metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m246-m247

Di­chlorido{1-[N-(5-chloro-2-oxidophen­yl)carboximido­yl]naphthalen-2-olato-κ3O,N,O′}(methanol-κO)tin(IV)

aDepartment of Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, PO Box 1655, Tabriz, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and dDepartment of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, PO Box 5166616471, Tabriz, Iran
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 28 January 2012; accepted 30 January 2012; online 4 February 2012)

In the title complex, [Sn(C17H10ClNO2)Cl2(CH3OH)], the SnIV atom features a distorted octa­hedral geometry defined by the O,N,O′-donors of the dianion, two Cl atoms and the methanol O atom. The six-membered chelate ring has a half-chair conformation with the Sn atom lying 0.449 (4) Å out of the plane defined by the remaining atoms (r.m.s. deviation = 0.0238 Å). Supra­molecular helical chains along [100], mediated by O—H⋯O hydrogen bonds, feature in the crystal packing. Chains are linked by C—H⋯O, C—H⋯Cl and ππ [centroid–centroid distance = 3.598 (2) Å] inter­actions.

Related literature

For background to related Sn(IV) Schiff base compounds and a closely related structure, see: Pettinari et al. (2001[Pettinari, C., Marchetti, F., Pettinari, R., Martini, D., Drozdov, A. & Troyanov, S. (2001). Inorg. Chim. Acta, 325, 103-114.]). For specialized crystallization techniques, see: Harrowfield et al. (1996[Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165-1169.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C17H10ClNO2)Cl2(CH4O)]

  • Mr = 517.34

  • Orthorhombic, P 21 21 21

  • a = 9.9767 (3) Å

  • b = 11.1639 (3) Å

  • c = 16.2755 (5) Å

  • V = 1812.75 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.87 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.819, Tmax = 1.000

  • 6571 measured reflections

  • 4139 independent reflections

  • 3913 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.059

  • S = 1.01

  • 4139 reflections

  • 239 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.73 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1765 Friedel pairs

  • Flack parameter: −0.036 (19)

Table 1
Selected bond lengths (Å)

Sn—Cl1 2.3398 (10)
Sn—Cl2 2.3807 (9)
Sn—O1 2.050 (2)
Sn—O2 2.010 (3)
Sn—O3 2.174 (3)
Sn—N1 2.144 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O1i 0.84 (1) 1.80 (1) 2.633 (4) 174 (4)
C2—H2⋯O2ii 0.95 2.50 3.363 (4) 151
C16—H16⋯Cl3iii 0.95 2.74 3.542 (4) 143
C18—H18A⋯Cl2i 0.98 2.77 3.707 (4) 161
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iii) x, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Original interest in tin(IV) compounds with Schiff bases ligands based on the 2-{[(2-hydroxyphenyl)imino]methyl}phenol parent compound stemmed from possible applications in medicinal chemistry (Pettinari et al., 2001). This motivated the synthesis and characterization of the title compound, (I).

In (I), Fig. 1, the SnIV atom is coordinated by the tridentate, dinegative Schiff base, two Cl atoms and the O atom of a methanol molecule to define a distorted octahedral geometry within a Cl2NO3 donor set, Table 1. The five-membered chelate ring is approximately planar with a r.m.s. deviation of 0.058 Å. By contrast, the six-membered chelate ring has a half-chair conformation as the Sn atom lies 0.449 (4) Å out of the plane defined by the five remaining atoms (r.m.s. deviation = 0.024 Å). The Sn—Cl2 bond length is significantly longer than that of Sn—Cl1, a difference which is correlated with the Cl2 atom being trans to the methanol-O atom.

The most significant feature of the crystal packing is the formation of helical supramolecular chains along [100] mediated by O—H···O hydrogen bonding, Fig. 2 and Table 2. Chains are consolidated in the crystal packing by C—H···O and C—H···Cl interactions. Further stability is provided by ππ contacts [ring centroid(C1–C6)···ring centroid(C8,C9,C14–C17)i = 3.598 (2) Å, angle = 10.47 (17)° for i: 1 - x, 1/2 + y, 3/2 - z).

Related literature top

For background to related Sn(IV) Schiff base compounds and a closely related structure, see: Pettinari et al. (2001). For specialized crystallization techniques, see: Harrowfield et al. (1996).

Experimental top

A solution of 2-amino-4-chlorophenol (10 mmol) in EtOH (30 ml) was added drop-wise to the solution of 2-hydroxy-1-naphthaldehyde (10 mmol) in EtOH (20 ml). The mixture was refluxed for 5 h. The yellow precipitate was removed by filtration and recrystallized from MeOH solution. The ligand (0.5 mmol) was placed in one arm of a branched tube (Harrowfield et al., 1996) and tin(IV) chloride (0.5 mmol) in the other. Methanol was then added to fill both arms, the tube sealed and the ligand-containing arm immersed in a bath at 333 K, while the other was left at ambient temperature. After three weeks crystals deposited in the arm held at ambient temperature. They were filtered off, washed with acetone and ether, and air-dried. Yield: 68%. M.pt.: 571 K (dec.).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å and with Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The hydroxy H-atom was located in a difference Fourier map and was refined with a distance restraint of O–H = 0.84±0.01 Å; Uiso was refined. The (0 1 1) reflection was omitted from the final refinement owing to poor agreement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. View of the supramolecular chain along [100] in (I) mediated by O—H···O hydrogen bonding shown as orange dashed lines.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents of (I). The C—H···O, C—H···Cl and ππ interactions are shown as orange, blue and purple dashed lines.
Dichlorido{1-[N-(5-chloro-2-oxidophenyl)carboximidoyl]naphthalen-2- olato-κ3O,N,O'}(methanol-κO)tin(IV) top
Crystal data top
[Sn(C17H10ClNO2)Cl2(CH4O)]F(000) = 1016
Mr = 517.34Dx = 1.896 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4166 reflections
a = 9.9767 (3) Åθ = 2.2–27.5°
b = 11.1639 (3) ŵ = 1.87 mm1
c = 16.2755 (5) ÅT = 100 K
V = 1812.75 (9) Å3Prism, brown
Z = 40.25 × 0.20 × 0.15 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4139 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3913 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 127
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1014
Tmin = 0.819, Tmax = 1.000l = 2120
6571 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0231P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
4139 reflectionsΔρmax = 0.54 e Å3
239 parametersΔρmin = 0.73 e Å3
1 restraintAbsolute structure: Flack (1983), 1765 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.036 (19)
Crystal data top
[Sn(C17H10ClNO2)Cl2(CH4O)]V = 1812.75 (9) Å3
Mr = 517.34Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.9767 (3) ŵ = 1.87 mm1
b = 11.1639 (3) ÅT = 100 K
c = 16.2755 (5) Å0.25 × 0.20 × 0.15 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4139 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3913 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 1.000Rint = 0.024
6571 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059Δρmax = 0.54 e Å3
S = 1.01Δρmin = 0.73 e Å3
4139 reflectionsAbsolute structure: Flack (1983), 1765 Friedel pairs
239 parametersAbsolute structure parameter: 0.036 (19)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.39500 (3)0.17557 (2)0.915201 (14)0.01147 (6)
Cl10.27998 (11)0.03339 (8)0.99384 (6)0.0222 (2)
Cl20.27645 (10)0.15018 (8)0.78945 (5)0.0197 (2)
Cl30.50466 (11)0.79039 (7)0.89690 (6)0.0188 (2)
O10.2770 (2)0.3133 (2)0.95636 (14)0.0121 (5)
O20.5532 (3)0.0747 (2)0.88264 (15)0.0146 (6)
O30.5167 (3)0.2113 (2)1.02329 (15)0.0149 (6)
H3O0.5989 (13)0.198 (3)1.029 (2)0.021 (11)*
N10.5035 (3)0.3262 (3)0.86761 (16)0.0119 (6)
C10.3288 (4)0.4240 (3)0.9413 (2)0.0113 (8)
C20.2641 (4)0.5253 (3)0.9715 (2)0.0112 (7)
H20.18360.51751.00230.013*
C30.3185 (4)0.6384 (3)0.9563 (2)0.0137 (8)
H30.27410.70830.97560.016*
C40.4377 (4)0.6482 (3)0.9128 (2)0.0136 (7)
C50.5029 (4)0.5491 (3)0.8821 (2)0.0124 (8)
H50.58400.55800.85210.015*
C60.4490 (4)0.4361 (3)0.8953 (2)0.0123 (8)
C70.6067 (4)0.3186 (3)0.81737 (18)0.0125 (7)
H70.64010.39180.79580.015*
C80.6736 (4)0.2118 (3)0.7921 (2)0.0110 (7)
C90.7848 (4)0.2219 (3)0.7340 (2)0.0133 (8)
C100.8181 (4)0.3302 (4)0.6923 (2)0.0144 (7)
H100.76440.39950.70060.017*
C110.9261 (4)0.3361 (3)0.6407 (2)0.0189 (8)
H110.94560.40930.61350.023*
C121.0089 (4)0.2361 (3)0.6272 (2)0.0196 (9)
H121.08560.24230.59290.023*
C130.9775 (4)0.1303 (3)0.6639 (2)0.0166 (8)
H131.03170.06190.65380.020*
C140.8661 (4)0.1203 (3)0.7168 (2)0.0138 (8)
C150.8323 (4)0.0086 (3)0.7535 (2)0.0172 (8)
H150.88520.05990.74130.021*
C160.7278 (4)0.0026 (3)0.8048 (2)0.0175 (9)
H160.70700.07900.82710.021*
C170.6474 (4)0.0978 (3)0.8264 (2)0.0115 (8)
C180.4697 (4)0.2485 (4)1.1025 (2)0.0243 (10)
H18A0.54620.25831.13970.036*
H18B0.40870.18771.12470.036*
H18C0.42200.32491.09740.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.00915 (11)0.01150 (10)0.01375 (11)0.00087 (11)0.00154 (11)0.00057 (11)
Cl10.0196 (5)0.0204 (4)0.0265 (5)0.0049 (4)0.0050 (5)0.0019 (4)
Cl20.0179 (5)0.0225 (5)0.0187 (4)0.0008 (4)0.0027 (4)0.0060 (4)
Cl30.0204 (5)0.0125 (4)0.0237 (5)0.0033 (4)0.0017 (4)0.0002 (3)
O10.0082 (13)0.0103 (11)0.0176 (12)0.0012 (11)0.0042 (10)0.0011 (11)
O20.0136 (15)0.0138 (12)0.0166 (12)0.0019 (10)0.0064 (11)0.0044 (11)
O30.0062 (14)0.0246 (14)0.0138 (12)0.0026 (12)0.0009 (12)0.0019 (11)
N10.0089 (15)0.0126 (13)0.0141 (13)0.0011 (15)0.0002 (12)0.0006 (14)
C10.012 (2)0.0145 (16)0.0078 (15)0.0021 (15)0.0013 (15)0.0028 (14)
C20.0077 (19)0.0168 (16)0.0091 (16)0.0018 (15)0.0013 (15)0.0028 (15)
C30.012 (2)0.0154 (17)0.0135 (17)0.0014 (15)0.0021 (16)0.0020 (15)
C40.0153 (19)0.0120 (16)0.0137 (15)0.0025 (13)0.0055 (16)0.0029 (16)
C50.010 (2)0.0152 (17)0.0124 (16)0.0014 (15)0.0013 (16)0.0041 (15)
C60.0124 (19)0.0162 (16)0.0082 (17)0.0005 (14)0.0024 (14)0.0002 (14)
C70.0123 (17)0.0130 (14)0.0122 (15)0.0007 (19)0.0006 (15)0.0019 (15)
C80.0089 (19)0.0152 (17)0.0088 (16)0.0019 (14)0.0014 (14)0.0000 (14)
C90.011 (2)0.0194 (17)0.0096 (16)0.0009 (16)0.0011 (16)0.0028 (15)
C100.0099 (18)0.0185 (17)0.0148 (16)0.0017 (17)0.0004 (14)0.0010 (17)
C110.019 (2)0.0210 (18)0.0165 (16)0.0055 (18)0.0011 (15)0.0042 (17)
C120.009 (2)0.033 (2)0.0164 (19)0.0003 (18)0.0017 (17)0.0039 (18)
C130.009 (2)0.0265 (19)0.0142 (17)0.0038 (16)0.0000 (16)0.0002 (17)
C140.009 (2)0.0210 (18)0.0110 (16)0.0010 (15)0.0012 (15)0.0001 (15)
C150.020 (2)0.0184 (19)0.0131 (18)0.0062 (16)0.0024 (17)0.0034 (16)
C160.021 (2)0.0137 (17)0.0176 (18)0.0028 (17)0.0003 (17)0.0024 (16)
C170.0099 (19)0.0155 (16)0.0089 (16)0.0004 (15)0.0001 (14)0.0021 (15)
C180.016 (2)0.043 (2)0.0141 (19)0.0063 (19)0.0019 (17)0.0063 (18)
Geometric parameters (Å, º) top
Sn—Cl12.3398 (10)C7—C81.427 (5)
Sn—Cl22.3807 (9)C7—H70.9500
Sn—O12.050 (2)C8—C171.414 (5)
Sn—O22.010 (3)C8—C91.462 (5)
Sn—O32.174 (3)C9—C141.422 (5)
Sn—N12.144 (3)C9—C101.426 (5)
Cl3—C41.742 (3)C10—C111.368 (5)
O1—C11.361 (4)C10—H100.9500
O2—C171.337 (4)C11—C121.406 (5)
O3—C181.434 (4)C11—H110.9500
O3—H3O0.840 (10)C12—C131.360 (5)
N1—C71.318 (4)C12—H120.9500
N1—C61.416 (5)C13—C141.410 (5)
C1—C21.392 (5)C13—H130.9500
C1—C61.420 (5)C14—C151.423 (5)
C2—C31.397 (5)C15—C161.342 (5)
C2—H20.9500C15—H150.9500
C3—C41.388 (5)C16—C171.422 (5)
C3—H30.9500C16—H160.9500
C4—C51.377 (5)C18—H18A0.9800
C5—C61.388 (5)C18—H18B0.9800
C5—H50.9500C18—H18C0.9800
O2—Sn—O1163.28 (10)N1—C6—C1114.2 (3)
O2—Sn—N187.01 (11)N1—C7—C8126.7 (3)
O1—Sn—N179.61 (11)N1—C7—H7116.6
O2—Sn—O382.99 (10)C8—C7—H7116.6
O1—Sn—O385.31 (10)C17—C8—C7123.5 (3)
N1—Sn—O382.33 (10)C17—C8—C9117.7 (3)
O2—Sn—Cl198.58 (7)C7—C8—C9118.5 (3)
O1—Sn—Cl192.78 (7)C14—C9—C10116.7 (3)
N1—Sn—Cl1167.70 (8)C14—C9—C8119.9 (3)
O3—Sn—Cl187.47 (7)C10—C9—C8123.3 (3)
O2—Sn—Cl295.55 (8)C11—C10—C9121.0 (4)
O1—Sn—Cl294.87 (7)C11—C10—H10119.5
N1—Sn—Cl291.92 (8)C9—C10—H10119.5
O3—Sn—Cl2174.12 (7)C10—C11—C12121.4 (4)
Cl1—Sn—Cl298.39 (4)C10—C11—H11119.3
C1—O1—Sn113.8 (2)C12—C11—H11119.3
C17—O2—Sn128.6 (2)C13—C12—C11119.0 (4)
C18—O3—Sn126.8 (2)C13—C12—H12120.5
C18—O3—H3O106 (3)C11—C12—H12120.5
Sn—O3—H3O127 (3)C12—C13—C14121.2 (4)
C7—N1—C6123.6 (3)C12—C13—H13119.4
C7—N1—Sn124.6 (3)C14—C13—H13119.4
C6—N1—Sn111.8 (2)C13—C14—C9120.4 (3)
O1—C1—C2119.8 (3)C13—C14—C15120.8 (3)
O1—C1—C6120.1 (3)C9—C14—C15118.7 (3)
C2—C1—C6120.1 (3)C16—C15—C14121.8 (4)
C1—C2—C3119.4 (3)C16—C15—H15119.1
C1—C2—H2120.3C14—C15—H15119.1
C3—C2—H2120.3C15—C16—C17121.2 (3)
C4—C3—C2119.6 (3)C15—C16—H16119.4
C4—C3—H3120.2C17—C16—H16119.4
C2—C3—H3120.2O2—C17—C8125.0 (3)
C5—C4—C3121.8 (3)O2—C17—C16114.4 (3)
C5—C4—Cl3119.8 (3)C8—C17—C16120.5 (3)
C3—C4—Cl3118.4 (3)O3—C18—H18A109.5
C4—C5—C6119.4 (4)O3—C18—H18B109.5
C4—C5—H5120.3H18A—C18—H18B109.5
C6—C5—H5120.3O3—C18—H18C109.5
C5—C6—N1126.2 (3)H18A—C18—H18C109.5
C5—C6—C1119.7 (3)H18B—C18—H18C109.5
O2—Sn—O1—C131.6 (5)Sn—N1—C6—C5173.6 (3)
N1—Sn—O1—C15.7 (2)C7—N1—C6—C1173.1 (3)
O3—Sn—O1—C177.3 (2)Sn—N1—C6—C15.7 (4)
Cl1—Sn—O1—C1164.5 (2)O1—C1—C6—C5178.4 (3)
Cl2—Sn—O1—C196.8 (2)C2—C1—C6—C51.3 (5)
O1—Sn—O2—C1759.1 (5)O1—C1—C6—N11.0 (5)
N1—Sn—O2—C1722.5 (3)C2—C1—C6—N1179.4 (3)
O3—Sn—O2—C17105.1 (3)C6—N1—C7—C8174.6 (3)
Cl1—Sn—O2—C17168.6 (3)Sn—N1—C7—C86.8 (5)
Cl2—Sn—O2—C1769.2 (3)N1—C7—C8—C178.3 (6)
O2—Sn—O3—C18156.5 (3)N1—C7—C8—C9178.5 (3)
O1—Sn—O3—C1835.5 (3)C17—C8—C9—C142.9 (5)
N1—Sn—O3—C18115.6 (3)C7—C8—C9—C14170.7 (3)
Cl1—Sn—O3—C1857.5 (3)C17—C8—C9—C10177.2 (3)
Cl2—Sn—O3—C18127.5 (7)C7—C8—C9—C109.1 (5)
O2—Sn—N1—C717.5 (3)C14—C9—C10—C112.2 (5)
O1—Sn—N1—C7172.6 (3)C8—C9—C10—C11177.7 (3)
O3—Sn—N1—C7100.8 (3)C9—C10—C11—C120.5 (5)
Cl1—Sn—N1—C7135.0 (3)C10—C11—C12—C132.5 (6)
Cl2—Sn—N1—C778.0 (3)C11—C12—C13—C141.7 (6)
O2—Sn—N1—C6163.7 (2)C12—C13—C14—C91.0 (6)
O1—Sn—N1—C66.2 (2)C12—C13—C14—C15178.5 (4)
O3—Sn—N1—C680.4 (2)C10—C9—C14—C132.9 (5)
Cl1—Sn—N1—C646.2 (5)C8—C9—C14—C13176.9 (3)
Cl2—Sn—N1—C6100.8 (2)C10—C9—C14—C15176.7 (3)
Sn—O1—C1—C2175.1 (3)C8—C9—C14—C153.5 (5)
Sn—O1—C1—C64.6 (4)C13—C14—C15—C16179.1 (4)
O1—C1—C2—C3179.6 (3)C9—C14—C15—C161.3 (6)
C6—C1—C2—C30.1 (5)C14—C15—C16—C171.5 (6)
C1—C2—C3—C41.4 (5)Sn—O2—C17—C816.4 (5)
C2—C3—C4—C51.7 (5)Sn—O2—C17—C16166.4 (2)
C2—C3—C4—Cl3178.6 (3)C7—C8—C17—O23.9 (6)
C3—C4—C5—C60.5 (5)C9—C8—C17—O2177.3 (3)
Cl3—C4—C5—C6179.8 (3)C7—C8—C17—C16173.1 (3)
C4—C5—C6—N1179.8 (3)C9—C8—C17—C160.2 (5)
C4—C5—C6—C11.0 (5)C15—C16—C17—O2175.3 (3)
C7—N1—C6—C57.6 (5)C15—C16—C17—C82.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O1i0.84 (1)1.80 (1)2.633 (4)174 (4)
C2—H2···O2ii0.952.503.363 (4)151
C16—H16···Cl3iii0.952.743.542 (4)143
C18—H18A···Cl2i0.982.773.707 (4)161
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x1/2, y+1/2, z+2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Sn(C17H10ClNO2)Cl2(CH4O)]
Mr517.34
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.9767 (3), 11.1639 (3), 16.2755 (5)
V3)1812.75 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.87
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.819, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6571, 4139, 3913
Rint0.024
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.059, 1.01
No. of reflections4139
No. of parameters239
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.73
Absolute structureFlack (1983), 1765 Friedel pairs
Absolute structure parameter0.036 (19)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn—Cl12.3398 (10)Sn—O22.010 (3)
Sn—Cl22.3807 (9)Sn—O32.174 (3)
Sn—O12.050 (2)Sn—N12.144 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O1i0.840 (10)1.796 (12)2.633 (4)174 (4)
C2—H2···O2ii0.952.503.363 (4)151
C16—H16···Cl3iii0.952.743.542 (4)143
C18—H18A···Cl2i0.982.773.707 (4)161
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x1/2, y+1/2, z+2; (iii) x, y1, z.
 

Footnotes

Additional correspondence author, e-mail: shahverdizadeh@iaut.ac.ir.

Acknowledgements

We gratefully acknowledge support of this study by Tabriz Azad University, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169.  CSD CrossRef Web of Science Google Scholar
First citationPettinari, C., Marchetti, F., Pettinari, R., Martini, D., Drozdov, A. & Troyanov, S. (2001). Inorg. Chim. Acta, 325, 103–114.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m246-m247
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds