organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2Z)-3-(4-Fluoro­anilino)-1-(5-hy­dr­oxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)but-2-en-1-one

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 February 2012; accepted 14 February 2012; online 17 February 2012)

The central carbonyl group in the title compound, C20H18FN3O2, forms amine–hy­droxy N—H⋯O and hy­droxy–hy­droxy O—H⋯O hydrogen bonds, leading to two S(6) rings. The N-bound phenyl ring is coplanar with the five-membered ring to which it is attached [dihedral angle = 6.27 (10)°], but an overall twist in the mol­ecule is evident, the dihedral angle between the terminal phenyl and benzene rings being 27.30 (10)°. Mol­ecules aggregate into a three-dimensional architecture via C—H⋯F, C—H⋯O and C—H⋯π inter­actions.

Related literature

For background to the synthesis, see: Gelin et al. (1983[Gelin, S., Chantegrel, B. & Nadi, A. I. (1983). J. Org. Chem. 48, 4078-4082.]); Bendaas et al. (1999[Bendaas, A., Hamdi, M. & Sellier, N. (1999). J. Heterocycl. Chem. 36, 1291-1294.]). For the structures of the 4-chloro and 4-meth­oxy derivatives, see: Asiri, Al-Youbi, Alamry et al. (2011[Asiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2157.]); Asiri, Al-Youbi, Faidallah et al. (2011[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2353.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18FN3O2

  • Mr = 351.37

  • Monoclinic, P 21 /c

  • a = 8.3871 (7) Å

  • b = 11.1368 (9) Å

  • c = 18.4772 (16) Å

  • β = 101.317 (8)°

  • V = 1692.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.20 × 0.05 × 0.02 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.981, Tmax = 0.998

  • 7099 measured reflections

  • 3866 independent reflections

  • 2504 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.123

  • S = 1.05

  • 3866 reflections

  • 245 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C15–C20 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.86 (1) 1.73 (2) 2.521 (2) 152 (3)
N3—H3⋯O2 0.88 (1) 1.95 (2) 2.686 (2) 139 (2)
C14—H14A⋯F1i 0.98 2.43 3.309 (3) 150
C19—H19⋯O2ii 0.95 2.55 3.410 (3) 150
C16—H16⋯Cg1iii 0.95 2.59 3.496 (3) 161
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

During recent investigations of reactions between pyrazoles and aniline derivatives based on literature precedents (Gelin et al., 1983; Bendaas et al., 1999), several compounds were isolated in crystalline form and some structures determined (Asiri, Al-Youbi, Alamry et al., 2011; Asiri, Al-Youbi, Faidallah et al., 2011). As a continuation of these studies, the title compound 3-(4-fluoroanilino)-1-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)but-2-en-1-one (I) was investigated.

In (I), Fig. 1, the central O2-carbonyl atom accepts two hydrogen bonds from the adjacent hydroxyl and amine groups to close a pair of fused S(6) rings, Table 1. The N-bound phenyl ring is co-planar with the five-membered ring forming a dihedral angle of 6.27 (10)°. By contrast, the fluorobenzene ring is twisted out of the plane of the rest of the molecule as seen in the value of the C13—N3—C15—C16 torsion angle of -149.5 (2)°; the dihedral angle between the terminal phenyl and benzene rings is 27.30 (10)°.

Molecules aggregate into the three-dimensional architecture via C—H···F, C—H···O and C—H···π interactions, Fig. 2 and Table 1.

Related literature top

For background to the synthesis, see: Gelin et al. (1983); Bendaas et al. (1999). For the structures of the 4-chloro and 4-methoxy derivatives, see: Asiri, Al-Youbi, Alamry et al. (2011); Asiri, Al-Youbi, Faidallah et al. (2011).

Experimental top

A solution of 4-acetoacetyl-5-hydroxy-3-methyl-1 phenylpyrazole (0.005 mol) and 4-fluoroaniline (0.005 mol) in ethanol (25 ml) was refluxed for 2 h. The precipitate, obtained from the hot solution, was collected, washed with methanol and recrystallized from was from its ethanol-benzene solution. Orange plates were harvested; M.pt: 443–445 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N—H and O—H-atoms were located in a difference Fourier map, and were refined with distance restraints of N—H = 0.88±0.01 and O—H = 0.84±0.01 Å, respectively; their Uiso values were refined. Owing to poor agreement, the (1 7 1), (1 9 2) and (2 10 10) reflections were omitted from the final cycles of refinement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents of (I). The C—H···F, C—H···O and C—H···π interactions are shown as blue, orange and purple dashed lines, respectively.
(2Z)-3-(4-Fluoroanilino)-1-(5-hydroxy-3-methyl-1-phenyl-1H- pyrazol-4-yl)but-2-en-1-one top
Crystal data top
C20H18FN3O2F(000) = 736
Mr = 351.37Dx = 1.379 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1871 reflections
a = 8.3871 (7) Åθ = 2.5–27.5°
b = 11.1368 (9) ŵ = 0.10 mm1
c = 18.4772 (16) ÅT = 100 K
β = 101.317 (8)°Plate, orange
V = 1692.3 (2) Å30.20 × 0.05 × 0.02 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3866 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2504 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.5°
ω scanh = 710
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1014
Tmin = 0.981, Tmax = 0.998l = 2224
7099 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0355P)2]
where P = (Fo2 + 2Fc2)/3
3866 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.25 e Å3
2 restraintsΔρmin = 0.29 e Å3
Crystal data top
C20H18FN3O2V = 1692.3 (2) Å3
Mr = 351.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3871 (7) ŵ = 0.10 mm1
b = 11.1368 (9) ÅT = 100 K
c = 18.4772 (16) Å0.20 × 0.05 × 0.02 mm
β = 101.317 (8)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3866 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2504 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.998Rint = 0.038
7099 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0552 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.25 e Å3
3866 reflectionsΔρmin = 0.29 e Å3
245 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.00255 (17)0.62060 (12)0.97089 (8)0.0409 (4)
O10.41629 (18)0.25671 (13)0.53785 (8)0.0231 (4)
H10.375 (3)0.286 (2)0.5730 (12)0.069 (10)*
O20.27537 (17)0.39755 (12)0.61177 (8)0.0224 (4)
N10.40945 (19)0.33193 (15)0.41680 (9)0.0182 (4)
N20.34816 (19)0.43289 (15)0.37538 (10)0.0196 (4)
N30.1370 (2)0.55252 (16)0.69228 (10)0.0203 (4)
H30.193 (2)0.4868 (13)0.6878 (13)0.036 (7)*
C10.4836 (2)0.23985 (18)0.38159 (12)0.0180 (5)
C20.5548 (2)0.13998 (18)0.42087 (13)0.0241 (5)
H20.55640.13300.47230.029*
C30.6234 (3)0.0508 (2)0.38406 (13)0.0277 (5)
H3A0.67120.01770.41050.033*
C40.6227 (3)0.0607 (2)0.30946 (13)0.0273 (6)
H40.66990.00060.28470.033*
C50.5528 (2)0.1606 (2)0.27070 (13)0.0258 (5)
H50.55200.16740.21940.031*
C60.4842 (2)0.25036 (19)0.30655 (12)0.0231 (5)
H60.43760.31900.28000.028*
C70.3767 (2)0.33942 (18)0.48588 (11)0.0175 (5)
C80.2937 (2)0.44604 (18)0.49086 (11)0.0168 (4)
C90.2795 (2)0.49994 (18)0.41992 (12)0.0176 (5)
C100.2000 (2)0.61536 (18)0.39152 (12)0.0221 (5)
H10A0.19950.62240.33860.033*
H10B0.26060.68280.41780.033*
H10C0.08800.61660.39960.033*
C110.2433 (2)0.47650 (18)0.55928 (12)0.0184 (5)
C120.1636 (2)0.58608 (18)0.56826 (11)0.0177 (5)
H120.14230.63880.52710.021*
C130.1141 (2)0.62287 (18)0.63183 (12)0.0183 (5)
C140.0365 (3)0.74430 (18)0.63272 (12)0.0233 (5)
H14A0.06720.79480.59420.035*
H14B0.07380.78190.68100.035*
H14C0.08200.73540.62350.035*
C150.0973 (2)0.57223 (19)0.76250 (12)0.0198 (5)
C160.1966 (3)0.51939 (19)0.82326 (13)0.0254 (5)
H160.28780.47340.81640.030*
C170.1645 (3)0.5328 (2)0.89379 (13)0.0275 (5)
H170.23110.49540.93520.033*
C180.0323 (3)0.6024 (2)0.90176 (13)0.0265 (5)
C190.0693 (3)0.6538 (2)0.84292 (13)0.0255 (5)
H190.15940.70060.85030.031*
C200.0396 (2)0.63699 (19)0.77237 (13)0.0235 (5)
H200.11200.66940.73090.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0595 (10)0.0460 (9)0.0209 (8)0.0049 (7)0.0172 (7)0.0090 (7)
O10.0295 (9)0.0225 (9)0.0180 (9)0.0055 (7)0.0067 (7)0.0035 (7)
O20.0260 (8)0.0237 (8)0.0188 (9)0.0018 (6)0.0071 (7)0.0027 (7)
N10.0188 (9)0.0195 (9)0.0161 (10)0.0028 (7)0.0031 (8)0.0010 (8)
N20.0193 (9)0.0209 (10)0.0184 (10)0.0018 (7)0.0032 (8)0.0015 (8)
N30.0226 (10)0.0226 (11)0.0166 (10)0.0013 (8)0.0063 (8)0.0013 (8)
C10.0131 (10)0.0201 (12)0.0201 (12)0.0005 (8)0.0013 (9)0.0046 (9)
C20.0253 (11)0.0242 (12)0.0224 (13)0.0029 (10)0.0039 (10)0.0031 (10)
C30.0292 (12)0.0220 (13)0.0309 (14)0.0046 (10)0.0035 (11)0.0018 (10)
C40.0252 (12)0.0265 (13)0.0300 (14)0.0027 (10)0.0048 (11)0.0121 (11)
C50.0204 (11)0.0334 (14)0.0233 (13)0.0007 (10)0.0036 (10)0.0073 (11)
C60.0194 (11)0.0291 (13)0.0202 (12)0.0033 (9)0.0029 (10)0.0004 (10)
C70.0159 (10)0.0209 (11)0.0157 (11)0.0022 (9)0.0027 (9)0.0018 (9)
C80.0133 (9)0.0215 (11)0.0157 (11)0.0023 (8)0.0034 (8)0.0001 (9)
C90.0150 (10)0.0186 (11)0.0190 (11)0.0020 (8)0.0026 (9)0.0019 (9)
C100.0248 (11)0.0213 (11)0.0209 (12)0.0011 (9)0.0063 (10)0.0005 (9)
C110.0139 (10)0.0228 (12)0.0176 (11)0.0063 (9)0.0014 (9)0.0015 (10)
C120.0177 (10)0.0195 (11)0.0160 (11)0.0006 (9)0.0031 (9)0.0008 (9)
C130.0164 (10)0.0193 (11)0.0192 (12)0.0044 (9)0.0033 (9)0.0003 (9)
C140.0282 (12)0.0227 (13)0.0199 (13)0.0008 (9)0.0069 (10)0.0010 (10)
C150.0234 (11)0.0208 (12)0.0160 (11)0.0033 (9)0.0062 (9)0.0013 (9)
C160.0283 (12)0.0246 (13)0.0244 (13)0.0014 (10)0.0082 (10)0.0010 (10)
C170.0338 (13)0.0286 (13)0.0179 (12)0.0021 (11)0.0005 (10)0.0035 (10)
C180.0391 (13)0.0268 (13)0.0160 (12)0.0091 (11)0.0114 (11)0.0072 (10)
C190.0262 (12)0.0243 (13)0.0288 (14)0.0030 (10)0.0126 (11)0.0036 (10)
C200.0206 (11)0.0281 (13)0.0213 (13)0.0023 (9)0.0031 (10)0.0010 (10)
Geometric parameters (Å, º) top
F1—C181.364 (2)C8—C91.425 (3)
O1—C71.325 (2)C8—C111.450 (3)
O1—H10.860 (10)C9—C101.495 (3)
O2—C111.298 (2)C10—H10A0.9800
N1—C71.360 (2)C10—H10B0.9800
N1—N21.400 (2)C10—H10C0.9800
N1—C11.421 (2)C11—C121.417 (3)
N2—C91.324 (2)C12—C131.382 (3)
N3—C131.347 (3)C12—H120.9500
N3—C151.419 (2)C13—C141.502 (3)
N3—H30.884 (9)C14—H14A0.9800
C1—C61.393 (3)C14—H14B0.9800
C1—C21.397 (3)C14—H14C0.9800
C2—C31.391 (3)C15—C161.390 (3)
C2—H20.9500C15—C201.397 (3)
C3—C41.382 (3)C16—C171.389 (3)
C3—H3A0.9500C16—H160.9500
C4—C51.389 (3)C17—C181.384 (3)
C4—H40.9500C17—H170.9500
C5—C61.385 (3)C18—C191.368 (3)
C5—H50.9500C19—C201.387 (3)
C6—H60.9500C19—H190.9500
C7—C81.388 (3)C20—H200.9500
C7—O1—H1102 (2)H10A—C10—H10B109.5
C7—N1—N2110.10 (16)C9—C10—H10C109.5
C7—N1—C1131.38 (18)H10A—C10—H10C109.5
N2—N1—C1118.42 (16)H10B—C10—H10C109.5
C9—N2—N1105.73 (17)O2—C11—C12121.97 (18)
C13—N3—C15130.36 (18)O2—C11—C8116.11 (18)
C13—N3—H3113.3 (15)C12—C11—C8121.92 (19)
C15—N3—H3116.1 (16)C13—C12—C11125.6 (2)
C6—C1—C2119.97 (19)C13—C12—H12117.2
C6—C1—N1118.86 (19)C11—C12—H12117.2
C2—C1—N1121.17 (19)N3—C13—C12120.95 (19)
C3—C2—C1119.4 (2)N3—C13—C14120.42 (18)
C3—C2—H2120.3C12—C13—C14118.62 (19)
C1—C2—H2120.3C13—C14—H14A109.5
C4—C3—C2120.6 (2)C13—C14—H14B109.5
C4—C3—H3A119.7H14A—C14—H14B109.5
C2—C3—H3A119.7C13—C14—H14C109.5
C3—C4—C5119.8 (2)H14A—C14—H14C109.5
C3—C4—H4120.1H14B—C14—H14C109.5
C5—C4—H4120.1C16—C15—C20119.36 (19)
C6—C5—C4120.3 (2)C16—C15—N3117.51 (18)
C6—C5—H5119.9C20—C15—N3123.1 (2)
C4—C5—H5119.9C17—C16—C15121.1 (2)
C5—C6—C1119.9 (2)C17—C16—H16119.5
C5—C6—H6120.0C15—C16—H16119.5
C1—C6—H6120.0C18—C17—C16117.8 (2)
O1—C7—N1124.71 (18)C18—C17—H17121.1
O1—C7—C8127.17 (18)C16—C17—H17121.1
N1—C7—C8108.11 (18)F1—C18—C19118.8 (2)
C7—C8—C9104.59 (17)F1—C18—C17118.7 (2)
C7—C8—C11119.57 (19)C19—C18—C17122.5 (2)
C9—C8—C11135.84 (19)C18—C19—C20119.4 (2)
N2—C9—C8111.47 (18)C18—C19—H19120.3
N2—C9—C10119.03 (19)C20—C19—H19120.3
C8—C9—C10129.50 (18)C19—C20—C15119.7 (2)
C9—C10—H10A109.5C19—C20—H20120.1
C9—C10—H10B109.5C15—C20—H20120.1
C7—N1—N2—C90.1 (2)C11—C8—C9—N2179.7 (2)
C1—N1—N2—C9176.80 (16)C7—C8—C9—C10179.2 (2)
C7—N1—C1—C6172.3 (2)C11—C8—C9—C100.3 (4)
N2—N1—C1—C63.6 (3)C7—C8—C11—O22.4 (3)
C7—N1—C1—C27.6 (3)C9—C8—C11—O2177.0 (2)
N2—N1—C1—C2176.52 (18)C7—C8—C11—C12177.68 (19)
C6—C1—C2—C31.1 (3)C9—C8—C11—C122.9 (4)
N1—C1—C2—C3178.82 (18)O2—C11—C12—C131.2 (3)
C1—C2—C3—C40.5 (3)C8—C11—C12—C13178.86 (19)
C2—C3—C4—C50.1 (3)C15—N3—C13—C12179.61 (19)
C3—C4—C5—C60.2 (3)C15—N3—C13—C140.7 (3)
C4—C5—C6—C10.7 (3)C11—C12—C13—N31.2 (3)
C2—C1—C6—C51.2 (3)C11—C12—C13—C14177.71 (19)
N1—C1—C6—C5178.71 (17)C13—N3—C15—C16149.5 (2)
N2—N1—C7—O1178.72 (18)C13—N3—C15—C2033.5 (3)
C1—N1—C7—O12.6 (3)C20—C15—C16—C171.8 (3)
N2—N1—C7—C80.3 (2)N3—C15—C16—C17179.00 (19)
C1—N1—C7—C8176.41 (19)C15—C16—C17—C181.3 (3)
O1—C7—C8—C9178.6 (2)C16—C17—C18—F1177.45 (19)
N1—C7—C8—C90.3 (2)C16—C17—C18—C192.5 (3)
O1—C7—C8—C110.9 (3)F1—C18—C19—C20179.42 (18)
N1—C7—C8—C11179.86 (17)C17—C18—C19—C200.5 (3)
N1—N2—C9—C80.1 (2)C18—C19—C20—C152.7 (3)
N1—N2—C9—C10179.39 (17)C16—C15—C20—C193.8 (3)
C7—C8—C9—N20.3 (2)N3—C15—C20—C19179.17 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.86 (1)1.73 (2)2.521 (2)152 (3)
N3—H3···O20.88 (1)1.95 (2)2.686 (2)139 (2)
C14—H14A···F1i0.982.433.309 (3)150
C19—H19···O2ii0.952.553.410 (3)150
C16—H16···Cg1iii0.952.593.496 (3)161
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H18FN3O2
Mr351.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.3871 (7), 11.1368 (9), 18.4772 (16)
β (°) 101.317 (8)
V3)1692.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.05 × 0.02
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.981, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
7099, 3866, 2504
Rint0.038
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.123, 1.05
No. of reflections3866
No. of parameters245
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.29

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.86 (1)1.73 (2)2.521 (2)152 (3)
N3—H3···O20.88 (1)1.95 (2)2.686 (2)139 (2)
C14—H14A···F1i0.982.433.309 (3)150
C19—H19···O2ii0.952.553.410 (3)150
C16—H16···Cg1iii0.952.593.496 (3)161
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department of King Abdulaziz University for providing research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBendaas, A., Hamdi, M. & Sellier, N. (1999). J. Heterocycl. Chem. 36, 1291–1294.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGelin, S., Chantegrel, B. & Nadi, A. I. (1983). J. Org. Chem. 48, 4078–4082.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds