organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R*,2S*)-2-Nitro-1-(4-nitro­phen­yl)propanol

aDepartment of Chemistry, School of Pharmacy, Fourth Military Medical University, Shaanxi Province, Xi'an 710032, People's Republic of China
*Correspondence e-mail: weihechem@fmmu.edu.cn

(Received 16 January 2012; accepted 21 February 2012; online 29 February 2012)

The title compound, C9H10N2O5, presents a racemic mixture of two enanti­omeric diastereomers. In the crystal, mol­ecules assemble into zigzag chains parallel to the b axis [C(6) motif] due to the formation of elongated O—H⋯O(N) hydrogen bonds. Of inter­est is the fact that only the aliphatic nitro group is involved in hydrogen bonding and it adopts a gauche conformation with respect to the OH group.

Related literature

For the preparation and synthetic utilities of 2-nitro­ethanols, see: Palomo et al. (2005[Palomo, C., Oiarbide, M. & Laso, M. (2005). Angew. Chem. Int. Ed. 44, 3881-3884.]); Palomo (2007[Palomo, C. (2007). Eur. J. Org. Chem. pp. 2561-2574.]). For the structure of the closely related 1-(anthracen-9-yl)-2-nitro­ethanol, see: Niazimbetova et al. (1998[Niazimbetova, Z., Treimer, S. E., Evans, D. H., Guzei, I. & Rheingold, A. L. (1998). J. Electrochem. Soc. 145, 2768-2774.]). For spectroscopic data and chemical properties of the title compound, see: Blay et al. (2008[Blay, J., Domingo, L. R., Hernández-Olmos, V. & Pedro, J. R. (2008). Chem. Eur. J. 14, 4725-4730.]). For hydrogen-bond graph-set notation, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N2O5

  • Mr = 226.19

  • Monoclinic, P 21 /c

  • a = 7.4013 (15) Å

  • b = 10.504 (2) Å

  • c = 13.681 (3) Å

  • β = 100.465 (4)°

  • V = 1046.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.40 × 0.28 × 0.14 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.954, Tmax = 0.984

  • 5155 measured reflections

  • 1868 independent reflections

  • 1502 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.119

  • S = 1.05

  • 1868 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.80 (3) 2.24 (3) 3.010 (2) 162 (3)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXTL and OLEX2.

Supporting information


Comment top

The title compound, C9H10N2O5, I, belongs to the family of β-nitroalcohols which can serve as convenient synthetic precursors for a variety of 1,2-amino alcohols, amino sugars, nitroketones, nitroalkenes, ketones, and other practically important compounds (Palomo et al., 2005; Palomo, 2007).

β-Nitroalcohol I was prepared by a modified procedure described by Blay et al., 2008 (see Experimental). Only one pair of diastereomers is observed among the reaction products, what could be a result of the application of an enantiomerically pure base, natural quinine (see Experimental). In the unsymmetrical unit of I, the N—C(aliphatic) bond is by 0.05 Å longer than the N—C(aromatic) one due to the evident pπ conjugation. The aromatic NO2 group is slightly twisted in respect to the Ph-ring plane [the C6/C7/N2/O4 dihedral angle equals to 17.9 (3)°]. In crystal lattice, the molecules of I assemble in zigzag chains parallel to the b-axis [a C(6) motif (Etter et al., 1990)] due to formation of somewhat elongated [2.24 (3) Å] O—H···O(N) hydrogen bonds. Of interest, only the aliphatic nitro-group is involved into the H-binding and adopts a gauche-conformation respectively to the OH-group, with the N1/C2/C3/O3 dihedral angle being rather close to 60° [55.2 (2)°]. The same H-binding motif was observed earlier for the case of closely related 1-(antracen-9-yl)-2-nitroethanol (Niazimbetova et al., 1998).

Related literature top

For the preparation and synthetic utilities of 2-nitroethanols, see: Palomo et al. (2005); Palomo (2007). For the structure of the closely related 1-(anthracen-9-yl)-2-nitroethanol, see: Niazimbetova et al. (1998). For spectroscopic data and chemical properties of the title compound, see: Blay et al. (2008). For hydrogen-bond graph-set notation, see: Etter et al. (1990).

Experimental top

Quinine [(R)-(6-methoxyquinolin-4-yl)((2S,4S,8R)-8-vinylquinuclidin-2-yl)methanol, 32.4 mg, 0.1 mmol], Zn(OTf)2 [zinc bis(trifluoromethanesulfonate), 36.3 mg, 0.1 mmol], and p-nitrobenzaldehyde (151.1 mg, 1 mmol) were dissolved in THF (5 ml). To this solution, excess of nitroethane (10 mmol) was added. After keeping the mixture for 1 h at 253 K, N-ethyl-N,N-diisopropylamine (17.3 µl, 0.1 mmol) was entered and the slurry was allowed to stay for additional 12 h at the same temperature. The resultant solution was concentrated under reduced pressure and then subjected to silica gel flash column chromatography (hexane/ethyl acetate = 10/1), what gave I as a racemic mixture. Purity of the product was proved additionally by the HPLC method. Single crystal of I suitable for the X-ray diffraction analysis was grown from a CH2Cl2–methanol medium (volume ratio 2: 1). NMR spectral data are in consistence with reported earlier (Blay et al., 2008).

Refinement top

Non-H atoms were refined anisotropically. All H atoms except of the OH group one were treated as riding atoms with distances C—H = 0.96 (CH3), 0.98 (CH), 0.93 Å (CArH), and Uiso(H) = 1.5Ueq(C), 1.2Ueq(C), and 1.2Ueq(C), respectively. The hydroxy-group H-atom was found from the difference Fourier syntheses and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Unsymmetrical unit of I with labeling. Thermal displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Chain-assembling of I in the crystal lattice (ball-and-stick drawing). Hydrogen bonds are depicted as dashed lines. Only O3, H3, and O1_i atoms are labeled. Symmetry code (i): -x, y + 1/2, -z + 1/2.
(1R*,2S*)-2-Nitro-1-(4-nitrophenyl)propanol top
Crystal data top
C9H10N2O5F(000) = 472
Mr = 226.19Dx = 1.436 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1711 reflections
a = 7.4013 (15) Åθ = 2.5–24.3°
b = 10.504 (2) ŵ = 0.12 mm1
c = 13.681 (3) ÅT = 296 K
β = 100.465 (4)°Prism, colourless
V = 1046.0 (4) Å30.40 × 0.28 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
1868 independent reflections
Radiation source: fine-focus sealed tube1502 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 8.333 pixels mm-1θmax = 25.1°, θmin = 2.5°
ϕ and ω scansh = 85
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1212
Tmin = 0.954, Tmax = 0.984l = 1416
5155 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.3436P]
where P = (Fo2 + 2Fc2)/3
1868 reflections(Δ/σ)max < 0.001
150 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C9H10N2O5V = 1046.0 (4) Å3
Mr = 226.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4013 (15) ŵ = 0.12 mm1
b = 10.504 (2) ÅT = 296 K
c = 13.681 (3) Å0.40 × 0.28 × 0.14 mm
β = 100.465 (4)°
Data collection top
Bruker APEXII
diffractometer
1868 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1502 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.984Rint = 0.017
5155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.24 e Å3
1868 reflectionsΔρmin = 0.16 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1671 (2)0.04487 (15)0.18274 (12)0.0528 (4)
N20.3598 (3)0.67086 (16)0.05631 (16)0.0611 (5)
O10.2260 (2)0.09283 (15)0.26305 (12)0.0718 (5)
O20.0497 (3)0.09303 (15)0.12111 (11)0.0800 (6)
O30.0003 (3)0.17439 (15)0.21466 (14)0.0757 (6)
O40.4510 (3)0.72894 (16)0.12539 (14)0.0886 (6)
O50.3235 (3)0.71279 (16)0.02787 (15)0.0872 (6)
C10.3609 (4)0.0580 (2)0.07942 (18)0.0722 (7)
H1A0.44780.00880.10050.108*
H1B0.42540.13450.06840.108*
H1C0.28160.03340.01880.108*
C20.2477 (3)0.08152 (17)0.15862 (16)0.0522 (5)
H20.32970.11210.21840.063*
C30.0905 (3)0.17561 (18)0.13254 (15)0.0512 (5)
H3A0.00600.14560.07340.061*
C40.1629 (3)0.30631 (17)0.11196 (14)0.0464 (5)
C50.2240 (3)0.3894 (2)0.18973 (15)0.0551 (5)
H50.22110.36440.25460.066*
C60.2890 (3)0.50863 (19)0.17205 (15)0.0555 (5)
H60.32950.56430.22430.067*
C70.2926 (3)0.54335 (17)0.07561 (15)0.0489 (5)
C80.2320 (3)0.46360 (18)0.00374 (15)0.0522 (5)
H80.23470.48920.06850.063*
C90.1676 (3)0.34498 (18)0.01569 (15)0.0520 (5)
H90.12660.28980.03680.062*
H30.076 (4)0.230 (3)0.209 (2)0.103 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0716 (11)0.0402 (9)0.0517 (10)0.0058 (8)0.0245 (9)0.0030 (8)
N20.0612 (11)0.0396 (10)0.0843 (14)0.0007 (8)0.0185 (10)0.0046 (10)
O10.0958 (12)0.0593 (10)0.0614 (10)0.0052 (8)0.0171 (8)0.0150 (8)
O20.1145 (14)0.0619 (10)0.0603 (10)0.0379 (10)0.0069 (9)0.0026 (8)
O30.0893 (12)0.0504 (9)0.1043 (14)0.0075 (9)0.0623 (11)0.0127 (9)
O40.1091 (14)0.0488 (10)0.1031 (14)0.0220 (9)0.0061 (11)0.0073 (9)
O50.1046 (14)0.0596 (10)0.0953 (13)0.0183 (9)0.0122 (11)0.0244 (9)
C10.0846 (16)0.0519 (13)0.0924 (17)0.0049 (11)0.0487 (14)0.0075 (12)
C20.0625 (12)0.0343 (10)0.0650 (13)0.0074 (9)0.0251 (10)0.0013 (9)
C30.0542 (11)0.0440 (11)0.0587 (12)0.0049 (9)0.0191 (9)0.0039 (9)
C40.0475 (10)0.0385 (10)0.0560 (11)0.0008 (8)0.0168 (9)0.0023 (8)
C50.0657 (13)0.0511 (12)0.0531 (12)0.0037 (10)0.0233 (10)0.0009 (9)
C60.0598 (12)0.0486 (11)0.0595 (13)0.0036 (9)0.0151 (10)0.0098 (10)
C70.0461 (10)0.0336 (10)0.0695 (13)0.0013 (8)0.0176 (9)0.0020 (9)
C80.0607 (12)0.0430 (11)0.0548 (12)0.0012 (9)0.0155 (9)0.0067 (9)
C90.0614 (12)0.0405 (11)0.0548 (12)0.0028 (9)0.0126 (9)0.0021 (9)
Geometric parameters (Å, º) top
N1—O21.206 (2)C2—H20.9800
N1—O11.215 (2)C3—C41.519 (3)
N1—C21.516 (2)C3—H3A0.9800
N2—O51.217 (2)C4—C91.385 (3)
N2—O41.220 (2)C4—C51.387 (3)
N2—C71.469 (2)C5—C61.378 (3)
O3—C31.407 (2)C5—H50.9300
O3—H30.80 (3)C6—C71.374 (3)
C1—C21.505 (3)C6—H60.9300
C1—H1A0.9600C7—C81.380 (3)
C1—H1B0.9600C8—C91.377 (3)
C1—H1C0.9600C8—H80.9300
C2—C31.519 (3)C9—H90.9300
O2—N1—O1123.54 (17)O3—C3—H3A109.4
O2—N1—C2118.50 (17)C4—C3—H3A109.4
O1—N1—C2117.96 (17)C2—C3—H3A109.4
O5—N2—O4123.24 (19)C9—C4—C5118.93 (17)
O5—N2—C7118.44 (19)C9—C4—C3120.81 (17)
O4—N2—C7118.31 (19)C5—C4—C3120.26 (18)
C3—O3—H3110 (2)C6—C5—C4120.86 (19)
C2—C1—H1A109.5C6—C5—H5119.6
C2—C1—H1B109.5C4—C5—H5119.6
H1A—C1—H1B109.5C7—C6—C5118.55 (19)
C2—C1—H1C109.5C7—C6—H6120.7
H1A—C1—H1C109.5C5—C6—H6120.7
H1B—C1—H1C109.5C6—C7—C8122.29 (18)
C1—C2—N1107.80 (16)C6—C7—N2118.74 (18)
C1—C2—C3116.12 (18)C8—C7—N2118.96 (18)
N1—C2—C3107.79 (16)C9—C8—C7118.15 (19)
C1—C2—H2108.3C9—C8—H8120.9
N1—C2—H2108.3C7—C8—H8120.9
C3—C2—H2108.3C8—C9—C4121.22 (19)
O3—C3—C4113.00 (16)C8—C9—H9119.4
O3—C3—C2105.12 (16)C4—C9—H9119.4
C4—C3—C2110.52 (16)
O2—N1—C2—C169.5 (2)C3—C4—C5—C6179.58 (18)
O1—N1—C2—C1109.8 (2)C4—C5—C6—C70.2 (3)
O2—N1—C2—C356.6 (2)C5—C6—C7—C80.6 (3)
O1—N1—C2—C3124.2 (2)C5—C6—C7—N2179.34 (18)
C1—C2—C3—O3176.23 (17)O5—N2—C7—C6162.9 (2)
N1—C2—C3—O355.2 (2)O4—N2—C7—C617.9 (3)
C1—C2—C3—C461.5 (2)O5—N2—C7—C815.9 (3)
N1—C2—C3—C4177.48 (16)O4—N2—C7—C8163.3 (2)
O3—C3—C4—C9146.5 (2)C6—C7—C8—C90.6 (3)
C2—C3—C4—C996.0 (2)N2—C7—C8—C9179.31 (17)
O3—C3—C4—C532.9 (3)C7—C8—C9—C40.2 (3)
C2—C3—C4—C584.6 (2)C5—C4—C9—C80.2 (3)
C9—C4—C5—C60.1 (3)C3—C4—C9—C8179.61 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.80 (3)2.24 (3)3.010 (2)162 (3)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H10N2O5
Mr226.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.4013 (15), 10.504 (2), 13.681 (3)
β (°) 100.465 (4)
V3)1046.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.28 × 0.14
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.954, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
5155, 1868, 1502
Rint0.017
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.119, 1.05
No. of reflections1868
No. of parameters150
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.16

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.80 (3)2.24 (3)3.010 (2)162 (3)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the Natural Science Foundation of China (project No. 21072228) is gratefully acknowledged. We are also grateful to Dr Maxim V. Borzov (a Foreign Expert at the North-West University, Xi'an, China) for his great help in revising this contribution.

References

First citationBlay, J., Domingo, L. R., Hernández-Olmos, V. & Pedro, J. R. (2008). Chem. Eur. J. 14, 4725–4730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNiazimbetova, Z., Treimer, S. E., Evans, D. H., Guzei, I. & Rheingold, A. L. (1998). J. Electrochem. Soc. 145, 2768–2774.  Web of Science CrossRef CAS Google Scholar
First citationPalomo, C. (2007). Eur. J. Org. Chem. pp. 2561-2574.  Web of Science CrossRef Google Scholar
First citationPalomo, C., Oiarbide, M. & Laso, M. (2005). Angew. Chem. Int. Ed. 44, 3881–3884.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds