into C(4) chains propagating in [001]. Weak aromatic ππ stacking also occurs [centroid–centroid separations = 3.759 (3) and 3.776 (3) Å].

Related literature

For further synthetic details, see: Lai & Huang (2005[Lai, Y.-Y. & Huang, L.-J. (2005). Bioorg. Med. Chem. 13, 265-275.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8Cl3NO

  • Mr = 300.55

  • Monoclinic, P 21 /c

  • a = 11.241 (2) Å

  • b = 12.590 (3) Å

  • c = 9.6450 (19) Å

  • β = 100.60 (3)°

  • V = 1341.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.825, Tmax = 0.936

  • 2587 measured reflections

  • 2459 independent reflections

  • 1481 reflections with I > 2σ(I)

  • Rint = 0.031

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.181

  • S = 1.00

  • 2459 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯Oi 0.86 1.97 2.828 (4) 176
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

For further synthetic details, see: Lai et al. (2005).

Experimental top

2,6-Dichlorobenzoyl chloride (0.02 mol, 4.20 g)and 4-chloroaniline (0.02 mol, 2.55 g) were refluxed in triethylamine (6 ml) and tetrahydrofuran (50 ml) for 8h, then the solvents were evaporated to give raw product, which was finally washed by water and collected by filtration. Colourless blocks were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å and C-H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I) viewed down the b axis. Hydrogen bonds are drawn as dashed lines.
2,6-Dichloro-N-(4-chlorophenyl)benzamide top
Crystal data top
C13H8Cl3NODx = 1.488 Mg m3
Mr = 300.55Melting point: 397 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.241 (2) ÅCell parameters from 25 reflections
b = 12.590 (3) Åθ = 9–13°
c = 9.6450 (19) ŵ = 0.67 mm1
β = 100.60 (3)°T = 293 K
V = 1341.7 (5) Å3Block, colourless
Z = 40.30 × 0.20 × 0.10 mm
F(000) = 608
Data collection top
Enraf–Nonius CAD-4
diffractometer
1481 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.4°, θmin = 1.8°
ω/2θ scansh = 130
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.825, Tmax = 0.936l = 1111
2587 measured reflections3 standard reflections every 200 reflections
2459 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.095P)2]
where P = (Fo2 + 2Fc2)/3
2459 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C13H8Cl3NOV = 1341.7 (5) Å3
Mr = 300.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.241 (2) ŵ = 0.67 mm1
b = 12.590 (3) ÅT = 293 K
c = 9.6450 (19) Å0.30 × 0.20 × 0.10 mm
β = 100.60 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1481 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.031
Tmin = 0.825, Tmax = 0.9363 standard reflections every 200 reflections
2587 measured reflections intensity decay: 1%
2459 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.00Δρmax = 0.26 e Å3
2459 reflectionsΔρmin = 0.29 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.7580 (3)0.3117 (2)0.1127 (3)0.0423 (8)
H0A0.76770.28700.19720.051*
O0.7776 (3)0.2668 (2)0.1093 (3)0.0660 (9)
Cl10.57123 (16)0.75067 (10)0.0703 (2)0.1055 (6)
C10.7243 (4)0.4801 (4)0.0171 (5)0.0593 (12)
H1A0.76510.45470.08590.071*
Cl20.64198 (10)0.05573 (10)0.07481 (12)0.0617 (4)
C20.6810 (5)0.5830 (4)0.0246 (5)0.0668 (13)
H2A0.69170.62680.09900.080*
Cl31.06285 (13)0.25773 (11)0.06642 (19)0.0927 (6)
C30.6224 (4)0.6202 (4)0.0774 (6)0.0594 (12)
C40.6040 (4)0.5568 (4)0.1854 (6)0.0660 (13)
H4A0.56380.58290.25430.079*
C50.6460 (4)0.4524 (4)0.1924 (5)0.0544 (11)
H5A0.63230.40820.26520.065*
C60.7070 (3)0.4148 (3)0.0926 (4)0.0394 (9)
C70.7928 (4)0.2481 (3)0.0165 (4)0.0443 (10)
C80.8579 (4)0.1497 (3)0.0788 (4)0.0434 (10)
C90.7988 (4)0.0590 (3)0.1085 (4)0.0465 (10)
C100.8603 (5)0.0302 (4)0.1654 (5)0.0595 (12)
H10A0.81880.09110.18310.071*
C110.9838 (5)0.0267 (5)0.1951 (6)0.0765 (15)
H11A1.02640.08590.23460.092*
C121.0461 (5)0.0615 (5)0.1683 (6)0.0753 (15)
H12A1.13020.06280.19060.090*
C130.9836 (4)0.1479 (4)0.1082 (5)0.0593 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.055 (2)0.0430 (19)0.0289 (16)0.0040 (16)0.0070 (14)0.0032 (15)
O0.109 (3)0.0540 (19)0.0365 (17)0.0039 (17)0.0164 (17)0.0042 (14)
Cl10.1079 (13)0.0498 (8)0.1576 (16)0.0283 (8)0.0215 (11)0.0106 (9)
C10.077 (3)0.052 (3)0.051 (3)0.006 (2)0.018 (2)0.010 (2)
Cl20.0515 (7)0.0637 (7)0.0707 (8)0.0022 (5)0.0132 (5)0.0087 (6)
C20.085 (4)0.046 (3)0.068 (3)0.004 (3)0.011 (3)0.016 (2)
Cl30.0706 (9)0.0743 (10)0.1392 (14)0.0252 (7)0.0347 (9)0.0239 (9)
C30.048 (3)0.043 (3)0.084 (4)0.003 (2)0.002 (2)0.003 (2)
C40.063 (3)0.063 (3)0.078 (3)0.013 (2)0.028 (3)0.007 (3)
C50.062 (3)0.052 (3)0.053 (3)0.004 (2)0.019 (2)0.006 (2)
C60.042 (2)0.036 (2)0.039 (2)0.0007 (17)0.0032 (17)0.0009 (17)
C70.058 (3)0.044 (2)0.031 (2)0.0057 (19)0.0088 (18)0.0004 (18)
C80.052 (2)0.043 (2)0.036 (2)0.0019 (19)0.0082 (18)0.0073 (18)
C90.049 (2)0.052 (2)0.040 (2)0.006 (2)0.0127 (18)0.001 (2)
C100.071 (3)0.049 (3)0.061 (3)0.013 (2)0.021 (2)0.011 (2)
C110.076 (4)0.076 (4)0.076 (4)0.032 (3)0.008 (3)0.011 (3)
C120.046 (3)0.095 (4)0.082 (4)0.013 (3)0.003 (3)0.013 (3)
C130.055 (3)0.052 (3)0.071 (3)0.003 (2)0.013 (2)0.015 (2)
Geometric parameters (Å, º) top
N—C71.338 (5)C4—H4A0.9300
N—C61.417 (5)C5—C61.366 (5)
N—H0A0.8600C5—H5A0.9300
O—C71.216 (4)C7—C81.506 (5)
Cl1—C31.737 (5)C8—C91.378 (6)
C1—C61.381 (5)C8—C131.389 (6)
C1—C21.382 (6)C9—C101.379 (6)
C1—H1A0.9300C10—C111.365 (7)
Cl2—C91.733 (4)C10—H10A0.9300
C2—C31.365 (7)C11—C121.363 (7)
C2—H2A0.9300C11—H11A0.9300
Cl3—C131.732 (5)C12—C131.365 (7)
C3—C41.358 (7)C12—H12A0.9300
C4—C51.394 (6)
C7—N—C6128.0 (3)O—C7—N124.9 (4)
C7—N—H0A116.0O—C7—C8121.7 (4)
C6—N—H0A116.0N—C7—C8113.4 (3)
C6—C1—C2120.1 (4)C9—C8—C13117.1 (4)
C6—C1—H1A120.0C9—C8—C7123.2 (4)
C2—C1—H1A120.0C13—C8—C7119.7 (4)
C3—C2—C1119.8 (4)C8—C9—C10122.2 (4)
C3—C2—H2A120.1C8—C9—Cl2119.6 (3)
C1—C2—H2A120.1C10—C9—Cl2118.3 (3)
C4—C3—C2120.9 (4)C11—C10—C9118.2 (5)
C4—C3—Cl1119.4 (4)C11—C10—H10A120.9
C2—C3—Cl1119.7 (4)C9—C10—H10A120.9
C3—C4—C5119.6 (4)C12—C11—C10121.7 (5)
C3—C4—H4A120.2C12—C11—H11A119.2
C5—C4—H4A120.2C10—C11—H11A119.2
C6—C5—C4120.2 (4)C11—C12—C13119.1 (5)
C6—C5—H5A119.9C11—C12—H12A120.4
C4—C5—H5A119.9C13—C12—H12A120.4
C5—C6—C1119.5 (4)C12—C13—C8121.7 (5)
C5—C6—N117.6 (3)C12—C13—Cl3119.2 (4)
C1—C6—N122.7 (4)C8—C13—Cl3119.1 (4)
C6—C1—C2—C30.8 (7)O—C7—C8—C1382.0 (5)
C1—C2—C3—C41.2 (8)N—C7—C8—C1396.3 (5)
C1—C2—C3—Cl1178.4 (4)C13—C8—C9—C100.3 (6)
C2—C3—C4—C50.2 (7)C7—C8—C9—C10179.9 (4)
Cl1—C3—C4—C5179.4 (4)C13—C8—C9—Cl2179.9 (3)
C3—C4—C5—C61.2 (7)C7—C8—C9—Cl20.5 (5)
C4—C5—C6—C11.6 (6)C8—C9—C10—C111.2 (6)
C4—C5—C6—N173.8 (4)Cl2—C9—C10—C11178.5 (4)
C2—C1—C6—C50.6 (7)C9—C10—C11—C120.8 (8)
C2—C1—C6—N174.5 (4)C10—C11—C12—C131.1 (8)
C7—N—C6—C5161.0 (4)C11—C12—C13—C82.6 (8)
C7—N—C6—C123.7 (6)C11—C12—C13—Cl3177.0 (4)
C6—N—C7—O5.6 (7)C9—C8—C13—C122.2 (6)
C6—N—C7—C8172.6 (3)C7—C8—C13—C12178.2 (4)
O—C7—C8—C997.7 (5)C9—C8—C13—Cl3177.4 (3)
N—C7—C8—C984.1 (5)C7—C8—C13—Cl32.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···Oi0.861.972.828 (4)176
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H8Cl3NO
Mr300.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.241 (2), 12.590 (3), 9.6450 (19)
β (°) 100.60 (3)
V3)1341.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.825, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
2587, 2459, 1481
Rint0.031
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.181, 1.00
No. of reflections2459
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.29

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···Oi0.861.972.828 (4)176
Symmetry code: (i) x, y+1/2, z+1/2.
 

References

First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLai, Y.-Y. & Huang, L.-J. (2005). Bioorg. Med. Chem. 13, 265–275.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds