organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o657-o658

3-(Adamantan-1-yl)-1-[(4-ethyl­piperazin-1-yl)meth­yl]-4-[(E)-(4-hy­dr­oxy­benzyl­­idene)amino]-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 5 February 2012; accepted 6 February 2012; online 10 February 2012)

In the title thione, C26H36N6OS, the 1,2,4-triazole ring is planar (r.m.s. deviation = 0.020 Å) and the benzene ring is twisted out of this plane [dihedral angle = 62.35 (12)°]. Supra­molecular zigzag chains feature in the crystal packing. These are sustained by O—H⋯N(piperazine) hydrogen bonds, and are connected into the three-dimensional crystal structure by C—H⋯S and C—H⋯O inter­actions. The crystal studied was a racemic twin.

Related literature

For the biological activity of adamantyl derivatives, see: Vernier et al. (1969[Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642-665.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]); Kadi et al. (2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.], 2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]); Al-Omar et al. (2010[Al-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526-2550.]). For related adamantane structures, see: Al-Tamimi et al. (2010[Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.]); Kadi et al. (2011[Kadi, A. A., Alanzi, A. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3127.]).

[Scheme 1]

Experimental

Crystal data
  • C26H36N6OS

  • Mr = 480.67

  • Monoclinic, C c

  • a = 16.1006 (6) Å

  • b = 14.2182 (5) Å

  • c = 11.4641 (4) Å

  • β = 92.440 (4)°

  • V = 2622.00 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.963, Tmax = 0.977

  • 12526 measured reflections

  • 4840 independent reflections

  • 4374 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.100

  • S = 1.03

  • 4840 reflections

  • 312 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1811 Friedel pairs

  • Flack parameter: 0.06 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N6i 0.85 (1) 1.86 (1) 2.699 (3) 170 (5)
C13—H13B⋯S1ii 0.99 2.72 3.700 (2) 170
C22—H22⋯O1iii 0.95 2.33 3.149 (3) 145
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [x, -y+2, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Derivatives of adamantane have long been known for their diverse biological activities including anti-viral activity against the influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al., 2004). Moreover, adamantane derivative were recently reported to exhibit marked anti-bacterial and anti-inflammatory activities (Kadi et al., 2007, 2010). In continuation of our interest in the chemical and pharmacological properties of adamantane derivatives, and as a part of on-going structural studies of adamantane derivatives (Kadi et al., 2011; Al-Tamimi et al., 2010) we synthesized the title compound (I) as potential chemotherapeutic agent.

The structure determination of (I), Fig. 1, confirms the presence of the thione in the solid-state. The central 1,2,4-triazole ring is planar [r.m.s. deviation = 0.020 Å] and the benzene ring is twisted out of this plane [dihedral angle = 62.35 (12)°]. Globally, the plane of the five-membered ring bisects the adamantyl group with the benzene and piperazine substituents lying to one side.

In the crystal packing, supramolecular zigzag chains are formed via O—H···N(piperazine) hydrogen bonds, Fig. 2 and Table 1. These are connected into the three-dimensional crystal structure by C—H···S and C—H···O interactions, Fig. 3 and Table 1.

Related literature top

For the biological activity of adamantyl derivatives, see: Vernier et al. (1969); El-Emam et al. (2004); Kadi et al. (2007, 2010); Al-Omar et al. (2010). For related adamantane structures, see: Al-Tamimi et al. (2010); Kadi et al. (2011).

Experimental top

A mixture of 709 mg (2 mmol) of 3-(1-adamantyl)-4-(4-hydroxybenzylideneamino)-4H-1,2,4-triazole-5-thiol (Al-Omar et al., 2010), 1-ethylpiperazine (228 mg, 2 mmol) and 37% formaldehyde solution (1 ml), in ethanol (8 ml) was heated under reflux for 15 min when a clear solution was obtained. Stirring was continued for 12 h at room temperature and the mixture was allowed to stand overnight. Cold water (5 ml) was added and the mixture was stirred for 20 min. The precipitated crude product were filtered, washed with water, dried, and crystallized from ethanol to yield 425 mg (44%) of the title compound (I) as colourless crystals. m.p. 436–438 K. 1H NMR (CDCl3): δ 1.18 (t, 3H, CH3, J = 6.5 Hz), 1.69–1.76 (m, 6H, adamantane-H), 1.95 (s, 6H, adamantane-H), 2.03 (s, 3H, adamantane-H), 2.56 (q, 2H, CH2CH3, J = 6.5 Hz), 2.85–3.90 (m, 8H, piperazine-H), 5.18 (s, 2H, CH2), 6.75 (d, 2H, Ar—H, J = 8.0 Hz), 7.67 (d, 2H, Ar—H, J = 8.0 Hz), 9.21 (s, 1H, CHN). 13C NMR: δ 11.11 (CH3), 27.84, 35.09, 36.48, 38.39 (adamantane-C), 49.50 (CH2CH3), 52.29, 58.43 (piperazine-C), 68.56 (CH2), 116.53, 123.49, 130.87, 161.53 (Ar—C), 154.94 (triazole C-3), 163.34 (CHN), 164.65 (C S).

Refinement top

Carbon-bound H atoms were placed in calculated positions [C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2 to 1.5 Ueq(C)] and were included in the refinement in the riding model approximation. The hydroxy H atom was located in a difference Fourier map, and was refined with a distance restraint of O—H = 0.84±0.01 Å, and Uiso was refined.

Owing to poor agreement a number of reflections, i.e. (11 1 4), (4 0 6), (8 4 2), (15 1 2), (10 2 1), (9 5 1), (13 1 1), (14 4 2), (13 3 2) and (14 2 1), were omitted from the final refinement.

The crystal is a racemic twin; the Flack parameter was explicitly refined.

There is a significant Hirshfeld rigid-bond alert for the C7—C8 bond. Their displacement factors are somewhat large, indicating some disorder. However, no model for the disorder was resolved.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the zigzag supramolecular chain along [100] in (I). The O—H···N hydrogen bonds are shown as orange dashed lines.
[Figure 3] Fig. 3. A view in projection down the c axis of the unit-cell contents for (I). The O—H···N, C—H···S and C—H···O interactions are shown as orange, brown and blue dashed lines, respectively.
3-(Adamantan-1-yl)-1-[(4-ethylpiperazin-1-yl)methyl]-4-[(E)-(4- hydroxybenzylidene)amino]-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C26H36N6OSF(000) = 1032
Mr = 480.67Dx = 1.218 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 4991 reflections
a = 16.1006 (6) Åθ = 2.5–27.5°
b = 14.2182 (5) ŵ = 0.15 mm1
c = 11.4641 (4) ÅT = 100 K
β = 92.440 (4)°Prism, colourless
V = 2622.00 (16) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
4840 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4374 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.5°
ω scansh = 2016
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1818
Tmin = 0.963, Tmax = 0.977l = 1414
12526 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.5109P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4840 reflectionsΔρmax = 0.25 e Å3
312 parametersΔρmin = 0.18 e Å3
3 restraintsAbsolute structure: Flack (1983), with 1811 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (7)
Crystal data top
C26H36N6OSV = 2622.00 (16) Å3
Mr = 480.67Z = 4
Monoclinic, CcMo Kα radiation
a = 16.1006 (6) ŵ = 0.15 mm1
b = 14.2182 (5) ÅT = 100 K
c = 11.4641 (4) Å0.25 × 0.20 × 0.15 mm
β = 92.440 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
4840 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4374 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.977Rint = 0.036
12526 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100Δρmax = 0.25 e Å3
S = 1.03Δρmin = 0.18 e Å3
4840 reflectionsAbsolute structure: Flack (1983), with 1811 Friedel pairs
312 parametersAbsolute structure parameter: 0.06 (7)
3 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.49872 (4)0.56121 (4)0.50028 (4)0.02603 (13)
O10.57958 (13)1.01838 (13)0.12630 (14)0.0397 (5)
H1O0.602 (3)1.0657 (19)0.160 (4)0.103 (16)*
N10.38211 (12)0.55968 (12)0.66504 (16)0.0249 (4)
N20.32689 (12)0.61698 (13)0.71956 (16)0.0268 (4)
N30.38731 (11)0.69230 (12)0.57892 (15)0.0201 (4)
N40.41828 (11)0.77076 (12)0.51938 (14)0.0210 (4)
N50.32453 (12)0.40404 (13)0.71060 (16)0.0257 (4)
N60.16089 (12)0.32789 (13)0.70910 (17)0.0292 (4)
C10.28270 (14)0.78354 (15)0.69923 (18)0.0244 (5)
C20.34125 (17)0.85912 (18)0.7529 (2)0.0387 (6)
H2A0.37240.83310.82190.046*
H2B0.38180.87880.69520.046*
C30.2896 (2)0.9442 (2)0.7892 (3)0.0545 (9)
H30.32750.99310.82450.065*
C40.2445 (2)0.98457 (18)0.6805 (3)0.0486 (8)
H4A0.21341.04180.70140.058*
H4B0.28531.00210.62210.058*
C50.18436 (17)0.91073 (17)0.6291 (2)0.0350 (6)
H50.15350.93760.55930.042*
C60.12260 (17)0.88242 (19)0.7202 (2)0.0409 (6)
H6A0.09060.93820.74390.049*
H6B0.08290.83560.68640.049*
C70.1689 (2)0.8407 (2)0.8263 (2)0.0474 (8)
H70.12810.82160.88530.057*
C80.2276 (2)0.9136 (3)0.8790 (3)0.0678 (12)
H8A0.25790.88700.94830.081*
H8B0.19560.96880.90450.081*
C90.21912 (18)0.75416 (19)0.7898 (2)0.0408 (7)
H9A0.18100.70590.75560.049*
H9B0.24860.72660.85920.049*
C100.23419 (15)0.82507 (16)0.5923 (2)0.0281 (5)
H10A0.27350.84370.53230.034*
H10B0.19610.77700.55780.034*
C110.33174 (14)0.69771 (15)0.66707 (18)0.0231 (4)
C120.42254 (13)0.60297 (14)0.58011 (18)0.0205 (4)
C130.39656 (14)0.46264 (15)0.7065 (2)0.0273 (5)
H13A0.43650.43230.65510.033*
H13B0.42320.46550.78590.033*
C140.27018 (14)0.42163 (15)0.80734 (18)0.0240 (5)
H14A0.23780.47990.79260.029*
H14B0.30390.42970.88090.029*
C150.21187 (14)0.33867 (16)0.8179 (2)0.0278 (5)
H15A0.24450.28060.83330.033*
H15B0.17540.34890.88410.033*
C160.21480 (17)0.31573 (17)0.6094 (2)0.0353 (6)
H16A0.18000.31220.53630.042*
H16B0.24570.25580.61840.042*
C170.27601 (17)0.39628 (17)0.6011 (2)0.0323 (5)
H17A0.31340.38470.53620.039*
H17B0.24560.45570.58500.039*
C180.10554 (18)0.24398 (19)0.7131 (3)0.0436 (7)
H18A0.14040.18680.72110.052*
H18B0.07290.23930.63810.052*
C190.04676 (18)0.2464 (2)0.8111 (3)0.0496 (7)
H19A0.01360.18860.81010.074*
H19B0.00980.30090.80140.074*
H19C0.07850.25140.88570.074*
C200.42424 (13)0.75687 (15)0.40960 (18)0.0211 (4)
H200.40390.70010.37530.025*
C210.46203 (13)0.82785 (14)0.33739 (18)0.0213 (4)
C220.50449 (14)0.90456 (15)0.38680 (19)0.0250 (5)
H220.50690.91220.46920.030*
C230.54296 (15)0.96938 (15)0.31823 (19)0.0267 (5)
H230.57111.02160.35340.032*
C240.54077 (15)0.95855 (17)0.19726 (19)0.0284 (5)
C250.49716 (16)0.88341 (18)0.1466 (2)0.0325 (6)
H250.49380.87680.06400.039*
C260.45868 (15)0.81838 (16)0.21584 (18)0.0275 (5)
H260.42970.76680.18060.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0246 (3)0.0275 (2)0.0267 (3)0.0066 (2)0.0095 (2)0.0022 (2)
O10.0465 (12)0.0445 (10)0.0276 (9)0.0220 (9)0.0034 (8)0.0134 (8)
N10.0260 (10)0.0223 (9)0.0272 (9)0.0052 (8)0.0092 (8)0.0052 (7)
N20.0282 (10)0.0265 (9)0.0266 (9)0.0083 (8)0.0129 (8)0.0063 (8)
N30.0206 (9)0.0206 (8)0.0196 (8)0.0011 (7)0.0060 (7)0.0006 (7)
N40.0205 (9)0.0217 (8)0.0212 (9)0.0005 (7)0.0042 (7)0.0046 (7)
N50.0257 (10)0.0230 (9)0.0288 (9)0.0039 (8)0.0056 (8)0.0029 (8)
N60.0253 (11)0.0304 (10)0.0319 (10)0.0012 (8)0.0030 (8)0.0066 (8)
C10.0272 (12)0.0259 (11)0.0206 (10)0.0077 (9)0.0068 (9)0.0033 (9)
C20.0395 (15)0.0363 (13)0.0396 (14)0.0138 (12)0.0057 (12)0.0131 (12)
C30.0535 (19)0.0411 (16)0.068 (2)0.0176 (14)0.0071 (17)0.0274 (15)
C40.0480 (18)0.0238 (12)0.075 (2)0.0142 (12)0.0164 (15)0.0012 (13)
C50.0321 (14)0.0366 (12)0.0369 (14)0.0157 (11)0.0105 (11)0.0127 (11)
C60.0364 (15)0.0418 (14)0.0459 (15)0.0190 (12)0.0185 (12)0.0127 (12)
C70.0552 (19)0.0547 (17)0.0344 (14)0.0306 (15)0.0245 (13)0.0088 (13)
C80.083 (3)0.082 (2)0.0383 (16)0.057 (2)0.0067 (17)0.0153 (16)
C90.0424 (16)0.0485 (15)0.0334 (13)0.0243 (13)0.0248 (12)0.0166 (12)
C100.0256 (12)0.0369 (12)0.0223 (10)0.0081 (10)0.0054 (9)0.0047 (10)
C110.0249 (11)0.0261 (10)0.0186 (10)0.0036 (9)0.0059 (8)0.0043 (9)
C120.0196 (11)0.0219 (10)0.0200 (10)0.0016 (8)0.0005 (8)0.0004 (9)
C130.0249 (12)0.0245 (10)0.0332 (12)0.0062 (9)0.0083 (10)0.0106 (10)
C140.0236 (12)0.0257 (10)0.0226 (10)0.0018 (9)0.0012 (9)0.0021 (9)
C150.0223 (12)0.0295 (11)0.0318 (12)0.0020 (9)0.0035 (10)0.0037 (10)
C160.0367 (15)0.0345 (12)0.0348 (13)0.0057 (11)0.0028 (11)0.0121 (11)
C170.0391 (15)0.0321 (12)0.0261 (11)0.0082 (10)0.0043 (10)0.0020 (10)
C180.0300 (15)0.0367 (13)0.0640 (18)0.0040 (11)0.0005 (13)0.0110 (13)
C190.0297 (15)0.0518 (16)0.067 (2)0.0095 (13)0.0024 (14)0.0083 (15)
C200.0181 (11)0.0201 (9)0.0252 (11)0.0008 (8)0.0032 (8)0.0020 (8)
C210.0189 (11)0.0234 (10)0.0217 (10)0.0012 (8)0.0027 (8)0.0042 (9)
C220.0260 (12)0.0276 (10)0.0216 (10)0.0014 (9)0.0018 (9)0.0015 (9)
C230.0282 (12)0.0243 (10)0.0274 (11)0.0080 (9)0.0001 (10)0.0027 (9)
C240.0262 (12)0.0323 (12)0.0265 (11)0.0065 (9)0.0002 (10)0.0103 (9)
C250.0362 (15)0.0405 (13)0.0206 (10)0.0119 (11)0.0007 (10)0.0054 (10)
C260.0286 (13)0.0293 (11)0.0246 (11)0.0078 (10)0.0020 (10)0.0002 (9)
Geometric parameters (Å, º) top
S1—C121.670 (2)C7—H71.0000
O1—C241.349 (3)C8—H8A0.9900
O1—H1O0.850 (10)C8—H8B0.9900
N1—C121.343 (3)C9—H9A0.9900
N1—N21.376 (3)C9—H9B0.9900
N1—C131.475 (3)C10—H10A0.9900
N2—C111.300 (3)C10—H10B0.9900
N3—C111.380 (3)C13—H13A0.9900
N3—C121.391 (3)C13—H13B0.9900
N3—N41.410 (2)C14—C151.516 (3)
N4—C201.282 (3)C14—H14A0.9900
N5—C131.430 (3)C14—H14B0.9900
N5—C171.455 (3)C15—H15A0.9900
N5—C141.463 (3)C15—H15B0.9900
N6—C151.472 (3)C16—C171.517 (4)
N6—C161.474 (3)C16—H16A0.9900
N6—C181.491 (3)C16—H16B0.9900
C1—C111.508 (3)C17—H17A0.9900
C1—C101.543 (3)C17—H17B0.9900
C1—C21.540 (3)C18—C191.500 (4)
C1—C91.547 (3)C18—H18A0.9900
C2—C31.535 (3)C18—H18B0.9900
C2—H2A0.9900C19—H19A0.9800
C2—H2B0.9900C19—H19B0.9800
C3—C81.527 (6)C19—H19C0.9800
C3—C41.527 (4)C20—C211.455 (3)
C3—H31.0000C20—H200.9500
C4—C51.529 (4)C21—C221.395 (3)
C4—H4A0.9900C21—C261.399 (3)
C4—H4B0.9900C22—C231.376 (3)
C5—C61.527 (4)C22—H220.9500
C5—C101.528 (3)C23—C241.394 (3)
C5—H51.0000C23—H230.9500
C6—C71.519 (4)C24—C251.392 (3)
C6—H6A0.9900C25—C261.382 (3)
C6—H6B0.9900C25—H250.9500
C7—C81.512 (5)C26—H260.9500
C7—C91.540 (3)
C24—O1—H1O115 (3)C5—C10—H10B109.7
C12—N1—N2113.61 (17)C1—C10—H10B109.7
C12—N1—C13126.00 (18)H10A—C10—H10B108.2
N2—N1—C13120.25 (18)N2—C11—N3110.08 (19)
C11—N2—N1105.06 (18)N2—C11—C1124.0 (2)
C11—N3—C12108.69 (17)N3—C11—C1125.92 (19)
C11—N3—N4124.34 (18)N1—C12—N3102.45 (18)
C12—N3—N4125.08 (18)N1—C12—S1128.61 (15)
C20—N4—N3113.35 (17)N3—C12—S1128.90 (16)
C13—N5—C17114.98 (19)N5—C13—N1116.01 (18)
C13—N5—C14115.93 (18)N5—C13—H13A108.3
C17—N5—C14110.53 (18)N1—C13—H13A108.3
C15—N6—C16110.09 (18)N5—C13—H13B108.3
C15—N6—C18111.71 (19)N1—C13—H13B108.3
C16—N6—C18107.59 (19)H13A—C13—H13B107.4
C11—C1—C10111.59 (18)N5—C14—C15108.67 (18)
C11—C1—C2110.14 (19)N5—C14—H14A110.0
C10—C1—C2109.34 (19)C15—C14—H14A110.0
C11—C1—C9108.30 (18)N5—C14—H14B110.0
C10—C1—C9108.06 (19)C15—C14—H14B110.0
C2—C1—C9109.3 (2)H14A—C14—H14B108.3
C3—C2—C1109.2 (2)N6—C15—C14109.78 (18)
C3—C2—H2A109.8N6—C15—H15A109.7
C1—C2—H2A109.8C14—C15—H15A109.7
C3—C2—H2B109.8N6—C15—H15B109.7
C1—C2—H2B109.8C14—C15—H15B109.7
H2A—C2—H2B108.3H15A—C15—H15B108.2
C8—C3—C4110.8 (3)N6—C16—C17111.47 (19)
C8—C3—C2109.6 (3)N6—C16—H16A109.3
C4—C3—C2108.6 (2)C17—C16—H16A109.3
C8—C3—H3109.3N6—C16—H16B109.3
C4—C3—H3109.3C17—C16—H16B109.3
C2—C3—H3109.3H16A—C16—H16B108.0
C5—C4—C3109.1 (2)N5—C17—C16109.2 (2)
C5—C4—H4A109.9N5—C17—H17A109.8
C3—C4—H4A109.9C16—C17—H17A109.8
C5—C4—H4B109.9N5—C17—H17B109.8
C3—C4—H4B109.9C16—C17—H17B109.8
H4A—C4—H4B108.3H17A—C17—H17B108.3
C6—C5—C10110.1 (2)N6—C18—C19113.7 (2)
C6—C5—C4109.7 (2)N6—C18—H18A108.8
C10—C5—C4108.8 (2)C19—C18—H18A108.8
C6—C5—H5109.4N6—C18—H18B108.8
C10—C5—H5109.4C19—C18—H18B108.8
C4—C5—H5109.4H18A—C18—H18B107.7
C7—C6—C5109.8 (2)C18—C19—H19A109.5
C7—C6—H6A109.7C18—C19—H19B109.5
C5—C6—H6A109.7H19A—C19—H19B109.5
C7—C6—H6B109.7C18—C19—H19C109.5
C5—C6—H6B109.7H19A—C19—H19C109.5
H6A—C6—H6B108.2H19B—C19—H19C109.5
C8—C7—C6109.2 (3)N4—C20—C21120.16 (19)
C8—C7—C9109.3 (3)N4—C20—H20119.9
C6—C7—C9109.9 (2)C21—C20—H20119.9
C8—C7—H7109.5C22—C21—C26118.51 (19)
C6—C7—H7109.5C22—C21—C20121.40 (19)
C9—C7—H7109.5C26—C21—C20120.05 (19)
C7—C8—C3109.9 (2)C23—C22—C21121.1 (2)
C7—C8—H8A109.7C23—C22—H22119.4
C3—C8—H8A109.7C21—C22—H22119.4
C7—C8—H8B109.7C22—C23—C24120.1 (2)
C3—C8—H8B109.7C22—C23—H23120.0
H8A—C8—H8B108.2C24—C23—H23120.0
C7—C9—C1109.7 (2)O1—C24—C25118.1 (2)
C7—C9—H9A109.7O1—C24—C23122.5 (2)
C1—C9—H9A109.7C25—C24—C23119.4 (2)
C7—C9—H9B109.7C26—C25—C24120.3 (2)
C1—C9—H9B109.7C26—C25—H25119.9
H9A—C9—H9B108.2C24—C25—H25119.9
C5—C10—C1109.84 (19)C25—C26—C21120.6 (2)
C5—C10—H10A109.7C25—C26—H26119.7
C1—C10—H10A109.7C21—C26—H26119.7
C12—N1—N2—C110.8 (2)C10—C1—C11—N352.9 (3)
C13—N1—N2—C11176.73 (19)C2—C1—C11—N368.8 (3)
C11—N3—N4—C20140.2 (2)C9—C1—C11—N3171.7 (2)
C12—N3—N4—C2057.3 (3)N2—N1—C12—N32.5 (2)
C11—C1—C2—C3177.9 (2)C13—N1—C12—N3178.14 (19)
C10—C1—C2—C359.2 (3)N2—N1—C12—S1175.18 (16)
C9—C1—C2—C359.0 (3)C13—N1—C12—S10.5 (3)
C1—C2—C3—C860.0 (3)C11—N3—C12—N13.2 (2)
C1—C2—C3—C461.2 (3)N4—N3—C12—N1168.07 (18)
C8—C3—C4—C557.6 (3)C11—N3—C12—S1174.48 (16)
C2—C3—C4—C562.8 (3)N4—N3—C12—S19.6 (3)
C3—C4—C5—C658.3 (3)C17—N5—C13—N155.3 (3)
C3—C4—C5—C1062.2 (3)C14—N5—C13—N175.8 (2)
C10—C5—C6—C759.2 (3)C12—N1—C13—N5128.4 (2)
C4—C5—C6—C760.5 (3)N2—N1—C13—N556.2 (3)
C5—C6—C7—C860.8 (3)C13—N5—C14—C15164.70 (17)
C5—C6—C7—C959.0 (3)C17—N5—C14—C1562.2 (2)
C6—C7—C8—C359.5 (3)C16—N6—C15—C1457.6 (2)
C9—C7—C8—C360.8 (3)C18—N6—C15—C14177.0 (2)
C4—C3—C8—C758.6 (3)N5—C14—C15—N660.5 (2)
C2—C3—C8—C761.2 (3)C15—N6—C16—C1755.8 (2)
C8—C7—C9—C159.7 (3)C18—N6—C16—C17177.7 (2)
C6—C7—C9—C160.1 (3)C13—N5—C17—C16166.65 (19)
C11—C1—C9—C7179.0 (2)C14—N5—C17—C1659.7 (2)
C10—C1—C9—C759.9 (3)N6—C16—C17—N556.4 (2)
C2—C1—C9—C759.0 (3)C15—N6—C18—C1959.0 (3)
C6—C5—C10—C160.2 (3)C16—N6—C18—C19179.9 (2)
C4—C5—C10—C160.1 (3)N3—N4—C20—C21174.54 (17)
C11—C1—C10—C5179.1 (2)N4—C20—C21—C2210.6 (3)
C2—C1—C10—C558.8 (3)N4—C20—C21—C26171.5 (2)
C9—C1—C10—C560.1 (3)C26—C21—C22—C230.5 (3)
N1—N2—C11—N31.3 (2)C20—C21—C22—C23177.3 (2)
N1—N2—C11—C1179.0 (2)C21—C22—C23—C240.7 (4)
C12—N3—C11—N23.0 (2)C22—C23—C24—O1177.9 (2)
N4—N3—C11—N2167.98 (19)C22—C23—C24—C252.0 (4)
C12—N3—C11—C1177.3 (2)O1—C24—C25—C26177.8 (2)
N4—N3—C11—C112.3 (3)C23—C24—C25—C262.1 (4)
C10—C1—C11—N2126.8 (2)C24—C25—C26—C210.9 (4)
C2—C1—C11—N2111.6 (3)C22—C21—C26—C250.4 (3)
C9—C1—C11—N28.0 (3)C20—C21—C26—C25177.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N6i0.85 (1)1.86 (1)2.699 (3)170 (5)
C13—H13B···S1ii0.992.723.700 (2)170
C22—H22···O1iii0.952.333.149 (3)145
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x, y+1, z+1/2; (iii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H36N6OS
Mr480.67
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)16.1006 (6), 14.2182 (5), 11.4641 (4)
β (°) 92.440 (4)
V3)2622.00 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.963, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
12526, 4840, 4374
Rint0.036
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 1.03
No. of reflections4840
No. of parameters312
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.18
Absolute structureFlack (1983), with 1811 Friedel pairs
Absolute structure parameter0.06 (7)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N6i0.85 (1)1.86 (1)2.699 (3)170 (5)
C13—H13B···S1ii0.992.723.700 (2)170
C22—H22···O1iii0.952.333.149 (3)145
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x, y+1, z+1/2; (iii) x, y+2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research Scheme (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAl-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526–2550.  Web of Science CAS PubMed Google Scholar
First citationAl-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKadi, A. A., Alanzi, A. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642–665.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o657-o658
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds