organic compounds
1-Iodo-4-methoxy-2-nitrobenzene
aCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Avenida Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com
In the title compound, C7H6INO3, the 12 non-H atoms are planar, with an r.m.s. deviation of 0.016 Å. A close intramolecular I⋯O interaction [3.0295 (13) Å] is present. Intermolecular I⋯O interactions [3.3448 (13) Å] lead to the formation of zigzag chains along the b axis. These are assembled into layers by weak π–π interactions [centroid–centroid distance = 3.8416 (9) Å], and the layers stack along the a axis, being connected by C—H⋯O contacts.
Related literature
For general background to halogen bonding, see: Metrangolo et al. (2008); Pennington et al. (2008). For previous structural studies probing iodo–nitro interactions, see: Glidewell et al. (2002, 2004); Garden et al. (2002). For van der Waals radii, see: Bondi (1964).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812006484/hg5176sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812006484/hg5176Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812006484/hg5176Isup3.cml
The C-bound H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).
Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell
CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C7H6INO3 | F(000) = 1056 |
Mr = 279.03 | Dx = 2.289 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 6840 reflections |
a = 18.6370 (13) Å | θ = 3.4–27.4° |
b = 11.6257 (5) Å | µ = 3.92 mm−1 |
c = 7.4740 (3) Å | T = 100 K |
V = 1619.38 (15) Å3 | Plate, dark-orange |
Z = 8 | 0.13 × 0.09 × 0.01 mm |
Rigaku Saturn724+ (2x2 bin mode) diffractometer | 1841 independent reflections |
Radiation source: Rotating Anode | 1615 reflections with I > 2σ(I) |
Confocal monochromator | Rint = 0.017 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 27.5°, θmin = 3.4° |
profile data from ω–scans | h = −15→24 |
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011) | k = −14→14 |
Tmin = 0.755, Tmax = 1.000 | l = −9→8 |
8053 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.014 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.039 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0188P)2 + 0.9351P] where P = (Fo2 + 2Fc2)/3 |
1841 reflections | (Δ/σ)max = 0.002 |
110 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C7H6INO3 | V = 1619.38 (15) Å3 |
Mr = 279.03 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 18.6370 (13) Å | µ = 3.92 mm−1 |
b = 11.6257 (5) Å | T = 100 K |
c = 7.4740 (3) Å | 0.13 × 0.09 × 0.01 mm |
Rigaku Saturn724+ (2x2 bin mode) diffractometer | 1841 independent reflections |
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011) | 1615 reflections with I > 2σ(I) |
Tmin = 0.755, Tmax = 1.000 | Rint = 0.017 |
8053 measured reflections |
R[F2 > 2σ(F2)] = 0.014 | 0 restraints |
wR(F2) = 0.039 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.42 e Å−3 |
1841 reflections | Δρmin = −0.25 e Å−3 |
110 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.697282 (5) | 0.925416 (9) | −0.003362 (13) | 0.01546 (5) | |
O1 | 0.70514 (6) | 0.66598 (11) | −0.03589 (18) | 0.0231 (3) | |
O2 | 0.62939 (7) | 0.52986 (10) | 0.01236 (15) | 0.0214 (3) | |
O3 | 0.41118 (6) | 0.68759 (8) | 0.23820 (15) | 0.0148 (2) | |
N1 | 0.64607 (7) | 0.63180 (12) | 0.01188 (16) | 0.0133 (3) | |
C1 | 0.60441 (8) | 0.83551 (12) | 0.0734 (2) | 0.0119 (3) | |
C2 | 0.59202 (8) | 0.71660 (12) | 0.0719 (2) | 0.0116 (3) | |
C3 | 0.52698 (8) | 0.67047 (12) | 0.12652 (19) | 0.0122 (3) | |
H3 | 0.5199 | 0.5896 | 0.1236 | 0.015* | |
C4 | 0.47214 (8) | 0.74173 (12) | 0.1854 (2) | 0.0115 (3) | |
C5 | 0.48273 (8) | 0.86045 (12) | 0.1870 (2) | 0.0128 (3) | |
H5 | 0.4455 | 0.9104 | 0.2254 | 0.015* | |
C6 | 0.54812 (8) | 0.90498 (12) | 0.1319 (2) | 0.0131 (3) | |
H6 | 0.5548 | 0.9860 | 0.1342 | 0.016* | |
C7 | 0.35196 (8) | 0.75849 (13) | 0.2943 (2) | 0.0157 (3) | |
H7A | 0.3658 | 0.8025 | 0.4007 | 0.024* | |
H7B | 0.3107 | 0.7096 | 0.3228 | 0.024* | |
H7C | 0.3391 | 0.8116 | 0.1977 | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.01244 (8) | 0.01476 (8) | 0.01918 (8) | −0.00280 (4) | 0.00198 (3) | 0.00187 (4) |
O1 | 0.0129 (6) | 0.0209 (6) | 0.0354 (7) | 0.0015 (5) | 0.0054 (5) | −0.0037 (5) |
O2 | 0.0223 (7) | 0.0104 (5) | 0.0315 (7) | 0.0033 (5) | 0.0035 (5) | −0.0004 (4) |
O3 | 0.0109 (5) | 0.0121 (5) | 0.0214 (6) | −0.0013 (4) | 0.0029 (4) | −0.0001 (4) |
N1 | 0.0128 (6) | 0.0149 (6) | 0.0124 (6) | 0.0025 (5) | −0.0020 (4) | −0.0002 (5) |
C1 | 0.0108 (7) | 0.0137 (7) | 0.0113 (7) | −0.0019 (6) | −0.0011 (5) | 0.0018 (5) |
C2 | 0.0122 (7) | 0.0115 (6) | 0.0111 (7) | 0.0038 (6) | −0.0016 (5) | −0.0007 (5) |
C3 | 0.0146 (7) | 0.0091 (6) | 0.0130 (7) | 0.0003 (5) | −0.0024 (5) | 0.0004 (5) |
C4 | 0.0101 (6) | 0.0135 (7) | 0.0109 (7) | −0.0013 (5) | −0.0014 (5) | 0.0007 (5) |
C5 | 0.0116 (7) | 0.0121 (6) | 0.0148 (7) | 0.0027 (6) | −0.0009 (5) | −0.0010 (5) |
C6 | 0.0154 (7) | 0.0097 (6) | 0.0143 (7) | −0.0006 (6) | −0.0014 (6) | 0.0003 (6) |
C7 | 0.0110 (7) | 0.0170 (7) | 0.0191 (8) | 0.0009 (6) | 0.0019 (6) | 0.0001 (6) |
I1—C1 | 2.1017 (14) | C3—C4 | 1.387 (2) |
O1—N1 | 1.2238 (18) | C3—H3 | 0.9500 |
O2—N1 | 1.225 (2) | C4—C5 | 1.394 (2) |
O3—C4 | 1.3574 (18) | C5—C6 | 1.386 (2) |
O3—C7 | 1.4398 (18) | C5—H5 | 0.9500 |
N1—C2 | 1.4791 (19) | C6—H6 | 0.9500 |
C1—C6 | 1.395 (2) | C7—H7A | 0.9800 |
C1—C2 | 1.4017 (19) | C7—H7B | 0.9800 |
C2—C3 | 1.387 (2) | C7—H7C | 0.9800 |
C4—O3—C7 | 117.44 (11) | O3—C4—C5 | 125.10 (13) |
O1—N1—O2 | 122.90 (14) | C3—C4—C5 | 119.30 (13) |
O1—N1—C2 | 119.00 (13) | C6—C5—C4 | 119.44 (13) |
O2—N1—C2 | 118.10 (13) | C6—C5—H5 | 120.3 |
C6—C1—C2 | 116.72 (13) | C4—C5—H5 | 120.3 |
C6—C1—I1 | 114.66 (10) | C5—C6—C1 | 122.56 (13) |
C2—C1—I1 | 128.62 (11) | C5—C6—H6 | 118.7 |
C3—C2—C1 | 121.54 (13) | C1—C6—H6 | 118.7 |
C3—C2—N1 | 115.27 (12) | O3—C7—H7A | 109.5 |
C1—C2—N1 | 123.19 (13) | O3—C7—H7B | 109.5 |
C2—C3—C4 | 120.42 (13) | H7A—C7—H7B | 109.5 |
C2—C3—H3 | 119.8 | O3—C7—H7C | 109.5 |
C4—C3—H3 | 119.8 | H7A—C7—H7C | 109.5 |
O3—C4—C3 | 115.59 (12) | H7B—C7—H7C | 109.5 |
C6—C1—C2—C3 | −0.2 (2) | C7—O3—C4—C3 | −177.84 (13) |
I1—C1—C2—C3 | −179.68 (11) | C7—O3—C4—C5 | 2.3 (2) |
C6—C1—C2—N1 | 179.41 (13) | C2—C3—C4—O3 | −179.07 (13) |
I1—C1—C2—N1 | −0.1 (2) | C2—C3—C4—C5 | 0.8 (2) |
O1—N1—C2—C3 | −178.97 (13) | O3—C4—C5—C6 | 179.05 (14) |
O2—N1—C2—C3 | 1.04 (19) | C3—C4—C5—C6 | −0.9 (2) |
O1—N1—C2—C1 | 1.5 (2) | C4—C5—C6—C1 | 0.4 (2) |
O2—N1—C2—C1 | −178.54 (14) | C2—C1—C6—C5 | 0.1 (2) |
C1—C2—C3—C4 | −0.3 (2) | I1—C1—C6—C5 | 179.73 (12) |
N1—C2—C3—C4 | −179.93 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7B···O1i | 0.98 | 2.58 | 3.4503 (19) | 148 |
Symmetry code: (i) x−1/2, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C7H6INO3 |
Mr | 279.03 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 100 |
a, b, c (Å) | 18.6370 (13), 11.6257 (5), 7.4740 (3) |
V (Å3) | 1619.38 (15) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 3.92 |
Crystal size (mm) | 0.13 × 0.09 × 0.01 |
Data collection | |
Diffractometer | Rigaku Saturn724+ (2x2 bin mode) diffractometer |
Absorption correction | Multi-scan (CrystalClear-SM Expert; Rigaku, 2011) |
Tmin, Tmax | 0.755, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8053, 1841, 1615 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.014, 0.039, 1.04 |
No. of reflections | 1841 |
No. of parameters | 110 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.42, −0.25 |
Computer programs: CrystalClear-SM Expert (Rigaku, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7B···O1i | 0.98 | 2.58 | 3.4503 (19) | 148 |
Symmetry code: (i) x−1/2, y, −z+1/2. |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM·C/HIR/MOHE/SC/12).
References
Bondi, A. (1964). J. Phys. Chem. 68, 441–452. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Garden, S. J., Fontes, S. P., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 701–709. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864–876. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2004). Acta Cryst. B60, 472–480. Web of Science CSD CrossRef IUCr Journals Google Scholar
Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Struct. Bond. 126, 105–136. Web of Science CrossRef CAS Google Scholar
Pennington, W. T., Hanks, T. W. & Arman, H. D. (2008). Struct. Bond. 126, 65–104. Web of Science CrossRef CAS Google Scholar
Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In connection with previous structural studies of iodo···nitro interactions (Glidewell et al., 2002; Garden et al., 2002; Glidewell et al., 2004), the crystal and molecular structure of the title compound (I) was undertaken in order to probe the structure for possible I···O halogen bonding (Metrangolo et al., 2008; Pennington et al., 2008).
The 12 non-hydrogen atoms comprising (I), Fig. 1, are co-planar with a rm.s. deviation = 0.016 Å; the maximum deviations of ±0.026 Å being found for the nitro-O atoms. A close intramolecular I1···O1 interaction of 3.0295 (13) Å is noted that is significantly less than the sum of the van der Waals radii for these atoms, i.e. 3.50 Å (Bondi, 1964). There are also notable intermolecular I1···O interactions, the shortest of 3.3448 (13) Å occurs with the O1i atom [symmetry operation i: 3/2 - x, 1/2 + y, z]. A longer interaction [3.4530 (13) Å] is formed with the O2 atom of the same nitro group. The I1···O1i interactions lead to the formation of zigzag chains along the b axis, Fig. 2. The supramolecular chains are assembled into layers in the bc plane by weak π–π interactions [ring centroid···centroid distance = 3.8416 (9) Å for symmetry operation x, 3/2 - y, -1/2 + z]. Layers stack along the a axis and are connected by C—H···O contacts, Fig. 3 and Table 1.