metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acetato-κO)di­aqua­[2-(1H-benzotriazol-1-yl)acetato-κO](1,10-phenanthroline-κ2N,N′)manganese(II) dihydrate

aCollege of Chemistry and Chemical Engineering of Bohai University, Jinzhou, Liaoning 121000, People's Republic of China
*Correspondence e-mail: zengling1976@163.com

(Received 18 February 2012; accepted 18 February 2012; online 24 February 2012)

In the hydrated title complex, [Mn(C8H6N3O2)(CH3CO2)(C12H8N2)(H2O)2]·2H2O, the MnII atom is coordinated by two N atoms from a 1,10-phenanthroline ligand, two water O atoms, a monodentate acetate anion and an O-monodentate 2-(1H-benzotriazol-1-yl)acetate ligand, resulting in a distorted cis-MnN2O4 octa­hedral coordination geometry. The water O atoms are in a trans arrangement and one of them forms an intra­molecular O—H⋯O hydrogen bond to the uncoordinated O atom of the acetate ion. In the crystal, the complex mol­ecules and water mol­ecules are connected by O—H⋯O and O—H⋯N hydrogen bonds to generate a three-dimensional network.

Related literature

For related structures, see: Zheng et al. (2010[Zheng, Z. B., Wu, R. T., Li, J. K., Han, Y. F. & Lu, J. R. (2010). J. Coord. Chem. 63, 1118-1129.]); Zeng & Wang (2012[Zeng, L. & Wang, Q. (2012). Acta Cryst. E68, m196.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C8H6N3O2)(C2H3O2)(C12H8N2)(H2O)2]·2H2O

  • Mr = 542.41

  • Orthorhombic, P 21 21 21

  • a = 6.877 (1) Å

  • b = 17.383 (3) Å

  • c = 20.033 (3) Å

  • V = 2394.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 296 K

  • 0.22 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.878, Tmax = 0.909

  • 16178 measured reflections

  • 4247 independent reflections

  • 3921 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.066

  • S = 1.00

  • 4247 reflections

  • 325 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1798 Friedel pairs

  • Flack parameter: −0.028 (15)

Table 1
Selected geometric parameters (Å, °)

Mn1—O1 2.1009 (14)
Mn1—O3 2.1522 (14)
Mn1—O5 2.2221 (16)
Mn1—O6 2.2807 (16)
Mn1—N4 2.2532 (16)
Mn1—N5 2.2935 (16)
N4—Mn1—N5 73.09 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H23⋯N3i 0.85 1.99 2.838 (2) 173
O5—H24⋯O6ii 0.85 2.14 2.987 (2) 172
O6—H25⋯O8iii 0.85 1.88 2.732 (2) 175
O6—H26⋯O4 0.85 1.80 2.621 (2) 161
O7—H27⋯O4ii 0.85 1.97 2.807 (3) 166
O7—H28⋯O3 0.85 2.06 2.911 (2) 174
O8—H29⋯O7 0.85 2.04 2.890 (3) 176
O8—H30⋯O2iv 0.85 1.93 2.773 (2) 171
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Construction of supramolecular architectures with intersting physical properties has grown rapidly owing to their potential use as new functional materials. Many intriguing supramolecular assemblies have been prepared by metal coordination or hydrogen bonding interactions. As a flexible ligand, 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetic acid contains a carboxylate group and a triazole to construct MOFs (Zheng et al., 2010). We have also been interested in this systems (Zeng et al., 2012). As continuation of previous work, herein we report the synthesis and crystal structure of the title new complex (I).

As shown in Figure 1, The Mn(II) atom is six-coordinated by two N atoms from one 1,10-phenanthroline ligand, two O atoms from water molecules, one O atom from an acetate anion and one O atom from 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetate anion in a distorted octahedral geometry (Table 1). The equatorial plane is defined by N4, N5, O1 and O3 with a mean deviation of 0.2357 (1) Å from the least-squares plane. The axial positions are occupied by O5 and O6 with an O5—Mn1—O6 angle of 179.46 (5) °. The Mn—O and Mn—N bond distance fall in range of 2.1009 (14) to 2.2935 (16) Å. The deprotonated 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetic acid ligand adopt a monodentate coordination mode, which is different another manganese complex of this ligand (Zheng et al., 2010). An extensive three-dimensional hydrogen-bonding network formed by classical O—H···O and O—H···N interactions between the title complex molecules and the uncoodinated water molecules consolidate the crystal packing(Table 2).

Related literature top

For related structures, see: Zheng et al. (2010); Zeng & Wang (2012).

Experimental top

A mixture of Mn(Ac)2 (0.5 mmol), 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetic acid (0.5 mmol) and 1,10-phenanthroline(0.5 mmol) was dissolved in water (30 ml) and methanol (10 ml). and the pH of the solution was adjusted to 6–7 with 0.2 M aqueous NaOH and the solution was stirred for 3 h at room temperature. The solution was flitered and the flitrate was allowed to stand at room temperature. After slow evaporation over 2 weeks, light yellow blocks were obtained.

Refinement top

All H atoms were placed in idealized positions (O—H = 0.85 Å and C—H = 0.93–0.97 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with 40% probability displacement ellopsoids. Hydrogen bonds are shown as dashed lines).
(Acetato-κO)diaqua[2-(1H-benzotriazol-1-yl)acetato- κO](1,10-phenanthroline-κ2N,N') manganese(II) dihydrate top
Crystal data top
[Mn(C8H6N3O2)(C2H3O2)(C12H8N2)(H2O)2]·2H2OF(000) = 1124
Mr = 542.41Dx = 1.504 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6090 reflections
a = 6.877 (1) Åθ = 2.3–25.1°
b = 17.383 (3) ŵ = 0.61 mm1
c = 20.033 (3) ÅT = 296 K
V = 2394.9 (6) Å3Block, light yellow
Z = 40.22 × 0.18 × 0.16 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4247 independent reflections
Radiation source: fine-focus sealed tube3921 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.878, Tmax = 0.909k = 2017
16178 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.244P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4247 reflectionsΔρmax = 0.20 e Å3
325 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 1798 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.028 (15)
Crystal data top
[Mn(C8H6N3O2)(C2H3O2)(C12H8N2)(H2O)2]·2H2OV = 2394.9 (6) Å3
Mr = 542.41Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.877 (1) ŵ = 0.61 mm1
b = 17.383 (3) ÅT = 296 K
c = 20.033 (3) Å0.22 × 0.18 × 0.16 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4247 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3921 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 0.909Rint = 0.029
16178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.066Δρmax = 0.20 e Å3
S = 1.00Δρmin = 0.16 e Å3
4247 reflectionsAbsolute structure: Flack (1983), 1798 Friedel pairs
325 parametersAbsolute structure parameter: 0.028 (15)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.48232 (4)0.569128 (16)0.144955 (13)0.03039 (9)
O10.3490 (3)0.62223 (10)0.22730 (6)0.0460 (4)
O20.2052 (2)0.64743 (9)0.32397 (7)0.0447 (4)
O30.5219 (2)0.45338 (8)0.18058 (7)0.0418 (4)
O40.8210 (2)0.45172 (9)0.22318 (9)0.0517 (4)
O50.1767 (2)0.54730 (10)0.11431 (7)0.0458 (4)
H230.14860.52760.07670.069*
H240.07360.56460.13230.069*
O60.7967 (2)0.59177 (9)0.17539 (7)0.0424 (4)
H250.81530.62910.20210.064*
H260.81580.55140.19840.064*
O70.1737 (3)0.37049 (11)0.22114 (9)0.0654 (5)
H270.07750.40100.21810.098*
H280.26950.39730.20780.098*
O80.1294 (3)0.20584 (10)0.23428 (9)0.0627 (5)
H290.13660.25440.23000.094*
H300.02100.19280.21730.094*
N10.4872 (3)0.57294 (9)0.39664 (7)0.0361 (4)
N20.4403 (3)0.50889 (11)0.43050 (9)0.0429 (5)
N30.4474 (3)0.52448 (11)0.49445 (9)0.0434 (5)
N40.5099 (3)0.68006 (9)0.08755 (7)0.0368 (4)
N50.5326 (3)0.53668 (9)0.03534 (7)0.0339 (4)
C10.3324 (3)0.61825 (12)0.29005 (9)0.0336 (5)
C20.4949 (4)0.57245 (13)0.32387 (9)0.0488 (6)
H2A0.48860.51960.30860.059*
H2B0.61920.59330.30980.059*
C30.5260 (3)0.63196 (12)0.43862 (9)0.0341 (5)
C40.5872 (4)0.70775 (14)0.42952 (13)0.0484 (6)
H40.60560.72890.38740.058*
C50.6184 (4)0.74899 (16)0.48687 (15)0.0603 (7)
H5A0.65930.79980.48330.072*
C60.5913 (4)0.71776 (19)0.55020 (14)0.0636 (7)
H6A0.61370.74850.58740.076*
C70.5332 (4)0.64393 (16)0.55946 (11)0.0537 (7)
H70.51620.62340.60190.064*
C80.5003 (4)0.60032 (12)0.50197 (9)0.0373 (5)
C90.5099 (4)0.74978 (12)0.11341 (12)0.0505 (6)
H90.50760.75460.15960.061*
C100.5130 (5)0.81644 (13)0.07508 (15)0.0637 (7)
H100.51480.86460.09530.076*
C110.5133 (5)0.80988 (14)0.00765 (15)0.0626 (7)
H110.51200.85390.01880.075*
C120.5157 (4)0.73761 (13)0.02219 (11)0.0485 (6)
C130.5152 (5)0.7250 (2)0.09288 (13)0.0670 (8)
H130.51220.76710.12150.080*
C140.5191 (5)0.65418 (19)0.11858 (11)0.0636 (8)
H140.51790.64820.16470.076*
C150.5248 (4)0.58742 (15)0.07722 (10)0.0483 (6)
C160.5316 (4)0.51232 (17)0.10186 (11)0.0578 (7)
H160.53190.50360.14770.069*
C170.5376 (4)0.45219 (16)0.05881 (13)0.0545 (7)
H170.54060.40200.07470.065*
C180.5393 (3)0.46666 (13)0.00980 (11)0.0437 (6)
H180.54550.42500.03890.052*
C190.5254 (3)0.59700 (12)0.00732 (9)0.0338 (5)
C200.5160 (3)0.67305 (11)0.01976 (9)0.0341 (5)
C210.6669 (3)0.41917 (13)0.20661 (9)0.0349 (5)
C220.6497 (4)0.33410 (13)0.21677 (14)0.0557 (7)
H22A0.68400.30800.17620.084*
H22B0.51830.32150.22870.084*
H22C0.73590.31830.25190.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.03638 (17)0.03095 (16)0.02383 (13)0.00024 (15)0.00013 (13)0.00160 (11)
O10.0583 (11)0.0556 (10)0.0240 (7)0.0128 (9)0.0010 (7)0.0032 (7)
O20.0480 (10)0.0552 (10)0.0310 (8)0.0156 (9)0.0037 (7)0.0004 (7)
O30.0390 (9)0.0354 (8)0.0509 (8)0.0020 (8)0.0088 (8)0.0104 (6)
O40.0420 (10)0.0405 (10)0.0726 (11)0.0014 (8)0.0154 (9)0.0022 (8)
O50.0341 (9)0.0671 (11)0.0362 (8)0.0008 (8)0.0004 (7)0.0153 (7)
O60.0447 (9)0.0406 (9)0.0419 (8)0.0057 (7)0.0029 (7)0.0001 (7)
O70.0470 (11)0.0570 (11)0.0921 (14)0.0034 (10)0.0073 (10)0.0243 (11)
O80.0586 (12)0.0496 (11)0.0799 (12)0.0010 (9)0.0242 (10)0.0122 (9)
N10.0415 (10)0.0395 (10)0.0273 (7)0.0077 (13)0.0013 (8)0.0017 (7)
N20.0453 (12)0.0393 (11)0.0441 (10)0.0049 (9)0.0028 (9)0.0036 (9)
N30.0438 (12)0.0478 (12)0.0387 (10)0.0015 (9)0.0006 (9)0.0117 (8)
N40.0414 (11)0.0318 (9)0.0371 (8)0.0015 (10)0.0050 (9)0.0001 (7)
N50.0321 (10)0.0371 (9)0.0324 (8)0.0040 (8)0.0019 (8)0.0032 (7)
C10.0427 (13)0.0319 (11)0.0261 (10)0.0007 (10)0.0013 (9)0.0037 (9)
C20.0563 (15)0.0632 (15)0.0269 (9)0.0230 (18)0.0022 (11)0.0051 (9)
C30.0321 (12)0.0371 (11)0.0330 (9)0.0049 (10)0.0012 (9)0.0013 (8)
C40.0407 (14)0.0443 (15)0.0603 (15)0.0040 (11)0.0029 (12)0.0121 (12)
C50.0494 (17)0.0433 (15)0.0882 (16)0.0034 (13)0.0059 (15)0.0134 (14)
C60.0537 (17)0.075 (2)0.0617 (13)0.0075 (15)0.0164 (13)0.0298 (13)
C70.0493 (16)0.0760 (18)0.0358 (11)0.0113 (15)0.0073 (12)0.0072 (11)
C80.0317 (12)0.0489 (12)0.0315 (9)0.0066 (12)0.0012 (10)0.0035 (9)
C90.0559 (16)0.0359 (13)0.0599 (13)0.0002 (14)0.0089 (14)0.0057 (10)
C100.0580 (18)0.0285 (12)0.105 (2)0.0003 (14)0.0102 (19)0.0030 (13)
C110.0507 (17)0.0422 (14)0.095 (2)0.0008 (15)0.0110 (17)0.0320 (14)
C120.0333 (13)0.0524 (14)0.0600 (13)0.0024 (13)0.0046 (12)0.0270 (11)
C130.0529 (17)0.095 (2)0.0532 (14)0.0038 (19)0.0006 (15)0.0428 (15)
C140.0526 (17)0.108 (2)0.0303 (10)0.007 (2)0.0014 (12)0.0226 (13)
C150.0337 (12)0.0810 (18)0.0302 (10)0.0027 (14)0.0055 (10)0.0009 (10)
C160.0446 (16)0.094 (2)0.0348 (11)0.0011 (16)0.0051 (12)0.0204 (13)
C170.0375 (13)0.0660 (16)0.0600 (14)0.0016 (13)0.0025 (12)0.0336 (13)
C180.0378 (14)0.0416 (13)0.0518 (12)0.0042 (11)0.0007 (11)0.0119 (10)
C190.0247 (11)0.0483 (12)0.0283 (9)0.0001 (10)0.0041 (9)0.0031 (8)
C200.0269 (11)0.0401 (11)0.0354 (9)0.0010 (11)0.0015 (9)0.0101 (8)
C210.0406 (13)0.0348 (12)0.0294 (10)0.0048 (11)0.0032 (9)0.0034 (9)
C220.0520 (17)0.0395 (14)0.0756 (17)0.0032 (12)0.0033 (14)0.0150 (13)
Geometric parameters (Å, º) top
Mn1—O12.1009 (14)C4—C51.371 (4)
Mn1—O32.1522 (14)C4—H40.9300
Mn1—O52.2221 (16)C5—C61.392 (4)
Mn1—O62.2807 (16)C5—H5A0.9300
Mn1—N42.2532 (16)C6—C71.357 (4)
Mn1—N52.2935 (16)C6—H6A0.9300
O1—C11.264 (2)C7—C81.397 (3)
O2—C11.218 (2)C7—H70.9300
O3—C211.272 (3)C9—C101.390 (3)
O4—C211.247 (3)C9—H90.9300
O5—H230.8499C10—C111.356 (4)
O5—H240.8499C10—H100.9300
O6—H250.8500C11—C121.391 (4)
O6—H260.8500C11—H110.9300
O7—H270.8500C12—C201.402 (3)
O7—H280.8501C12—C131.433 (4)
O8—H290.8499C13—C141.334 (4)
O8—H300.8500C13—H130.9300
N1—N21.343 (2)C14—C151.427 (4)
N1—C31.353 (3)C14—H140.9300
N1—C21.459 (2)C15—C161.396 (4)
N2—N31.310 (3)C15—C191.410 (3)
N3—C81.376 (3)C16—C171.356 (4)
N4—C91.318 (3)C16—H160.9300
N4—C201.364 (2)C17—C181.397 (3)
N5—C181.321 (3)C17—H170.9300
N5—C191.354 (2)C18—H180.9300
C1—C21.530 (3)C19—C201.430 (3)
C2—H2A0.9700C21—C221.497 (3)
C2—H2B0.9700C22—H22A0.9600
C3—C81.394 (3)C22—H22B0.9600
C3—C41.395 (3)C22—H22C0.9600
O1—Mn1—O3101.87 (6)C7—C6—C5122.2 (2)
O1—Mn1—O583.06 (6)C7—C6—H6A118.9
O3—Mn1—O592.96 (6)C5—C6—H6A118.9
O1—Mn1—N493.52 (6)C6—C7—C8116.6 (2)
O3—Mn1—N4163.47 (6)C6—C7—H7121.7
O5—Mn1—N494.87 (7)C8—C7—H7121.7
O1—Mn1—O697.35 (6)N3—C8—C3108.16 (17)
O3—Mn1—O687.29 (6)N3—C8—C7130.8 (2)
O5—Mn1—O6179.46 (5)C3—C8—C7121.0 (2)
N4—Mn1—O684.77 (7)N4—C9—C10123.3 (2)
O1—Mn1—N5157.76 (6)N4—C9—H9118.3
O3—Mn1—N593.93 (6)C10—C9—H9118.3
O5—Mn1—N580.56 (6)C11—C10—C9118.7 (2)
N4—Mn1—N573.09 (6)C11—C10—H10120.6
O6—Mn1—N598.95 (6)C9—C10—H10120.6
C1—O1—Mn1142.76 (15)C10—C11—C12120.3 (2)
C21—O3—Mn1132.21 (14)C10—C11—H11119.9
Mn1—O5—H23121.9C12—C11—H11119.9
Mn1—O5—H24127.7C11—C12—C20117.7 (2)
H23—O5—H24109.1C11—C12—C13124.2 (2)
Mn1—O6—H25116.2C20—C12—C13118.0 (2)
Mn1—O6—H2698.5C14—C13—C12121.5 (2)
H25—O6—H26105.5C14—C13—H13119.3
H27—O7—H28103.8C12—C13—H13119.3
H29—O8—H30106.1C13—C14—C15121.8 (2)
N2—N1—C3111.23 (15)C13—C14—H14119.1
N2—N1—C2120.56 (18)C15—C14—H14119.1
C3—N1—C2128.20 (18)C16—C15—C19117.5 (2)
N3—N2—N1108.26 (17)C16—C15—C14123.8 (2)
N2—N3—C8108.36 (17)C19—C15—C14118.7 (2)
C9—N4—C20118.25 (17)C17—C16—C15119.8 (2)
C9—N4—Mn1125.90 (14)C17—C16—H16120.1
C20—N4—Mn1115.74 (13)C15—C16—H16120.1
C18—N5—C19118.07 (17)C16—C17—C18119.2 (2)
C18—N5—Mn1127.06 (14)C16—C17—H17120.4
C19—N5—Mn1114.11 (12)C18—C17—H17120.4
O2—C1—O1126.6 (2)N5—C18—C17123.1 (2)
O2—C1—C2119.59 (17)N5—C18—H18118.4
O1—C1—C2113.76 (18)C17—C18—H18118.4
N1—C2—C1114.38 (19)N5—C19—C15122.4 (2)
N1—C2—H2A108.7N5—C19—C20118.57 (16)
C1—C2—H2A108.7C15—C19—C20119.05 (19)
N1—C2—H2B108.7N4—C20—C12121.69 (19)
C1—C2—H2B108.7N4—C20—C19117.48 (16)
H2A—C2—H2B107.6C12—C20—C19120.83 (18)
N1—C3—C8103.98 (17)O4—C21—O3124.3 (2)
N1—C3—C4133.98 (19)O4—C21—C22118.6 (2)
C8—C3—C4122.0 (2)O3—C21—C22117.1 (2)
C5—C4—C3115.6 (2)C21—C22—H22A109.5
C5—C4—H4122.2C21—C22—H22B109.5
C3—C4—H4122.2H22A—C22—H22B109.5
C4—C5—C6122.6 (3)C21—C22—H22C109.5
C4—C5—H5A118.7H22A—C22—H22C109.5
C6—C5—H5A118.7H22B—C22—H22C109.5
O3—Mn1—O1—C125.8 (3)N2—N3—C8—C30.1 (3)
O5—Mn1—O1—C1117.4 (3)N2—N3—C8—C7177.9 (3)
N4—Mn1—O1—C1148.1 (3)N1—C3—C8—N30.1 (3)
O6—Mn1—O1—C163.0 (3)C4—C3—C8—N3177.6 (2)
N5—Mn1—O1—C1160.1 (2)N1—C3—C8—C7178.2 (2)
O1—Mn1—O3—C2196.90 (18)C4—C3—C8—C70.7 (4)
O5—Mn1—O3—C21179.57 (17)C6—C7—C8—N3177.7 (3)
N4—Mn1—O3—C2161.4 (3)C6—C7—C8—C30.1 (4)
O6—Mn1—O3—C210.04 (17)C20—N4—C9—C100.9 (4)
N5—Mn1—O3—C2198.84 (18)Mn1—N4—C9—C10175.1 (2)
C3—N1—N2—N30.0 (3)N4—C9—C10—C111.0 (5)
C2—N1—N2—N3178.9 (2)C9—C10—C11—C121.7 (5)
N1—N2—N3—C80.1 (3)C10—C11—C12—C200.5 (5)
O1—Mn1—N4—C922.2 (2)C10—C11—C12—C13179.7 (3)
O3—Mn1—N4—C9136.5 (2)C11—C12—C13—C14179.5 (3)
O5—Mn1—N4—C9105.5 (2)C20—C12—C13—C141.3 (5)
O6—Mn1—N4—C974.9 (2)C12—C13—C14—C150.3 (5)
N5—Mn1—N4—C9175.9 (3)C13—C14—C15—C16179.1 (3)
O1—Mn1—N4—C20153.93 (19)C13—C14—C15—C190.3 (5)
O3—Mn1—N4—C2047.4 (3)C19—C15—C16—C170.3 (4)
O5—Mn1—N4—C2070.61 (18)C14—C15—C16—C17179.7 (3)
O6—Mn1—N4—C20108.99 (19)C15—C16—C17—C180.8 (4)
N5—Mn1—N4—C207.98 (17)C19—N5—C18—C170.6 (3)
O1—Mn1—N5—C18123.4 (2)Mn1—N5—C18—C17168.77 (17)
O3—Mn1—N5—C1812.03 (19)C16—C17—C18—N51.0 (4)
O5—Mn1—N5—C1880.32 (19)C18—N5—C19—C150.1 (3)
N4—Mn1—N5—C18178.4 (2)Mn1—N5—C19—C15170.66 (17)
O6—Mn1—N5—C1899.90 (19)C18—N5—C19—C20179.4 (2)
O1—Mn1—N5—C1946.3 (3)Mn1—N5—C19—C208.6 (3)
O3—Mn1—N5—C19178.25 (15)C16—C15—C19—N50.1 (4)
O5—Mn1—N5—C1989.40 (15)C14—C15—C19—N5179.4 (2)
N4—Mn1—N5—C198.68 (15)C16—C15—C19—C20179.2 (2)
O6—Mn1—N5—C1990.38 (15)C14—C15—C19—C201.3 (4)
Mn1—O1—C1—O2161.02 (19)C9—N4—C20—C122.1 (4)
Mn1—O1—C1—C220.0 (4)Mn1—N4—C20—C12174.27 (19)
N2—N1—C2—C1110.1 (2)C9—N4—C20—C19177.1 (2)
C3—N1—C2—C171.2 (3)Mn1—N4—C20—C196.5 (3)
O2—C1—C2—N14.1 (3)C11—C12—C20—N41.4 (4)
O1—C1—C2—N1174.9 (2)C13—C12—C20—N4177.8 (3)
N2—N1—C3—C80.1 (3)C11—C12—C20—C19177.7 (2)
C2—N1—C3—C8178.7 (2)C13—C12—C20—C193.0 (4)
N2—N1—C3—C4177.1 (2)N5—C19—C20—N41.6 (3)
C2—N1—C3—C41.7 (5)C15—C19—C20—N4177.7 (2)
N1—C3—C4—C5177.2 (3)N5—C19—C20—C12177.6 (2)
C8—C3—C4—C50.6 (4)C15—C19—C20—C123.1 (4)
C3—C4—C5—C60.0 (4)Mn1—O3—C21—O47.5 (3)
C4—C5—C6—C70.5 (4)Mn1—O3—C21—C22171.64 (16)
C5—C6—C7—C80.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H23···N3i0.851.992.838 (2)173
O5—H24···O6ii0.852.142.987 (2)172
O6—H25···O8iii0.851.882.732 (2)175
O6—H26···O40.851.802.621 (2)161
O7—H27···O4ii0.851.972.807 (3)166
O7—H28···O30.852.062.911 (2)174
O8—H29···O70.852.042.890 (3)176
O8—H30···O2iv0.851.932.773 (2)171
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C8H6N3O2)(C2H3O2)(C12H8N2)(H2O)2]·2H2O
Mr542.41
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)6.877 (1), 17.383 (3), 20.033 (3)
V3)2394.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.22 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.878, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
16178, 4247, 3921
Rint0.029
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.066, 1.00
No. of reflections4247
No. of parameters325
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.16
Absolute structureFlack (1983), 1798 Friedel pairs
Absolute structure parameter0.028 (15)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mn1—O12.1009 (14)Mn1—O62.2807 (16)
Mn1—O32.1522 (14)Mn1—N42.2532 (16)
Mn1—O52.2221 (16)Mn1—N52.2935 (16)
N4—Mn1—N573.09 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H23···N3i0.851.992.838 (2)173
O5—H24···O6ii0.852.142.987 (2)172
O6—H25···O8iii0.851.882.732 (2)175
O6—H26···O40.851.802.621 (2)161
O7—H27···O4ii0.851.972.807 (3)166
O7—H28···O30.852.062.911 (2)174
O8—H29···O70.852.042.890 (3)176
O8—H30···O2iv0.851.932.773 (2)171
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x, y1/2, z+1/2.
 

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, L. & Wang, Q. (2012). Acta Cryst. E68, m196.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Z. B., Wu, R. T., Li, J. K., Han, Y. F. & Lu, J. R. (2010). J. Coord. Chem. 63, 1118–1129.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds