organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Iodo-4-meth­­oxy-2-nitro­benzene

aCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Avenida Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 February 2012; accepted 14 February 2012; online 17 February 2012)

In the title compound, C7H6INO3, the 12 non-H atoms are planar, with an r.m.s. deviation of 0.016 Å. A close intra­molecular I⋯O inter­action [3.0295 (13) Å] is present. Inter­molecular I⋯O inter­actions [3.3448 (13) Å] lead to the formation of zigzag chains along the b axis. These are assembled into layers by weak ππ inter­actions [centroid–centroid distance = 3.8416 (9) Å], and the layers stack along the a axis, being connected by C—H⋯O contacts.

Related literature

For general background to halogen bonding, see: Metrangolo et al. (2008[Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Struct. Bond. 126, 105-136.]); Pennington et al. (2008[Pennington, W. T., Hanks, T. W. & Arman, H. D. (2008). Struct. Bond. 126, 65-104.]). For previous structural studies probing iodo–nitro inter­actions, see: Glidewell et al. (2002[Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864-876.], 2004[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2004). Acta Cryst. B60, 472-480.]); Garden et al. (2002[Garden, S. J., Fontes, S. P., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 701-709.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-452.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6INO3

  • Mr = 279.03

  • Orthorhombic, P b c a

  • a = 18.6370 (13) Å

  • b = 11.6257 (5) Å

  • c = 7.4740 (3) Å

  • V = 1619.38 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.92 mm−1

  • T = 100 K

  • 0.13 × 0.09 × 0.01 mm

Data collection
  • Rigaku Saturn724+ (2 × 2 bin mode) diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.755, Tmax = 1.000

  • 8053 measured reflections

  • 1841 independent reflections

  • 1615 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.014

  • wR(F2) = 0.039

  • S = 1.04

  • 1841 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O1i 0.98 2.58 3.4503 (19) 148
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In connection with previous structural studies of iodo···nitro interactions (Glidewell et al., 2002; Garden et al., 2002; Glidewell et al., 2004), the crystal and molecular structure of the title compound (I) was undertaken in order to probe the structure for possible I···O halogen bonding (Metrangolo et al., 2008; Pennington et al., 2008).

The 12 non-hydrogen atoms comprising (I), Fig. 1, are co-planar with a rm.s. deviation = 0.016 Å; the maximum deviations of ±0.026 Å being found for the nitro-O atoms. A close intramolecular I1···O1 interaction of 3.0295 (13) Å is noted that is significantly less than the sum of the van der Waals radii for these atoms, i.e. 3.50 Å (Bondi, 1964). There are also notable intermolecular I1···O interactions, the shortest of 3.3448 (13) Å occurs with the O1i atom [symmetry operation i: 3/2 - x, 1/2 + y, z]. A longer interaction [3.4530 (13) Å] is formed with the O2 atom of the same nitro group. The I1···O1i interactions lead to the formation of zigzag chains along the b axis, Fig. 2. The supramolecular chains are assembled into layers in the bc plane by weak ππ interactions [ring centroid···centroid distance = 3.8416 (9) Å for symmetry operation x, 3/2 - y, -1/2 + z]. Layers stack along the a axis and are connected by C—H···O contacts, Fig. 3 and Table 1.

Related literature top

For general background to halogen bonding, see: Metrangolo et al. (2008); Pennington et al. (2008). For previous structural studies probing iodo–nitro interactions, see: Glidewell et al. (2002, 2004); Garden et al. (2002). For van der Waals radii, see: Bondi (1964).

Experimental top

The commercial compound (Aldrich) was recrystallized from EtOH; M.pt: 334–335 K.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the linear supramolecular chain along the b axis in (I). The I···O interactions are shown as blue dashed lines.
[Figure 3] Fig. 3. A view in projection down the c axis of the packing of supramolecular chains in (I). The I···O, C—H···O and ππ interactions are shown as blue, orange and purple dashed lines, respectively.
1-Iodo-4-methoxy-2-nitrobenzene top
Crystal data top
C7H6INO3F(000) = 1056
Mr = 279.03Dx = 2.289 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6840 reflections
a = 18.6370 (13) Åθ = 3.4–27.4°
b = 11.6257 (5) ŵ = 3.92 mm1
c = 7.4740 (3) ÅT = 100 K
V = 1619.38 (15) Å3Plate, dark-orange
Z = 80.13 × 0.09 × 0.01 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
1841 independent reflections
Radiation source: Rotating Anode1615 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.017
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.4°
profile data from ω–scansh = 1524
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
k = 1414
Tmin = 0.755, Tmax = 1.000l = 98
8053 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.039H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0188P)2 + 0.9351P]
where P = (Fo2 + 2Fc2)/3
1841 reflections(Δ/σ)max = 0.002
110 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C7H6INO3V = 1619.38 (15) Å3
Mr = 279.03Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 18.6370 (13) ŵ = 3.92 mm1
b = 11.6257 (5) ÅT = 100 K
c = 7.4740 (3) Å0.13 × 0.09 × 0.01 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
1841 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
1615 reflections with I > 2σ(I)
Tmin = 0.755, Tmax = 1.000Rint = 0.017
8053 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0140 restraints
wR(F2) = 0.039H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
1841 reflectionsΔρmin = 0.25 e Å3
110 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.697282 (5)0.925416 (9)0.003362 (13)0.01546 (5)
O10.70514 (6)0.66598 (11)0.03589 (18)0.0231 (3)
O20.62939 (7)0.52986 (10)0.01236 (15)0.0214 (3)
O30.41118 (6)0.68759 (8)0.23820 (15)0.0148 (2)
N10.64607 (7)0.63180 (12)0.01188 (16)0.0133 (3)
C10.60441 (8)0.83551 (12)0.0734 (2)0.0119 (3)
C20.59202 (8)0.71660 (12)0.0719 (2)0.0116 (3)
C30.52698 (8)0.67047 (12)0.12652 (19)0.0122 (3)
H30.51990.58960.12360.015*
C40.47214 (8)0.74173 (12)0.1854 (2)0.0115 (3)
C50.48273 (8)0.86045 (12)0.1870 (2)0.0128 (3)
H50.44550.91040.22540.015*
C60.54812 (8)0.90498 (12)0.1319 (2)0.0131 (3)
H60.55480.98600.13420.016*
C70.35196 (8)0.75849 (13)0.2943 (2)0.0157 (3)
H7A0.36580.80250.40070.024*
H7B0.31070.70960.32280.024*
H7C0.33910.81160.19770.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01244 (8)0.01476 (8)0.01918 (8)0.00280 (4)0.00198 (3)0.00187 (4)
O10.0129 (6)0.0209 (6)0.0354 (7)0.0015 (5)0.0054 (5)0.0037 (5)
O20.0223 (7)0.0104 (5)0.0315 (7)0.0033 (5)0.0035 (5)0.0004 (4)
O30.0109 (5)0.0121 (5)0.0214 (6)0.0013 (4)0.0029 (4)0.0001 (4)
N10.0128 (6)0.0149 (6)0.0124 (6)0.0025 (5)0.0020 (4)0.0002 (5)
C10.0108 (7)0.0137 (7)0.0113 (7)0.0019 (6)0.0011 (5)0.0018 (5)
C20.0122 (7)0.0115 (6)0.0111 (7)0.0038 (6)0.0016 (5)0.0007 (5)
C30.0146 (7)0.0091 (6)0.0130 (7)0.0003 (5)0.0024 (5)0.0004 (5)
C40.0101 (6)0.0135 (7)0.0109 (7)0.0013 (5)0.0014 (5)0.0007 (5)
C50.0116 (7)0.0121 (6)0.0148 (7)0.0027 (6)0.0009 (5)0.0010 (5)
C60.0154 (7)0.0097 (6)0.0143 (7)0.0006 (6)0.0014 (6)0.0003 (6)
C70.0110 (7)0.0170 (7)0.0191 (8)0.0009 (6)0.0019 (6)0.0001 (6)
Geometric parameters (Å, º) top
I1—C12.1017 (14)C3—C41.387 (2)
O1—N11.2238 (18)C3—H30.9500
O2—N11.225 (2)C4—C51.394 (2)
O3—C41.3574 (18)C5—C61.386 (2)
O3—C71.4398 (18)C5—H50.9500
N1—C21.4791 (19)C6—H60.9500
C1—C61.395 (2)C7—H7A0.9800
C1—C21.4017 (19)C7—H7B0.9800
C2—C31.387 (2)C7—H7C0.9800
C4—O3—C7117.44 (11)O3—C4—C5125.10 (13)
O1—N1—O2122.90 (14)C3—C4—C5119.30 (13)
O1—N1—C2119.00 (13)C6—C5—C4119.44 (13)
O2—N1—C2118.10 (13)C6—C5—H5120.3
C6—C1—C2116.72 (13)C4—C5—H5120.3
C6—C1—I1114.66 (10)C5—C6—C1122.56 (13)
C2—C1—I1128.62 (11)C5—C6—H6118.7
C3—C2—C1121.54 (13)C1—C6—H6118.7
C3—C2—N1115.27 (12)O3—C7—H7A109.5
C1—C2—N1123.19 (13)O3—C7—H7B109.5
C2—C3—C4120.42 (13)H7A—C7—H7B109.5
C2—C3—H3119.8O3—C7—H7C109.5
C4—C3—H3119.8H7A—C7—H7C109.5
O3—C4—C3115.59 (12)H7B—C7—H7C109.5
C6—C1—C2—C30.2 (2)C7—O3—C4—C3177.84 (13)
I1—C1—C2—C3179.68 (11)C7—O3—C4—C52.3 (2)
C6—C1—C2—N1179.41 (13)C2—C3—C4—O3179.07 (13)
I1—C1—C2—N10.1 (2)C2—C3—C4—C50.8 (2)
O1—N1—C2—C3178.97 (13)O3—C4—C5—C6179.05 (14)
O2—N1—C2—C31.04 (19)C3—C4—C5—C60.9 (2)
O1—N1—C2—C11.5 (2)C4—C5—C6—C10.4 (2)
O2—N1—C2—C1178.54 (14)C2—C1—C6—C50.1 (2)
C1—C2—C3—C40.3 (2)I1—C1—C6—C5179.73 (12)
N1—C2—C3—C4179.93 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O1i0.982.583.4503 (19)148
Symmetry code: (i) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H6INO3
Mr279.03
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)18.6370 (13), 11.6257 (5), 7.4740 (3)
V3)1619.38 (15)
Z8
Radiation typeMo Kα
µ (mm1)3.92
Crystal size (mm)0.13 × 0.09 × 0.01
Data collection
DiffractometerRigaku Saturn724+ (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2011)
Tmin, Tmax0.755, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8053, 1841, 1615
Rint0.017
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.039, 1.04
No. of reflections1841
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.25

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O1i0.982.583.4503 (19)148
Symmetry code: (i) x1/2, y, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM·C/HIR/MOHE/SC/12).

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–452.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGarden, S. J., Fontes, S. P., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 701–709.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864–876.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2004). Acta Cryst. B60, 472–480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMetrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Struct. Bond. 126, 105–136.  Web of Science CrossRef CAS Google Scholar
First citationPennington, W. T., Hanks, T. W. & Arman, H. D. (2008). Struct. Bond. 126, 65–104.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds