metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Chloridobis(4-methyl­pyridine-κN)(4,4′,4′′-tri-tert-butyl-2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)ruthenium(II) hexa­fluoridophosphate acetone monosolvate

aSchool of Chemistry, University of New South Wales, Sydney, 2052 NSW, Australia, and bMark Wainwright Analytical Centre, University of New South Wales, Sydney, 2052 NSW, Australia
*Correspondence e-mail: s.colbran@unsw.edu.au

(Received 13 January 2012; accepted 8 February 2012; online 17 February 2012)

The title compound, [RuCl(C6H7N)2(C27H35N3)]PF6·C3H6O, was obtained unintentionally as the product of the reaction of 1,1′-methyl­enebis(4-methyl­pyridinium) hexa­fluoriso­phos­phate and RuCl3(tpy*) (tpy* is 4,4′,4′′-tri-tert-butyl-2,2′:6′,2′′-terpyridine) in the presence of triethyl­amine and LiCl. The mol­ecular structure of the complex displays an octa­hedral geometry around the RuII ion and the unit cell contains an acetone solvent mol­ecule and one orientationally disordered PF6 anion (occupancy ratio 0.75:0.25) which is hydrogen bonded to two H atoms of the tpy* ligand of the nearest [RuCl(pic)2(tpy*)]+ cation (pic is 4-methyl­pyridine). One of the tert-butyl groups of the tpy* ligand is also disordered over two sets of sites in a 0.75:0.25 ratio.

Related literature

For details of the synthesis and properties of related ruthenium compounds containing a similar coordination environment, see: Suen et al. (1989[Suen, H. F., Wilson, S. W., Pomerantz, M. & Walsh, J. L. (1989). Inorg. Chem. 28, 786-791.]); Coe et al. (1995[Coe, B. J., Thompson, D. W., Culbertson, C. T., Schoonover, J. R. & Meyer, T. J. (1995). Inorg. Chem. 34, 3385-3395.]); Tseng et al. (2008[Tseng, H.-W., Zong, R., Muckerman, J. T. & Thummel, R. (2008). Inorg. Chem. 47, 11763-11773.]); Wasylenko et al. (2010[Wasylenko, D. J., Ganesamoorthy, C., Koivisto, B. D. & Berlinguette, C. P. (2010). Eur. J. Inorg. Chem. pp. 3135-3142.]); Duan et al. (2011[Duan, L., Xu, Y., Tong, L. & Sun, L. (2011). ChemSusChem, 4, 238-244.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl(C6H7N)2(C27H35N3)]PF6·C3H6O

  • Mr = 927.40

  • Monoclinic, P 21 /n

  • a = 16.4041 (9) Å

  • b = 12.7834 (6) Å

  • c = 21.9468 (11) Å

  • β = 107.865 (3)°

  • V = 4380.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 156 K

  • 0.16 × 0.10 × 0.04 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.920, Tmax = 0.979

  • 31904 measured reflections

  • 7705 independent reflections

  • 4203 reflections with I > 2σ(I)

  • Rint = 0.129

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.171

  • S = 0.85

  • 7705 reflections

  • 566 parameters

  • 81 restraints

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL-Plus and local programs.

Supporting information


Comment top

Ruthenium(II) complexes containing terpyridine and pyridine ligands have recently been recognized as efficient water oxidation catalysts (Duan et al. 2011, Wasylenko et al. 2010 and Tseng et al. 2008). Most of the reported complexes contain bipyridine ligands and have the general formula [Ru(bpy)(tpy)L][PF6]n (bpy = bipyridine; tpy = terpyridine; L = ligand; n = 1 or 2), but also the cis and trans isomers of complexes with pyridine ligands, analogous to the reported compound [RuCl(pic)2(tpy*)][PF6](pic = 4-picoline; tpy* = 4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine), have shown remarkable catalytic activity (Duan et al. 2011). The synthesis and modification of this kind of compounds have been studied for a long time (e.g. Suen et al. 1989 and Coe et al. 1995).

The octahedral geometry of the complex [RuCl(pic)2(tpy*)][PF6].(CH3)2CO has an average N—Ru—N angle of 87.9 (10) ° and an average N—Ru—Cl angle of 94.5 (15) °. The H···F distances of the hydrogen bonding between [PF6]- anion and the hydrogen atoms of the terpyridine ligand are in the range of 2.4–2.5 Å. Careful inspection of the terpyridine ligand shows that the ligand does not lie on a single plane but its pyridyl rings are slightly twisted with respect to each other with an inter-ring dihedral angles range of 175.6 (6)–179.8 (6)°.

Related literature top

For details of the synthesis and properties of related ruthenium compounds containing a similar coordination environment, see: Suen et al. (1989); Coe et al. (1995); Tseng et al. (2008); Wasylenko et al. (2010); Duan et al. (2011).

Experimental top

A mixture of RuCl3(tpy*) (25 mg, 0.041 mmol), 1,1'-methylenebis(4-methylpyridinium) hexafluorophosphate (20 mg, 0.041 mmol), LiCl (50 mg, 1.2 mmol), and NEt3 (0.1 ml, 1.4 mmol) was stirred in H2O/EtOH (1/1) (5 ml) at reflux for 18 h. After cooling, the solvent was removed under reduced pressure. The crude solid was then redissolved in hot toluene (20 ml). A red insoluble compound was discarded. The solvent was then removed, and the resulting purple solid was recrystallized by slow evaporation of an acetone/cyclohexane (9/1) mixture. Purple crystalline plates of [RuCl(pic)2(tpy*)][PF6].(CH3)2CO were obtained (19.9 mg, 0.0230 mmol, 56%). 1H NMR ((CD3)2CO, 300 MHz): δ 9.18–9.22 (d, 2H, J = 6.0 Hz, Ar—H), 8.75–8.79 (s, 2H, Ar—H), 8.69–8.63 (s, 2H, Ar—H), 7.95–8.00 (dd, J3 = 6.0 Hz, J4 = 1.3 Hz, 4H, Arpy*-H), 7.88–7.93 (dd, J3 = 6.0 Hz, J4 = 2.0 Hz, 2H, Artrpy*-H), 6.92–6.95 (d, J = 6.0 Hz, 4H, Ar—H), 2.15–2.19 (s, 6H, py-CH3), 1.51–1.56 (s, 9H, tert-but), 1.42–1.47 (s, 18H, tert-but). 13C NMR (((CD3)2CO, 300 MHz): δ 162, 161, 159, 156, 152, 151, 150, 149, 125, 120, 121, 35, 36, 30, 20.

Refinement top

The [PF6]- anion and one of the butyl groups exhibited two fold orientational disorders. The major sites were refined anisotropically in each case, and appropriate constraints were applied (SADI, DELU) to maintain the geometry and displacement parameters of these entities. All H-atoms were positioned geometrically [C—H = 0.95 to 0.99 Å] and were refined using a riding-model approximation, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: APEX2 (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the [RuCl(pic)2(tpy*)]+ cation showing 50% thermal ellipsoids at 156 K (H-atoms are omitted for clarity; the labelled tert-butyl group C16A is rotationally disordered, and only the major orientation is shown).
[Figure 2] Fig. 2. Ball-and-stick view of the crystal structure of [RuCl(pic)2(tpy*)][PF6] with the closest inter-ion C–H···F–P interactions, which range 2.49–2.79 Å, highlighted.
trans-Chloridobis(4-methylpyridine-κN)(4,4',4''-tri-tert- butyl-2,2':6',2''-terpyridine-κ3N,N',N'')ruthenium(II) hexafluoridophosphate acetone monosolvate top
Crystal data top
[RuCl(C6H7N)2(C27H35N3)]PF6·C3H6OF(000) = 1920
Mr = 927.40Dx = 1.406 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1716 reflections
a = 16.4041 (9) Åθ = 2.5–20.2°
b = 12.7834 (6) ŵ = 0.52 mm1
c = 21.9468 (11) ÅT = 156 K
β = 107.865 (3)°Plate, yellow–brown
V = 4380.3 (4) Å30.16 × 0.10 × 0.04 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7705 independent reflections
Radiation source: fine-focus sealed tube4203 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.129
ϕ scans, and ω scans with κ offsetsθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1919
Tmin = 0.920, Tmax = 0.979k = 1015
31904 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.1P)2 + 0.7175P]
where P = (Fo2 + 2Fc2)/3
7705 reflections(Δ/σ)max = 0.001
566 parametersΔρmax = 0.45 e Å3
81 restraintsΔρmin = 0.45 e Å3
Crystal data top
[RuCl(C6H7N)2(C27H35N3)]PF6·C3H6OV = 4380.3 (4) Å3
Mr = 927.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.4041 (9) ŵ = 0.52 mm1
b = 12.7834 (6) ÅT = 156 K
c = 21.9468 (11) Å0.16 × 0.10 × 0.04 mm
β = 107.865 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7705 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4203 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.979Rint = 0.129
31904 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05981 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 0.85Δρmax = 0.45 e Å3
7705 reflectionsΔρmin = 0.45 e Å3
566 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.71663 (3)0.19013 (4)0.83778 (2)0.01949 (17)
N1A0.6955 (3)0.1972 (4)0.7408 (2)0.0188 (12)
N2A0.6460 (3)0.0670 (4)0.8110 (2)0.0193 (12)
N3A0.7108 (3)0.1373 (4)0.9254 (2)0.0200 (12)
C1A0.7264 (4)0.2657 (5)0.7070 (3)0.0232 (15)
H1A0.76290.31990.72970.028*
C2A0.7084 (4)0.2620 (5)0.6419 (3)0.0284 (17)
H2A0.73240.31240.62060.034*
C3A0.6543 (4)0.1835 (5)0.6067 (3)0.0277 (16)
C4A0.6230 (4)0.1128 (5)0.6419 (3)0.0228 (15)
H4A0.58610.05820.62010.027*
C5A0.6436 (4)0.1194 (5)0.7069 (3)0.0207 (15)
C6A0.6163 (4)0.0428 (5)0.7478 (3)0.0168 (14)
C7A0.5691 (4)0.0465 (5)0.7282 (3)0.0193 (15)
H7A0.54860.06250.68380.023*
C8A0.5508 (4)0.1138 (5)0.7717 (3)0.0193 (15)
C9A0.5825 (4)0.0854 (5)0.8367 (3)0.0235 (16)
H9A0.57100.12910.86810.028*
C10A0.6295 (4)0.0038 (5)0.8554 (3)0.0169 (14)
C11A0.6657 (4)0.0454 (5)0.9205 (3)0.0195 (15)
C12A0.6569 (4)0.0026 (5)0.9753 (3)0.0268 (16)
H12A0.62780.06770.97120.032*
C13A0.6894 (4)0.0421 (5)1.0354 (3)0.0244 (16)
C14A0.7324 (4)0.1373 (5)1.0382 (3)0.0283 (17)
H14A0.75520.17191.07810.034*
C15A0.7419 (4)0.1815 (5)0.9835 (3)0.0259 (15)
H15A0.77170.24600.98700.031*
C16A0.6317 (4)0.1744 (5)0.5347 (3)0.0322 (18)
C1710.6684 (6)0.2656 (7)0.5057 (4)0.042 (3)0.75
H17A0.64850.33210.51830.062*0.75
H17B0.64910.25970.45890.062*0.75
H17C0.73120.26320.52140.062*0.75
C1810.6659 (8)0.0728 (7)0.5174 (5)0.067 (4)0.75
H18A0.72740.06770.54010.100*0.75
H18B0.65670.07060.47110.100*0.75
H18C0.63600.01400.52970.100*0.75
C1910.5336 (6)0.1779 (9)0.5060 (4)0.055 (3)0.75
H19A0.50840.11840.52200.082*0.75
H19B0.51790.17420.45920.082*0.75
H19C0.51190.24330.51850.082*0.75
C1720.609 (2)0.2813 (14)0.5044 (17)0.072 (13)*0.25
H17D0.55230.30190.50600.107*0.25
H17E0.60870.27860.45960.107*0.25
H17F0.65160.33260.52780.107*0.25
C1820.7120 (14)0.133 (2)0.5209 (18)0.072 (12)*0.25
H18D0.76160.17550.54440.108*0.25
H18E0.70410.13830.47490.108*0.25
H18F0.72150.06020.53450.108*0.25
C1920.5585 (15)0.098 (2)0.5047 (15)0.057 (10)*0.25
H19D0.58050.02580.51090.086*0.25
H19E0.53470.11200.45880.086*0.25
H19F0.51360.10580.52520.086*0.25
C20A0.4974 (4)0.2128 (5)0.7520 (3)0.0262 (16)
C21A0.4683 (5)0.2287 (5)0.6793 (3)0.0378 (19)
H21A0.43210.16980.65860.057*
H21B0.43560.29390.66870.057*
H21C0.51860.23260.66420.057*
C22A0.5525 (5)0.3069 (5)0.7826 (4)0.0385 (19)
H22A0.60250.31080.76720.058*
H22B0.51870.37110.77090.058*
H22C0.57150.29900.82930.058*
C23A0.4178 (4)0.2056 (5)0.7740 (3)0.0339 (18)
H23A0.43510.20410.82090.051*
H23B0.38120.26660.75830.051*
H23C0.38620.14160.75690.051*
C24A0.6783 (5)0.0119 (6)1.0949 (3)0.0334 (18)
C25A0.7219 (6)0.1177 (6)1.1023 (4)0.053 (2)
H25A0.71410.15401.13950.079*
H25B0.78320.10811.10860.079*
H25C0.69660.15961.06370.079*
C26A0.5839 (5)0.0252 (7)1.0869 (3)0.045 (2)
H26A0.55760.06931.04960.067*
H26B0.55600.04351.08080.067*
H26C0.57700.05831.12530.067*
C27A0.7198 (5)0.0517 (7)1.1563 (3)0.049 (2)
H27A0.69460.12201.15160.074*
H27B0.78160.05721.16330.074*
H27C0.70950.01661.19290.074*
N1B0.8248 (3)0.0994 (4)0.8493 (2)0.0220 (13)
C1B0.8339 (4)0.0286 (5)0.8059 (3)0.0264 (16)
H1B0.78810.02040.76730.032*
C2B0.9059 (5)0.0320 (5)0.8148 (3)0.0320 (17)
H2B0.90950.07850.78200.038*
C3B0.9721 (4)0.0261 (6)0.8702 (3)0.0311 (17)
C4B0.9635 (5)0.0463 (6)0.9149 (3)0.0374 (19)
H4B1.00840.05410.95410.045*
C5B0.8908 (4)0.1074 (5)0.9035 (3)0.0298 (17)
H5B0.88740.15670.93510.036*
C6B1.0506 (5)0.0932 (7)0.8829 (4)0.062 (3)
H6B11.03420.16710.88190.093*
H6B21.09030.07620.92510.093*
H6B31.07850.08020.85000.093*
N1C0.6102 (3)0.2869 (4)0.8311 (2)0.0218 (13)
C1C0.6196 (4)0.3761 (5)0.8650 (3)0.0282 (17)
H1C0.67470.39360.89290.034*
C2C0.5518 (5)0.4435 (5)0.8606 (3)0.0350 (19)
H2C0.56190.50710.88410.042*
C3C0.4695 (5)0.4195 (6)0.8226 (3)0.0339 (18)
C4C0.4608 (4)0.3255 (6)0.7891 (3)0.0346 (18)
H4C0.40590.30430.76260.042*
C5C0.5306 (4)0.2629 (5)0.7940 (3)0.0276 (16)
H5C0.52230.19980.77000.033*
C6C0.3960 (5)0.4923 (6)0.8152 (4)0.047 (2)
H6C10.41360.54950.84620.071*
H6C20.34820.45420.82290.071*
H6C30.37780.52100.77170.071*
Cl10.81303 (11)0.34102 (13)0.86712 (8)0.0306 (4)
O1AC0.5718 (4)0.7458 (5)0.0482 (3)0.0728 (19)
C1AC0.5987 (7)0.6159 (8)0.0311 (5)0.085 (3)
H1A10.65300.60860.02160.128*
H1A20.56910.54830.02520.128*
H1A30.60990.63930.07540.128*
C2AC0.5443 (6)0.6938 (7)0.0127 (4)0.054 (2)
C3AC0.4551 (7)0.7086 (8)0.0114 (6)0.102 (4)
H3A10.43000.77000.03710.153*
H3A20.45540.71930.03290.153*
H3A30.42110.64650.02900.153*
F1B0.9240 (12)0.389 (3)0.1759 (19)0.155 (13)*0.25
F2B0.831 (2)0.5194 (15)0.1385 (17)0.116 (13)*0.25
F3B0.816 (2)0.2843 (15)0.1650 (14)0.096 (11)*0.25
F4B0.7297 (13)0.376 (3)0.1182 (18)0.129 (12)*0.25
F5B0.815 (2)0.421 (3)0.2162 (11)0.119 (10)*0.25
F6B0.832 (2)0.365 (2)0.0845 (11)0.111 (10)*0.25
F1A0.9018 (4)0.4510 (6)0.1285 (3)0.0741 (19)0.75
F2A0.7893 (5)0.5195 (4)0.1500 (4)0.069 (2)0.75
F3A0.8619 (5)0.2875 (5)0.1534 (3)0.067 (2)0.75
F4A0.7523 (5)0.3622 (6)0.1762 (5)0.094 (3)0.75
F5A0.8864 (5)0.4190 (5)0.2235 (3)0.0580 (17)0.75
F6A0.7704 (6)0.3909 (5)0.0781 (3)0.080 (2)0.75
P10.82639 (14)0.40259 (16)0.15067 (11)0.0457 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0200 (3)0.0179 (3)0.0194 (3)0.0006 (3)0.0043 (2)0.0013 (3)
N1A0.017 (3)0.013 (3)0.024 (3)0.002 (2)0.002 (2)0.000 (2)
N2A0.023 (3)0.015 (3)0.020 (3)0.006 (2)0.007 (2)0.001 (2)
N3A0.012 (3)0.024 (3)0.020 (3)0.003 (2)0.000 (2)0.005 (2)
C1A0.022 (4)0.018 (4)0.028 (4)0.000 (3)0.005 (3)0.007 (3)
C2A0.030 (4)0.023 (4)0.033 (4)0.001 (3)0.010 (3)0.011 (3)
C3A0.032 (4)0.029 (4)0.022 (3)0.005 (4)0.007 (3)0.007 (3)
C4A0.022 (4)0.024 (4)0.018 (3)0.002 (3)0.001 (3)0.003 (3)
C5A0.014 (4)0.018 (4)0.028 (4)0.004 (3)0.003 (3)0.004 (3)
C6A0.019 (4)0.014 (3)0.016 (3)0.002 (3)0.004 (3)0.002 (3)
C7A0.018 (4)0.024 (4)0.014 (3)0.000 (3)0.002 (3)0.001 (3)
C8A0.024 (4)0.011 (3)0.022 (4)0.002 (3)0.006 (3)0.001 (3)
C9A0.026 (4)0.025 (4)0.024 (4)0.002 (3)0.014 (3)0.006 (3)
C10A0.019 (4)0.016 (3)0.015 (3)0.002 (3)0.005 (3)0.005 (3)
C11A0.015 (4)0.023 (4)0.020 (3)0.005 (3)0.004 (3)0.004 (3)
C12A0.019 (4)0.042 (4)0.019 (4)0.006 (3)0.005 (3)0.004 (3)
C13A0.023 (4)0.033 (4)0.018 (4)0.012 (3)0.007 (3)0.004 (3)
C14A0.025 (4)0.037 (4)0.021 (4)0.005 (4)0.005 (3)0.010 (3)
C15A0.028 (4)0.028 (4)0.021 (3)0.003 (3)0.006 (3)0.007 (3)
C16A0.043 (5)0.035 (5)0.019 (3)0.007 (4)0.009 (3)0.009 (3)
C1710.039 (7)0.059 (7)0.022 (5)0.004 (6)0.002 (5)0.016 (5)
C1810.142 (13)0.041 (7)0.033 (6)0.006 (8)0.050 (8)0.009 (6)
C1910.054 (8)0.082 (9)0.017 (5)0.026 (7)0.007 (5)0.024 (6)
C20A0.032 (4)0.017 (4)0.030 (4)0.004 (3)0.011 (3)0.005 (3)
C21A0.053 (5)0.030 (4)0.031 (4)0.018 (4)0.014 (4)0.003 (3)
C22A0.036 (5)0.023 (4)0.055 (5)0.004 (4)0.011 (4)0.005 (4)
C23A0.023 (4)0.036 (5)0.044 (4)0.004 (3)0.012 (3)0.006 (4)
C24A0.032 (4)0.049 (5)0.021 (4)0.005 (4)0.011 (3)0.008 (3)
C25A0.064 (6)0.059 (6)0.039 (5)0.012 (5)0.020 (4)0.017 (4)
C26A0.033 (5)0.069 (6)0.034 (4)0.002 (4)0.012 (4)0.005 (4)
C27A0.043 (5)0.083 (6)0.022 (4)0.006 (5)0.011 (4)0.001 (4)
N1B0.021 (3)0.025 (3)0.018 (3)0.001 (3)0.004 (3)0.003 (2)
C1B0.020 (4)0.021 (4)0.036 (4)0.002 (3)0.005 (3)0.005 (3)
C2B0.034 (5)0.029 (4)0.037 (4)0.010 (4)0.017 (4)0.006 (3)
C3B0.025 (4)0.040 (5)0.032 (4)0.010 (4)0.014 (4)0.008 (4)
C4B0.022 (4)0.055 (5)0.031 (4)0.007 (4)0.002 (3)0.005 (4)
C5B0.024 (4)0.038 (4)0.030 (4)0.003 (3)0.012 (3)0.004 (3)
C6B0.034 (5)0.079 (7)0.069 (6)0.030 (5)0.012 (5)0.015 (5)
N1C0.023 (3)0.020 (3)0.022 (3)0.000 (2)0.006 (3)0.003 (2)
C1C0.027 (4)0.024 (4)0.030 (4)0.004 (3)0.003 (3)0.000 (3)
C2C0.049 (5)0.022 (4)0.035 (4)0.006 (4)0.015 (4)0.003 (3)
C3C0.040 (5)0.037 (5)0.027 (4)0.008 (4)0.014 (4)0.013 (4)
C4C0.022 (4)0.042 (5)0.041 (4)0.011 (4)0.010 (3)0.007 (4)
C5C0.031 (5)0.027 (4)0.026 (4)0.004 (3)0.011 (3)0.004 (3)
C6C0.044 (5)0.050 (5)0.054 (5)0.022 (4)0.025 (4)0.006 (4)
Cl10.0310 (10)0.0252 (10)0.0373 (10)0.0103 (8)0.0129 (8)0.0084 (8)
O1AC0.081 (5)0.080 (5)0.060 (4)0.012 (4)0.025 (4)0.033 (4)
C1AC0.089 (9)0.082 (8)0.091 (8)0.016 (7)0.036 (7)0.040 (6)
C2AC0.071 (7)0.042 (5)0.055 (5)0.003 (5)0.030 (5)0.006 (5)
C3AC0.080 (9)0.066 (8)0.172 (13)0.027 (6)0.059 (8)0.049 (7)
F1A0.043 (4)0.105 (6)0.079 (5)0.014 (4)0.025 (4)0.003 (4)
F2A0.050 (5)0.030 (3)0.125 (7)0.012 (3)0.026 (5)0.001 (3)
F3A0.074 (6)0.044 (4)0.066 (5)0.036 (3)0.003 (4)0.023 (3)
F4A0.058 (5)0.076 (5)0.168 (8)0.001 (4)0.066 (5)0.020 (6)
F5A0.072 (5)0.052 (4)0.042 (3)0.002 (3)0.006 (3)0.014 (3)
F6A0.075 (6)0.062 (5)0.063 (4)0.010 (4)0.039 (4)0.001 (3)
P10.0397 (14)0.0356 (13)0.0572 (14)0.0029 (10)0.0081 (11)0.0080 (11)
Geometric parameters (Å, º) top
Ru1—N2A1.936 (5)C22A—H22A0.9800
Ru1—N1A2.051 (5)C22A—H22B0.9800
Ru1—N3A2.067 (5)C22A—H22C0.9800
Ru1—N1B2.070 (5)C23A—H23A0.9800
Ru1—N1C2.109 (5)C23A—H23B0.9800
Ru1—Cl12.4517 (17)C23A—H23C0.9800
N1A—C1A1.343 (8)C24A—C26A1.513 (10)
N1A—C5A1.370 (8)C24A—C25A1.516 (10)
N2A—C10A1.357 (7)C24A—C27A1.542 (10)
N2A—C6A1.357 (7)C25A—H25A0.9800
N3A—C15A1.344 (7)C25A—H25B0.9800
N3A—C11A1.375 (8)C25A—H25C0.9800
C1A—C2A1.369 (9)C26A—H26A0.9800
C1A—H1A0.9500C26A—H26B0.9800
C2A—C3A1.404 (9)C26A—H26C0.9800
C2A—H2A0.9500C27A—H27A0.9800
C3A—C4A1.386 (9)C27A—H27B0.9800
C3A—C16A1.513 (9)C27A—H27C0.9800
C4A—C5A1.365 (8)N1B—C5B1.344 (8)
C4A—H4A0.9500N1B—C1B1.355 (8)
C5A—C6A1.487 (8)C1B—C2B1.376 (9)
C6A—C7A1.372 (8)C1B—H1B0.9500
C7A—C8A1.386 (8)C2B—C3B1.361 (9)
C7A—H7A0.9500C2B—H2B0.9500
C8A—C9A1.406 (8)C3B—C4B1.388 (10)
C8A—C20A1.524 (8)C3B—C6B1.500 (10)
C9A—C10A1.368 (8)C4B—C5B1.383 (9)
C9A—H9A0.9500C4B—H4B0.9500
C10A—C11A1.468 (8)C5B—H5B0.9500
C11A—C12A1.395 (8)C6B—H6B10.9800
C12A—C13A1.386 (9)C6B—H6B20.9800
C12A—H12A0.9500C6B—H6B30.9800
C13A—C14A1.399 (9)N1C—C1C1.344 (8)
C13A—C24A1.537 (9)N1C—C5C1.345 (8)
C14A—C15A1.378 (9)C1C—C2C1.388 (9)
C14A—H14A0.9500C1C—H1C0.9500
C15A—H15A0.9500C2C—C3C1.386 (10)
C16A—C1811.510 (10)C2C—H2C0.9500
C16A—C1721.516 (14)C3C—C4C1.393 (10)
C16A—C1821.532 (14)C3C—C6C1.493 (10)
C16A—C1921.535 (14)C4C—C5C1.373 (9)
C16A—C1711.538 (9)C4C—H4C0.9500
C16A—C1911.539 (9)C5C—H5C0.9500
C171—H17A0.9800C6C—H6C10.9800
C171—H17B0.9800C6C—H6C20.9800
C171—H17C0.9800C6C—H6C30.9800
C181—H18A0.9800O1AC—C2AC1.211 (9)
C181—H18B0.9800C1AC—C2AC1.478 (12)
C181—H18C0.9800C1AC—H1A10.9800
C191—H19A0.9800C1AC—H1A20.9800
C191—H19B0.9800C1AC—H1A30.9800
C191—H19C0.9800C2AC—C3AC1.485 (12)
C172—H17D0.9800C3AC—H3A10.9800
C172—H17E0.9800C3AC—H3A20.9800
C172—H17F0.9800C3AC—H3A30.9800
C182—H18D0.9800F1B—P11.535 (18)
C182—H18E0.9800F2B—P11.523 (18)
C182—H18F0.9800F3B—P11.565 (18)
C192—H19D0.9800F4B—P11.563 (18)
C192—H19E0.9800F5B—P11.522 (18)
C192—H19F0.9800F6B—P11.561 (18)
C20A—C23A1.526 (9)F1A—P11.587 (6)
C20A—C22A1.530 (9)F2A—P11.612 (6)
C20A—C21A1.531 (9)F3A—P11.577 (5)
C21A—H21A0.9800F4A—P11.573 (7)
C21A—H21B0.9800F5A—P11.613 (6)
C21A—H21C0.9800F6A—P11.583 (6)
N2A—Ru1—N1A80.0 (2)C24A—C25A—H25A109.5
N2A—Ru1—N3A79.8 (2)C24A—C25A—H25B109.5
N1A—Ru1—N3A159.7 (2)H25A—C25A—H25B109.5
N2A—Ru1—N1B89.6 (2)C24A—C25A—H25C109.5
N1A—Ru1—N1B91.02 (19)H25A—C25A—H25C109.5
N3A—Ru1—N1B89.16 (19)H25B—C25A—H25C109.5
N2A—Ru1—N1C92.9 (2)C24A—C26A—H26A109.5
N1A—Ru1—N1C91.66 (19)C24A—C26A—H26B109.5
N3A—Ru1—N1C89.02 (19)H26A—C26A—H26B109.5
N1B—Ru1—N1C176.6 (2)C24A—C26A—H26C109.5
N2A—Ru1—Cl1175.67 (15)H26A—C26A—H26C109.5
N1A—Ru1—Cl197.36 (14)H26B—C26A—H26C109.5
N3A—Ru1—Cl1102.88 (15)C24A—C27A—H27A109.5
N1B—Ru1—Cl187.08 (15)C24A—C27A—H27B109.5
N1C—Ru1—Cl190.58 (15)H27A—C27A—H27B109.5
C1A—N1A—C5A116.8 (5)C24A—C27A—H27C109.5
C1A—N1A—Ru1129.0 (4)H27A—C27A—H27C109.5
C5A—N1A—Ru1114.2 (4)H27B—C27A—H27C109.5
C10A—N2A—C6A120.7 (5)C5B—N1B—C1B116.2 (6)
C10A—N2A—Ru1119.9 (4)C5B—N1B—Ru1119.5 (4)
C6A—N2A—Ru1119.3 (4)C1B—N1B—Ru1124.2 (4)
C15A—N3A—C11A118.1 (5)N1B—C1B—C2B123.3 (6)
C15A—N3A—Ru1129.2 (4)N1B—C1B—H1B118.3
C11A—N3A—Ru1112.6 (4)C2B—C1B—H1B118.3
N1A—C1A—C2A123.8 (6)C3B—C2B—C1B120.8 (7)
N1A—C1A—H1A118.1C3B—C2B—H2B119.6
C2A—C1A—H1A118.1C1B—C2B—H2B119.6
C1A—C2A—C3A119.8 (6)C2B—C3B—C4B116.2 (6)
C1A—C2A—H2A120.1C2B—C3B—C6B122.6 (7)
C3A—C2A—H2A120.1C4B—C3B—C6B121.2 (7)
C4A—C3A—C2A116.1 (6)C5B—C4B—C3B121.2 (7)
C4A—C3A—C16A121.2 (6)C5B—C4B—H4B119.4
C2A—C3A—C16A122.7 (6)C3B—C4B—H4B119.4
C5A—C4A—C3A121.8 (6)N1B—C5B—C4B122.2 (6)
C5A—C4A—H4A119.1N1B—C5B—H5B118.9
C3A—C4A—H4A119.1C4B—C5B—H5B118.9
C4A—C5A—N1A121.7 (6)C3B—C6B—H6B1109.5
C4A—C5A—C6A124.5 (6)C3B—C6B—H6B2109.5
N1A—C5A—C6A113.8 (5)H6B1—C6B—H6B2109.5
N2A—C6A—C7A120.1 (5)C3B—C6B—H6B3109.5
N2A—C6A—C5A112.7 (5)H6B1—C6B—H6B3109.5
C7A—C6A—C5A127.2 (5)H6B2—C6B—H6B3109.5
C6A—C7A—C8A121.5 (5)C1C—N1C—C5C117.0 (6)
C6A—C7A—H7A119.3C1C—N1C—Ru1120.4 (4)
C8A—C7A—H7A119.3C5C—N1C—Ru1122.5 (4)
C7A—C8A—C9A116.5 (6)N1C—C1C—C2C122.3 (6)
C7A—C8A—C20A123.2 (5)N1C—C1C—H1C118.9
C9A—C8A—C20A120.3 (5)C2C—C1C—H1C118.9
C10A—C9A—C8A121.3 (6)C3C—C2C—C1C121.1 (7)
C10A—C9A—H9A119.4C3C—C2C—H2C119.5
C8A—C9A—H9A119.4C1C—C2C—H2C119.5
N2A—C10A—C9A119.9 (5)C2C—C3C—C4C115.6 (7)
N2A—C10A—C11A111.9 (5)C2C—C3C—C6C122.2 (7)
C9A—C10A—C11A128.1 (5)C4C—C3C—C6C122.2 (7)
N3A—C11A—C12A120.3 (6)C5C—C4C—C3C120.9 (7)
N3A—C11A—C10A115.6 (5)C5C—C4C—H4C119.6
C12A—C11A—C10A124.1 (6)C3C—C4C—H4C119.6
C13A—C12A—C11A121.8 (7)N1C—C5C—C4C123.0 (6)
C13A—C12A—H12A119.1N1C—C5C—H5C118.5
C11A—C12A—H12A119.1C4C—C5C—H5C118.5
C12A—C13A—C14A116.2 (6)C3C—C6C—H6C1109.5
C12A—C13A—C24A120.8 (6)C3C—C6C—H6C2109.5
C14A—C13A—C24A122.9 (6)H6C1—C6C—H6C2109.5
C15A—C14A—C13A120.5 (6)C3C—C6C—H6C3109.5
C15A—C14A—H14A119.7H6C1—C6C—H6C3109.5
C13A—C14A—H14A119.7H6C2—C6C—H6C3109.5
N3A—C15A—C14A122.9 (6)C2AC—C1AC—H1A1109.5
N3A—C15A—H15A118.5C2AC—C1AC—H1A2109.5
C14A—C15A—H15A118.5H1A1—C1AC—H1A2109.5
C181—C16A—C3A109.7 (6)C2AC—C1AC—H1A3109.5
C181—C16A—C172136.5 (15)H1A1—C1AC—H1A3109.5
C3A—C16A—C172109.8 (15)H1A2—C1AC—H1A3109.5
C181—C16A—C18241.1 (11)O1AC—C2AC—C1AC121.3 (9)
C3A—C16A—C182106.5 (15)O1AC—C2AC—C3AC120.4 (9)
C172—C16A—C182109.3 (12)C1AC—C2AC—C3AC118.3 (8)
C181—C16A—C19269.1 (11)C2AC—C3AC—H3A1109.5
C3A—C16A—C192114.0 (14)C2AC—C3AC—H3A2109.5
C172—C16A—C192109.5 (12)H3A1—C3AC—H3A2109.5
C182—C16A—C192107.6 (12)C2AC—C3AC—H3A3109.5
C181—C16A—C171108.9 (6)H3A1—C3AC—H3A3109.5
C3A—C16A—C171111.9 (6)H3A2—C3AC—H3A3109.5
C172—C16A—C17137.7 (12)F5B—P1—F2B92.2 (18)
C182—C16A—C17173.0 (12)F5B—P1—F1B95 (2)
C192—C16A—C171131.4 (14)F2B—P1—F1B94 (2)
C181—C16A—C191110.2 (7)F5B—P1—F6B170.4 (17)
C3A—C16A—C191108.5 (6)F2B—P1—F6B97.0 (18)
C172—C16A—C19173.1 (12)F1B—P1—F6B87.0 (19)
C182—C16A—C191141.6 (15)F5B—P1—F4B93.8 (19)
C192—C16A—C19142.3 (11)F2B—P1—F4B103.0 (19)
C171—C16A—C191107.6 (6)F1B—P1—F4B160.3 (19)
C16A—C171—H17A109.5F6B—P1—F4B81.5 (17)
C16A—C171—H17B109.5F5B—P1—F3B84.7 (17)
C16A—C171—H17C109.5F2B—P1—F3B175.5 (18)
C16A—C181—H18A109.5F1B—P1—F3B89.4 (18)
C16A—C181—H18B109.5F6B—P1—F3B85.9 (16)
C16A—C181—H18C109.5F4B—P1—F3B74.0 (17)
C16A—C191—H19A109.5F5B—P1—F4A52.1 (13)
C16A—C191—H19B109.5F2B—P1—F4A117.8 (14)
C16A—C191—H19C109.5F1B—P1—F4A132.1 (16)
C16A—C172—H17D109.5F6B—P1—F4A120.2 (12)
C16A—C172—H17E109.5F4B—P1—F4A46.0 (14)
H17D—C172—H17E109.5F3B—P1—F4A57.7 (12)
C16A—C172—H17F109.5F5B—P1—F3A105.0 (12)
H17D—C172—H17F109.5F2B—P1—F3A152.3 (15)
H17E—C172—H17F109.5F1B—P1—F3A63.4 (14)
C16A—C182—H18D109.5F6B—P1—F3A67.5 (12)
C16A—C182—H18E109.5F4B—P1—F3A97.4 (13)
H18D—C182—H18E109.5F3B—P1—F3A32.2 (10)
C16A—C182—H18F109.5F4A—P1—F3A89.8 (5)
H18D—C182—H18F109.5F5B—P1—F6A140.0 (15)
H18E—C182—H18F109.5F2B—P1—F6A87.7 (14)
C16A—C192—H19D109.5F1B—P1—F6A124.9 (16)
C16A—C192—H19E109.5F6B—P1—F6A38.4 (11)
H19D—C192—H19E109.5F4B—P1—F6A47.7 (14)
C16A—C192—H19F109.5F3B—P1—F6A92.5 (11)
H19D—C192—H19F109.5F4A—P1—F6A93.1 (5)
H19E—C192—H19F109.5F3A—P1—F6A92.5 (4)
C8A—C20A—C23A109.4 (5)F5B—P1—F1A123.9 (15)
C8A—C20A—C22A108.5 (5)F2B—P1—F1A58.7 (14)
C23A—C20A—C22A110.8 (5)F1B—P1—F1A47.8 (14)
C8A—C20A—C21A112.0 (5)F6B—P1—F1A63.9 (12)
C23A—C20A—C21A108.3 (6)F4B—P1—F1A136.2 (16)
C22A—C20A—C21A107.8 (5)F3B—P1—F1A125.7 (12)
C20A—C21A—H21A109.5F4A—P1—F1A175.5 (5)
C20A—C21A—H21B109.5F3A—P1—F1A93.6 (5)
H21A—C21A—H21B109.5F6A—P1—F1A89.7 (5)
C20A—C21A—H21C109.5F5B—P1—F2A73.2 (12)
H21A—C21A—H21C109.5F2B—P1—F2A29.2 (13)
H21B—C21A—H21C109.5F1B—P1—F2A117.0 (15)
C20A—C22A—H22A109.5F6B—P1—F2A114.2 (12)
C20A—C22A—H22B109.5F4B—P1—F2A82.4 (13)
H22A—C22A—H22B109.5F3B—P1—F2A146.4 (12)
C20A—C22A—H22C109.5F4A—P1—F2A88.7 (4)
H22A—C22A—H22C109.5F3A—P1—F2A178.1 (5)
H22B—C22A—H22C109.5F6A—P1—F2A88.7 (4)
C20A—C23A—H23A109.5F1A—P1—F2A87.9 (4)
C20A—C23A—H23B109.5F5B—P1—F5A41.9 (13)
H23A—C23A—H23B109.5F2B—P1—F5A90.0 (14)
C20A—C23A—H23C109.5F1B—P1—F5A53.5 (15)
H23A—C23A—H23C109.5F6B—P1—F5A140.3 (13)
H23B—C23A—H23C109.5F4B—P1—F5A134.8 (16)
C26A—C24A—C25A110.2 (7)F3B—P1—F5A89.9 (11)
C26A—C24A—C13A109.6 (5)F4A—P1—F5A89.6 (5)
C25A—C24A—C13A108.5 (6)F3A—P1—F5A88.8 (3)
C26A—C24A—C27A108.8 (6)F6A—P1—F5A177.0 (4)
C25A—C24A—C27A108.0 (6)F1A—P1—F5A87.5 (4)
C13A—C24A—C27A111.7 (6)F2A—P1—F5A90.1 (4)

Experimental details

Crystal data
Chemical formula[RuCl(C6H7N)2(C27H35N3)]PF6·C3H6O
Mr927.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)156
a, b, c (Å)16.4041 (9), 12.7834 (6), 21.9468 (11)
β (°) 107.865 (3)
V3)4380.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.16 × 0.10 × 0.04
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.920, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
31904, 7705, 4203
Rint0.129
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.171, 0.85
No. of reflections7705
No. of parameters566
No. of restraints81
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.45

Computer programs: APEX2 (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Australian Research Council (grant No. DP0988410) for financial support.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoe, B. J., Thompson, D. W., Culbertson, C. T., Schoonover, J. R. & Meyer, T. J. (1995). Inorg. Chem. 34, 3385–3395.  CrossRef CAS Web of Science Google Scholar
First citationDuan, L., Xu, Y., Tong, L. & Sun, L. (2011). ChemSusChem, 4, 238–244.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuen, H. F., Wilson, S. W., Pomerantz, M. & Walsh, J. L. (1989). Inorg. Chem. 28, 786–791.  CrossRef CAS Web of Science Google Scholar
First citationTseng, H.-W., Zong, R., Muckerman, J. T. & Thummel, R. (2008). Inorg. Chem. 47, 11763–11773.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWasylenko, D. J., Ganesamoorthy, C., Koivisto, B. D. & Berlinguette, C. P. (2010). Eur. J. Inorg. Chem. pp. 3135–3142.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds