organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o762-o763

4-{(4Z)-4-[(2Z)-3-(4-Fluoro­anilino)-1-hy­dr­oxy­but-2-en-1-yl­­idene]-3-methyl-5-oxo-4,5-di­hydro-1H-pyrazol-1-yl}­benzene­sulfonamide

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 February 2012; accepted 14 February 2012; online 17 February 2012)

In the title compound, C20H19FN4O4S, the pyrazole and benzene­sulfonamide rings are coplanar [dihedral angle = 5.02 (15)°] but this planarity does not extend over the entire mol­ecule, the dihedral angle between the terminal six-membered rings being 33.24 (14)°. Intra­molecular hy­droxy–hy­droxy O—H⋯O and amine–hy­droxy N—H⋯O hydrogen bonds, as a well as a tight C—H⋯O(carbon­yl) inter­action, lead to a sequence of three fused S(6) rings. Supra­molecular chains along the a axis feature in the crystal packing; these chains are stabilized by amine–sulfonamide N—H⋯O and amine–pyrazole N—H⋯N hydrogen bonds.

Related literature

For background to the synthesis, see: Gelin et al. (1983[Gelin, S., Chantegrel, B. & Nadi, A. I. (1983). J. Org. Chem. 48, 4078-4082.]); Bendaas et al. (1999[Bendaas, A., Hamdi, M. & Sellier, N. (1999). J. Heterocycl. Chem. 36, 1291-1294.]). For related structures, see: Asiri, Al-Youbi, Alamry et al. (2011[Asiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2157.]); Asiri, Al-Youbi, Faidallah et al. (2011[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2353.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19FN4O4S

  • Mr = 430.45

  • Triclinic, [P \overline 1]

  • a = 7.8121 (5) Å

  • b = 10.0137 (8) Å

  • c = 12.6003 (9) Å

  • α = 97.950 (6)°

  • β = 104.632 (6)°

  • γ = 98.394 (6)°

  • V = 927.58 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.25 × 0.10 × 0.02 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.946, Tmax = 0.996

  • 6559 measured reflections

  • 4240 independent reflections

  • 2935 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.146

  • S = 1.01

  • 4240 reflections

  • 287 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1⋯O1 0.85 (1) 1.71 (2) 2.522 (3) 161 (4)
N3—H3⋯O2 0.88 (1) 1.95 (2) 2.662 (3) 137 (3)
C2—H2⋯O1 0.95 2.26 2.917 (4) 126
N4—H41⋯N2i 0.88 (1) 2.14 (1) 2.999 (3) 167 (3)
N4—H42⋯O3ii 0.88 (1) 2.08 (1) 2.943 (3) 169 (3)
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y, -z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In connection with a recent structural studies (Asiri, Al-Youbi, Alamry et al., 2011; Asiri, Al-Youbi, Faidallah et al., 2011), the title compound, 4-{4-[3-(4-fluoroanilino)-1-hydroxybut-2-enylidene]-3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl}benzenesulfonamide (I), was prepared as a part of on-going investigations of reactions between pyrazoles and aniline derivatives based on literature procedures (Gelin et al., 1983; Bendaas et al., 1999).

In (I), Fig. 1, the pyrazolyl and benzenesulfonamide rings are co-planar as seen in dihedral angle of 5.02 (15)°. The planarity extends to the rest of the molecule with the exception of the terminal benzene ring; the dihedral angle between the terminal six-membered rings being 33.24 (14)°. The observed planarity is accounted for by the presence of intramolecular O—H···O and N—H···O hydrogen bonds involving the central hydroxyl-O2 atom functioning as both an acceptor and as a donor, Table 1. These interactions are complemented by a tight C—H···O1 interaction, Table 1. The intramolecular interactions lead to a sequence of three fused S(6) rings.

The molecules are connected into a supramolecular chain along the a axis in the crystal packing, Fig. 2 and Table 1. Both amide-H atoms form hydrogen bonds, one to a sulfonamide-O3 atom and the other to a pyrazolyl-N2 atom. Centrosymmetrically related molecules associate via an eight-membered {···HNSO}2 synthon. These are linked to translationally related molecules via N–H···N hydrogen bonds which lead to the formation of 22-membered {···HNH···OSC4N2}2 synthons which encompass two of the aforementioned N—H···O hydrogen bonds.

Related literature top

For background to the synthesis, see: Gelin et al. (1983); Bendaas et al. (1999). For related structures, see: Asiri, Al-Youbi, Alamry et al. (2011); Asiri, Al-Youbi, Faidallah et al. (2011).

Experimental top

A solution of 4-acetoacetyl-5-hydroxy-3-methyl-1-p-sulfamylphenypyrazole (1.7 g, 0.005 mol) and 4-fluoroaniline (0.55 g, 0.005 mol) in ethanol (25 ml) was refluxed for 2 h. The precipitate, obtained from the hot solution, was collected, washed with methanol and recrystallized from ethanol-benzene to yield yellow crystals; M.pt: 411–412 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N—H and O—H-atoms were located in a difference Fourier map, and were refined with distance restraints of N—H = 0.88±0.01 and O—H = 0.84±0.01 Å, respectively; their Uiso values were refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of a supramolecular chain along the a axis in (I) mediated by N—H···O and N—H···N hydrogen bonds shown as orange and blue dashed lines, respectively.
4-{(4Z)-4-[(2Z)-3-(4-Fluoroanilino)-1-hydroxybut-2-en-1-ylidene]- 3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl}benzenesulfonamide top
Crystal data top
C20H19FN4O4SZ = 2
Mr = 430.45F(000) = 448
Triclinic, P1Dx = 1.541 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8121 (5) ÅCell parameters from 1846 reflections
b = 10.0137 (8) Åθ = 2.4–27.5°
c = 12.6003 (9) ŵ = 0.22 mm1
α = 97.950 (6)°T = 100 K
β = 104.632 (6)°Prism, yellow
γ = 98.394 (6)°0.25 × 0.10 × 0.02 mm
V = 927.58 (12) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4240 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2935 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 107
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1213
Tmin = 0.946, Tmax = 0.996l = 1616
6559 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.375P]
where P = (Fo2 + 2Fc2)/3
4240 reflections(Δ/σ)max = 0.001
287 parametersΔρmax = 0.47 e Å3
4 restraintsΔρmin = 0.36 e Å3
Crystal data top
C20H19FN4O4Sγ = 98.394 (6)°
Mr = 430.45V = 927.58 (12) Å3
Triclinic, P1Z = 2
a = 7.8121 (5) ÅMo Kα radiation
b = 10.0137 (8) ŵ = 0.22 mm1
c = 12.6003 (9) ÅT = 100 K
α = 97.950 (6)°0.25 × 0.10 × 0.02 mm
β = 104.632 (6)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4240 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2935 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.996Rint = 0.041
6559 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0594 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.47 e Å3
4240 reflectionsΔρmin = 0.36 e Å3
287 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.14758 (9)0.18251 (7)0.13099 (5)0.01909 (19)
F10.3342 (3)0.78774 (18)1.20106 (14)0.0361 (5)
O10.7345 (3)0.41000 (19)0.53049 (16)0.0245 (5)
O20.5322 (3)0.4509 (2)0.65439 (16)0.0267 (5)
H10.608 (4)0.457 (4)0.617 (3)0.057 (12)*
O31.0480 (3)0.17118 (19)0.01577 (15)0.0218 (5)
O41.2886 (3)0.2998 (2)0.18161 (16)0.0262 (5)
N10.6195 (3)0.2035 (2)0.39856 (18)0.0181 (5)
N20.4693 (3)0.0958 (2)0.37289 (18)0.0194 (5)
N30.3372 (3)0.4895 (2)0.7974 (2)0.0246 (6)
H30.429 (3)0.519 (3)0.772 (2)0.026 (9)*
N41.2349 (3)0.0473 (2)0.13729 (19)0.0214 (5)
H411.299 (3)0.047 (3)0.2055 (13)0.026*
H421.156 (3)0.025 (2)0.098 (2)0.026*
C10.7495 (4)0.1957 (3)0.3386 (2)0.0184 (6)
C20.8925 (4)0.3055 (3)0.3569 (2)0.0207 (6)
H20.90620.38440.41190.025*
C31.0138 (4)0.2982 (3)0.2943 (2)0.0208 (6)
H3A1.11160.37250.30670.025*
C40.9944 (4)0.1833 (3)0.2133 (2)0.0183 (6)
C50.8533 (4)0.0721 (3)0.1959 (2)0.0198 (6)
H50.84020.00660.14090.024*
C60.7327 (4)0.0778 (3)0.2596 (2)0.0185 (6)
H60.63850.00160.24980.022*
C70.6167 (4)0.3021 (3)0.4854 (2)0.0190 (6)
C80.4559 (4)0.2561 (3)0.5145 (2)0.0191 (6)
C90.3752 (4)0.1281 (3)0.4419 (2)0.0194 (6)
C100.2070 (4)0.0316 (3)0.4376 (2)0.0224 (6)
H10A0.10310.07640.41720.034*
H10B0.21660.00620.51100.034*
H10C0.19140.05120.38190.034*
C110.4130 (4)0.3362 (3)0.6027 (2)0.0215 (6)
C120.2592 (4)0.3066 (3)0.6396 (2)0.0252 (7)
H120.17070.22920.59780.030*
C130.2232 (4)0.3787 (3)0.7311 (2)0.0233 (6)
C140.0456 (4)0.3322 (3)0.7541 (3)0.0316 (8)
H14A0.04670.29400.68340.047*
H14B0.01010.41070.79290.047*
H14C0.05810.26170.80080.047*
C150.3261 (4)0.5620 (3)0.9014 (2)0.0273 (7)
C160.2655 (4)0.4976 (3)0.9798 (3)0.0288 (7)
H160.22380.40110.96480.035*
C170.2665 (4)0.5744 (3)1.0786 (2)0.0281 (7)
H170.22130.53191.13150.034*
C180.3323 (4)0.7119 (3)1.1012 (2)0.0252 (7)
C190.3989 (4)0.7777 (3)1.0272 (2)0.0280 (7)
H190.44770.87331.04530.034*
C200.3932 (4)0.7016 (3)0.9259 (2)0.0257 (7)
H200.43560.74540.87270.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0177 (4)0.0186 (4)0.0193 (4)0.0007 (3)0.0069 (3)0.0013 (3)
F10.0487 (12)0.0327 (10)0.0289 (10)0.0100 (9)0.0165 (9)0.0006 (8)
O10.0214 (11)0.0215 (10)0.0259 (11)0.0032 (9)0.0089 (9)0.0082 (8)
O20.0252 (12)0.0268 (11)0.0250 (11)0.0012 (10)0.0107 (9)0.0059 (9)
O30.0224 (10)0.0235 (11)0.0189 (10)0.0035 (9)0.0055 (8)0.0029 (8)
O40.0244 (11)0.0233 (11)0.0281 (11)0.0044 (9)0.0119 (9)0.0040 (8)
N10.0169 (12)0.0174 (12)0.0177 (12)0.0004 (10)0.0053 (9)0.0020 (9)
N20.0171 (12)0.0186 (12)0.0197 (12)0.0013 (10)0.0044 (10)0.0000 (9)
N30.0236 (14)0.0240 (13)0.0243 (13)0.0026 (11)0.0092 (11)0.0042 (10)
N40.0205 (13)0.0233 (13)0.0170 (12)0.0033 (11)0.0022 (10)0.0009 (10)
C10.0181 (14)0.0220 (14)0.0156 (13)0.0053 (12)0.0053 (11)0.0018 (11)
C20.0246 (15)0.0169 (14)0.0172 (14)0.0033 (12)0.0045 (12)0.0047 (10)
C30.0188 (14)0.0181 (14)0.0231 (15)0.0003 (12)0.0052 (12)0.0001 (11)
C40.0160 (14)0.0200 (14)0.0192 (14)0.0029 (12)0.0063 (11)0.0023 (11)
C50.0208 (15)0.0174 (14)0.0182 (14)0.0027 (12)0.0030 (11)0.0018 (10)
C60.0164 (14)0.0174 (14)0.0185 (14)0.0013 (11)0.0036 (11)0.0000 (10)
C70.0213 (15)0.0195 (14)0.0146 (13)0.0029 (12)0.0042 (11)0.0002 (10)
C80.0177 (14)0.0209 (14)0.0175 (14)0.0028 (12)0.0044 (11)0.0010 (11)
C90.0179 (14)0.0203 (14)0.0186 (14)0.0023 (12)0.0039 (11)0.0019 (11)
C100.0239 (15)0.0200 (14)0.0214 (15)0.0005 (12)0.0070 (12)0.0012 (11)
C110.0226 (15)0.0211 (14)0.0176 (14)0.0021 (12)0.0036 (12)0.0008 (11)
C120.0251 (16)0.0254 (16)0.0222 (15)0.0021 (13)0.0059 (12)0.0011 (12)
C130.0245 (15)0.0252 (15)0.0215 (15)0.0072 (13)0.0074 (12)0.0041 (12)
C140.0278 (17)0.0327 (18)0.0347 (18)0.0034 (15)0.0146 (14)0.0008 (13)
C150.0244 (16)0.0315 (17)0.0254 (16)0.0072 (14)0.0083 (13)0.0006 (12)
C160.0314 (17)0.0256 (16)0.0308 (17)0.0067 (14)0.0105 (14)0.0048 (13)
C170.0290 (17)0.0287 (17)0.0284 (17)0.0074 (14)0.0110 (14)0.0037 (13)
C180.0260 (16)0.0307 (16)0.0207 (15)0.0123 (14)0.0077 (12)0.0014 (12)
C190.0263 (16)0.0247 (16)0.0302 (17)0.0003 (14)0.0090 (13)0.0016 (12)
C200.0203 (15)0.0287 (16)0.0285 (16)0.0021 (13)0.0096 (13)0.0039 (13)
Geometric parameters (Å, º) top
S1—O41.4353 (19)C6—H60.9500
S1—O31.4437 (19)C7—C81.427 (4)
S1—N41.605 (3)C8—C111.417 (4)
S1—C41.770 (3)C8—C91.423 (4)
F1—C181.372 (3)C9—C101.497 (4)
O1—C71.270 (3)C10—H10A0.9800
O2—C111.336 (3)C10—H10B0.9800
O2—H10.848 (10)C10—H10C0.9800
N1—C71.375 (3)C11—C121.402 (4)
N1—N21.410 (3)C12—C131.387 (4)
N1—C11.415 (3)C12—H120.9500
N2—C91.311 (4)C13—C141.508 (4)
N3—C131.342 (4)C14—H14A0.9800
N3—C151.436 (4)C14—H14B0.9800
N3—H30.881 (10)C14—H14C0.9800
N4—H410.878 (10)C15—C201.382 (4)
N4—H420.875 (10)C15—C161.393 (4)
C1—C21.397 (4)C16—C171.368 (4)
C1—C61.401 (4)C16—H160.9500
C2—C31.381 (4)C17—C181.361 (4)
C2—H20.9500C17—H170.9500
C3—C41.391 (4)C18—C191.375 (4)
C3—H3A0.9500C19—C201.380 (4)
C4—C51.398 (4)C19—H190.9500
C5—C61.386 (4)C20—H200.9500
C5—H50.9500
O4—S1—O3118.53 (11)N2—C9—C10119.3 (2)
O4—S1—N4108.00 (13)C8—C9—C10128.9 (3)
O3—S1—N4106.03 (12)C9—C10—H10A109.5
O4—S1—C4106.19 (12)C9—C10—H10B109.5
O3—S1—C4108.51 (13)H10A—C10—H10B109.5
N4—S1—C4109.38 (13)C9—C10—H10C109.5
C11—O2—H1105 (3)H10A—C10—H10C109.5
C7—N1—N2111.1 (2)H10B—C10—H10C109.5
C7—N1—C1129.7 (2)O2—C11—C12117.8 (3)
N2—N1—C1119.2 (2)O2—C11—C8115.8 (2)
C9—N2—N1106.2 (2)C12—C11—C8126.4 (2)
C13—N3—C15127.8 (2)C13—C12—C11126.6 (3)
C13—N3—H3114 (2)C13—C12—H12116.7
C15—N3—H3118 (2)C11—C12—H12116.7
S1—N4—H41111 (2)N3—C13—C12122.7 (3)
S1—N4—H42110 (2)N3—C13—C14119.2 (3)
H41—N4—H42121 (3)C12—C13—C14118.1 (3)
C2—C1—C6120.2 (2)C13—C14—H14A109.5
C2—C1—N1120.2 (2)C13—C14—H14B109.5
C6—C1—N1119.6 (2)H14A—C14—H14B109.5
C3—C2—C1119.3 (3)C13—C14—H14C109.5
C3—C2—H2120.3H14A—C14—H14C109.5
C1—C2—H2120.3H14B—C14—H14C109.5
C2—C3—C4120.7 (2)C20—C15—C16119.7 (3)
C2—C3—H3A119.6C20—C15—N3116.5 (2)
C4—C3—H3A119.6C16—C15—N3123.6 (3)
C3—C4—C5120.2 (3)C17—C16—C15119.5 (3)
C3—C4—S1118.9 (2)C17—C16—H16120.2
C5—C4—S1120.9 (2)C15—C16—H16120.2
C6—C5—C4119.4 (2)C18—C17—C16119.9 (3)
C6—C5—H5120.3C18—C17—H17120.0
C4—C5—H5120.3C16—C17—H17120.0
C5—C6—C1120.1 (2)C17—C18—F1119.4 (2)
C5—C6—H6120.0C17—C18—C19122.0 (3)
C1—C6—H6120.0F1—C18—C19118.6 (3)
O1—C7—N1126.8 (2)C18—C19—C20118.4 (3)
O1—C7—C8127.7 (2)C18—C19—H19120.8
N1—C7—C8105.5 (2)C20—C19—H19120.8
C11—C8—C9134.9 (3)C19—C20—C15120.4 (3)
C11—C8—C7119.6 (2)C19—C20—H20119.8
C9—C8—C7105.5 (2)C15—C20—H20119.8
N2—C9—C8111.8 (2)
C7—N1—N2—C90.5 (3)N1—C7—C8—C91.2 (3)
C1—N1—N2—C9178.6 (2)N1—N2—C9—C80.3 (3)
C7—N1—C1—C27.0 (4)N1—N2—C9—C10178.6 (2)
N2—N1—C1—C2175.4 (2)C11—C8—C9—N2179.4 (3)
C7—N1—C1—C6173.8 (3)C7—C8—C9—N21.0 (3)
N2—N1—C1—C63.8 (4)C11—C8—C9—C100.6 (6)
C6—C1—C2—C31.8 (4)C7—C8—C9—C10177.8 (3)
N1—C1—C2—C3177.4 (3)C9—C8—C11—O2177.0 (3)
C1—C2—C3—C40.3 (4)C7—C8—C11—O21.2 (4)
C2—C3—C4—C51.4 (4)C9—C8—C11—C123.1 (6)
C2—C3—C4—S1177.1 (2)C7—C8—C11—C12178.6 (3)
O4—S1—C4—C310.3 (3)O2—C11—C12—C135.5 (5)
O3—S1—C4—C3118.1 (2)C8—C11—C12—C13174.7 (3)
N4—S1—C4—C3126.6 (2)C15—N3—C13—C12171.6 (3)
O4—S1—C4—C5171.2 (2)C15—N3—C13—C1410.4 (5)
O3—S1—C4—C560.3 (3)C11—C12—C13—N30.2 (5)
N4—S1—C4—C554.9 (3)C11—C12—C13—C14177.9 (3)
C3—C4—C5—C60.3 (4)C13—N3—C15—C20148.1 (3)
S1—C4—C5—C6178.1 (2)C13—N3—C15—C1637.0 (5)
C4—C5—C6—C11.8 (4)C20—C15—C16—C172.6 (5)
C2—C1—C6—C52.9 (4)N3—C15—C16—C17177.3 (3)
N1—C1—C6—C5176.3 (3)C15—C16—C17—C182.3 (5)
N2—N1—C7—O1178.0 (3)C16—C17—C18—F1179.4 (3)
C1—N1—C7—O10.2 (5)C16—C17—C18—C190.0 (5)
N2—N1—C7—C81.1 (3)C17—C18—C19—C201.9 (5)
C1—N1—C7—C8178.9 (3)F1—C18—C19—C20178.6 (3)
O1—C7—C8—C110.9 (5)C18—C19—C20—C151.6 (5)
N1—C7—C8—C11179.9 (2)C16—C15—C20—C190.6 (5)
O1—C7—C8—C9177.8 (3)N3—C15—C20—C19175.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O10.85 (1)1.71 (2)2.522 (3)161 (4)
N3—H3···O20.88 (1)1.95 (2)2.662 (3)137 (3)
C2—H2···O10.952.262.917 (4)126
N4—H41···N2i0.88 (1)2.14 (1)2.999 (3)167 (3)
N4—H42···O3ii0.88 (1)2.08 (1)2.943 (3)169 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC20H19FN4O4S
Mr430.45
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.8121 (5), 10.0137 (8), 12.6003 (9)
α, β, γ (°)97.950 (6), 104.632 (6), 98.394 (6)
V3)927.58 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.25 × 0.10 × 0.02
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.946, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
6559, 4240, 2935
Rint0.041
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.146, 1.01
No. of reflections4240
No. of parameters287
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.36

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O10.85 (1)1.706 (16)2.522 (3)161 (4)
N3—H3···O20.88 (1)1.95 (2)2.662 (3)137 (3)
C2—H2···O10.952.262.917 (4)126
N4—H41···N2i0.88 (1)2.14 (1)2.999 (3)167 (3)
N4—H42···O3ii0.88 (1)2.08 (1)2.943 (3)169 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department of King Abdulaziz University for providing research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBendaas, A., Hamdi, M. & Sellier, N. (1999). J. Heterocycl. Chem. 36, 1291–1294.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGelin, S., Chantegrel, B. & Nadi, A. I. (1983). J. Org. Chem. 48, 4078–4082.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o762-o763
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds